organic compounds
(S)-Alanine ethyl ester tetracyanidoborate, (C5H12NO)[B(CN)4]
aLeibniz-Institut für Katalyse e.V. (LIKAT), Heterogene Photokatalyse, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany, and bUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de
The title molecular salt, C5H12NO+·C4BN4− or (C5H12NO)[B(CN)4], was obtained as single crystals by slow evaporation of a solution of the compound in acetonitrile over several weeks. The contains two (S)-alanine ethyl ester cations and two tetracyanidoborate anions, which are linked by N—H⋯N hydrogen bonds. The compound exhibits a relatively low melting point of 110°C and shows a solid–solid near room temperature (Ts–s = 29°C) on the basis of DSC measurements.
Keywords: crystal structure; borate; amino acid.
CCDC reference: 2087276
Structure description
For more than 20 years, ionic liquids as salts with low melting points have attracted great interest because of their unique properties and applications. These properties include for instance large liquid ranges, broad electrochemical windows as well as low vapour pressures (Hallett & Welton, 2011; Welton, 1999). The title compound acts as a first example of a low-melting chiral substance in our ongoing efforts to investigate tetracyanidoborate-based ionic liquids (Bernsdorf et al., 2009; Flemming et al., 2010; Siegesmund et al., 2017).
The S)-alanine ethyl ester cations and two tetracyanidoborate anions (Fig. 1). The conformations of the cations about the stereogenic centres (C10 and C15) are almost the same, as indicated by the C9—C10—C11—O2 and C14—C15—C16—O4 torsion angles of −61.9 (3) and −63.0 (3)°, respectively, but the conformations of the ethyl side chains differ substantially: C11—O2—C12—C13 = −86.1 (3) and C16—O4—C17—C18 = 136.5 (3)°. Otherwise, all bond lengths and angles within the cation are in the expected ranges (Dimitrijević et al., 2013). The geometry around the B atoms is close to tetrahedral with C—B—C angles ranging from 107.8 (2) to 111.2 (2)°.
of the title compound consists of two (In the extended structure, the shortest hydrogen-bond contacts are found between the N-bonded H atoms of the cations (N9 and N10) and the N atoms of the tetracyanidoborate anions: the shortest N⋯N donor–acceptor distance is 2.920 (3) Å (Table 1). Fig. 2 shows the packing of the ions within and around the unit cell.
Synthesis and crystallization
The title compound, (C5H12NO)[B(CN)4], was obtained in high purity as a colorless solid on a multi-gram scale from the salt metathesis of (S)-alanine ethyl ester hydrochloride and K[B(CN)4] in acetonic solution at room temperature. (S)-Alanine ethyl ester hydrochloride (2.0 g, 13.0 mmol) was added in one portion to a vigorously stirred solution of K[B(CN)4] (2.2 g, 14.3 mmol) in 100 ml acetone at room temperature and was further stirred overnight. The precipitate was filtered off and the solvent of the filtrate was removed in vacuum. The residue was dissolved in a minimum amount of dichloromethane, filtered again and the solvent was removed in vacuum. The final product was obtained as a colourless solid in high yield (2.8 g, 91%); m.p. = 110°C, Ts–s = 29°C. The thermal behaviour was determined by means of (DSC) in the temperature range from −100 to 200°C with a heating rate of 10 K min−1. Analytical data for C9H12BN5O2 % (calc.): C 46.43 (46.39); H 5.25 (5.19); N 26.53 (30.05).
Refinement
Crystal data, data collection and structure . Sixteen reflections were omitted from the because their intensities were affected by the beam stop. Details can be found in the refine_ special_details field in the The refined value of the Flack parameter of 0.2 (8) was ambiguous, and the was assigned on the basis of the enantiomeric pure (S)-alanine ethyl ester hydrochloride used in the synthesis.
details are summarized in Table 2
|
Structural data
CCDC reference: 2087276
https://doi.org/10.1107/S2414314621005629/hb4385sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621005629/hb4385Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314621005629/hb4385Isup3.cml
Data collection: APEX2 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2015b); program(s) used to refine structure: SHELXT (Sheldrick, 2015a); molecular graphics: DIAMOND (Brandenburg & Putz, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).C5H12NO2+·C4N4B− | F(000) = 976 |
Mr = 233.05 | Dx = 1.182 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
a = 17.059 (1) Å | Cell parameters from 2564 reflections |
b = 8.7467 (4) Å | θ = 4.3–25.5° |
c = 18.855 (1) Å | µ = 0.09 mm−1 |
β = 111.468 (4)° | T = 173 K |
V = 2618.2 (3) Å3 | Block, colourless |
Z = 8 | 0.27 × 0.18 × 0.15 mm |
Bruker APEXII CCD diffractometer | 5158 reflections with I > 2σ(I) |
Radiation source: microfocus sealed tube | Rint = 0.038 |
φ and ω scans | θmax = 31.0°, θmin = 4.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2017) | h = −24→24 |
k = −10→12 | |
11976 measured reflections | l = −25→26 |
7354 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0649P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
7354 reflections | Δρmax = 0.38 e Å−3 |
307 parameters | Δρmin = −0.24 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1751 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.2 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.4401 (2) | 0.0236 (3) | 0.3575 (2) | 0.0267 (6) | |
C1 | 0.4986 (2) | 0.1670 (3) | 0.3916 (2) | 0.0327 (6) | |
N1 | 0.5418 (2) | 0.2686 (3) | 0.4167 (2) | 0.0494 (7) | |
C2 | 0.4971 (2) | −0.1273 (3) | 0.3745 (2) | 0.0281 (5) | |
N2 | 0.5371 (2) | −0.2346 (3) | 0.3855 (1) | 0.0405 (6) | |
C3 | 0.3940 (2) | 0.0381 (3) | 0.2677 (2) | 0.0326 (6) | |
N3 | 0.3621 (2) | 0.0434 (3) | 0.2032 (2) | 0.0505 (7) | |
C4 | 0.3729 (2) | 0.0061 (3) | 0.3968 (2) | 0.0343 (6) | |
N4 | 0.3242 (2) | −0.0082 (4) | 0.4246 (2) | 0.0524 (7) | |
B2 | 0.4421 (2) | 0.4179 (3) | 0.8626 (2) | 0.0288 (6) | |
C5 | 0.4893 (2) | 0.5759 (3) | 0.8893 (2) | 0.0378 (6) | |
N5 | 0.5235 (2) | 0.6898 (3) | 0.9064 (2) | 0.0574 (8) | |
C6 | 0.5081 (2) | 0.2830 (3) | 0.8927 (2) | 0.0345 (6) | |
N6 | 0.5555 (2) | 0.1866 (3) | 0.9158 (2) | 0.0505 (7) | |
C7 | 0.4013 (2) | 0.4174 (4) | 0.7723 (2) | 0.0396 (7) | |
N7 | 0.3728 (2) | 0.4224 (4) | 0.7078 (2) | 0.068 (1) | |
C8 | 0.3709 (2) | 0.3968 (3) | 0.8974 (2) | 0.0304 (5) | |
N8 | 0.3198 (2) | 0.3818 (3) | 0.9222 (2) | 0.0423 (6) | |
C9 | 0.1899 (2) | 0.2660 (3) | 0.0774 (2) | 0.0485 (8) | |
H9A | 0.1933 | 0.2721 | 0.1304 | 0.073* | |
H9B | 0.2436 | 0.2290 | 0.0762 | 0.073* | |
H9C | 0.1447 | 0.1952 | 0.0491 | 0.073* | |
C10 | 0.1714 (2) | 0.4213 (3) | 0.0417 (1) | 0.0284 (5) | |
H10A | 0.1168 | 0.4582 | 0.0436 | 0.034* | |
N9 | 0.1651 (1) | 0.4193 (2) | −0.0392 (1) | 0.0251 (4) | |
H9D | 0.1236 | 0.3536 | −0.0663 | 0.038* | |
H9E | 0.2150 | 0.3881 | −0.0414 | 0.038* | |
H9F | 0.1529 | 0.5149 | −0.0592 | 0.038* | |
C11 | 0.2398 (2) | 0.5319 (3) | 0.0848 (1) | 0.0290 (5) | |
O1 | 0.2858 (1) | 0.5932 (2) | 0.0589 (1) | 0.0390 (5) | |
O2 | 0.2429 (1) | 0.5455 (2) | 0.1560 (1) | 0.0417 (5) | |
C12 | 0.3156 (2) | 0.6236 (4) | 0.2100 (2) | 0.0534 (9) | |
H12A | 0.3004 | 0.6699 | 0.2511 | 0.064* | |
H12B | 0.3340 | 0.7064 | 0.1838 | 0.064* | |
C13 | 0.3855 (2) | 0.5119 (6) | 0.2431 (2) | 0.069 (1) | |
H13A | 0.4347 | 0.5646 | 0.2791 | 0.103* | |
H13B | 0.4003 | 0.4663 | 0.2022 | 0.103* | |
H13C | 0.3674 | 0.4313 | 0.2699 | 0.103* | |
C14 | 0.6152 (2) | 0.5843 (4) | 0.5570 (2) | 0.0447 (7) | |
H14A | 0.6329 | 0.6107 | 0.6111 | 0.067* | |
H14B | 0.5816 | 0.4904 | 0.5470 | 0.067* | |
H14C | 0.5813 | 0.6678 | 0.5261 | 0.067* | |
C15 | 0.6923 (2) | 0.5598 (3) | 0.5365 (1) | 0.0262 (5) | |
H15A | 0.7255 | 0.6569 | 0.5462 | 0.031* | |
N10 | 0.6667 (1) | 0.5199 (2) | 0.4547 (1) | 0.0228 (4) | |
H10B | 0.7135 | 0.5058 | 0.4430 | 0.034* | |
H10C | 0.6352 | 0.5971 | 0.4258 | 0.034* | |
H10D | 0.6358 | 0.4323 | 0.4451 | 0.034* | |
C16 | 0.7477 (2) | 0.4339 (3) | 0.5836 (1) | 0.0246 (5) | |
O3 | 0.7610 (1) | 0.3169 (2) | 0.5581 (1) | 0.0429 (5) | |
O4 | 0.7763 (2) | 0.4724 (3) | 0.6559 (1) | 0.0500 (6) | |
C17 | 0.8324 (2) | 0.3692 (4) | 0.7118 (2) | 0.0477 (8) | |
H17A | 0.8557 | 0.2922 | 0.6864 | 0.057* | |
H17B | 0.8015 | 0.3151 | 0.7397 | 0.057* | |
C18 | 0.9012 (2) | 0.4620 (6) | 0.7653 (2) | 0.065 (1) | |
H18A | 0.9405 | 0.3952 | 0.8037 | 0.097* | |
H18B | 0.8776 | 0.5372 | 0.7904 | 0.097* | |
H18C | 0.9313 | 0.5153 | 0.7371 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.024 (1) | 0.028 (1) | 0.028 (2) | −0.001 (1) | 0.010 (1) | 0.001 (1) |
C1 | 0.035 (1) | 0.033 (1) | 0.030 (1) | −0.001 (1) | 0.012 (1) | 0.001 (1) |
N1 | 0.057 (2) | 0.042 (1) | 0.045 (2) | −0.017 (1) | 0.014 (1) | −0.006 (1) |
C2 | 0.027 (1) | 0.031 (1) | 0.029 (1) | −0.001 (1) | 0.013 (1) | 0.004 (1) |
N2 | 0.038 (1) | 0.041 (1) | 0.045 (2) | 0.007 (1) | 0.018 (1) | 0.009 (1) |
C3 | 0.032 (1) | 0.031 (1) | 0.033 (2) | −0.001 (1) | 0.010 (1) | 0.002 (1) |
N3 | 0.051 (2) | 0.060 (2) | 0.033 (1) | −0.004 (1) | 0.006 (1) | 0.003 (1) |
C4 | 0.029 (1) | 0.038 (1) | 0.037 (2) | 0.001 (1) | 0.014 (1) | 0.000 (1) |
N4 | 0.041 (1) | 0.070 (2) | 0.055 (2) | 0.002 (1) | 0.028 (1) | −0.001 (2) |
B2 | 0.028 (1) | 0.028 (1) | 0.029 (2) | 0.004 (1) | 0.009 (1) | 0.001 (1) |
C5 | 0.027 (1) | 0.036 (1) | 0.048 (2) | 0.002 (1) | 0.011 (1) | 0.006 (1) |
N5 | 0.039 (1) | 0.041 (2) | 0.081 (2) | −0.006 (1) | 0.009 (1) | 0.003 (2) |
C6 | 0.037 (1) | 0.035 (1) | 0.029 (2) | 0.006 (1) | 0.010 (1) | −0.002 (1) |
N6 | 0.053 (2) | 0.046 (2) | 0.043 (2) | 0.019 (1) | 0.007 (1) | −0.003 (1) |
C7 | 0.040 (2) | 0.045 (2) | 0.035 (2) | 0.010 (1) | 0.014 (1) | 0.007 (1) |
N7 | 0.070 (2) | 0.098 (3) | 0.034 (2) | 0.023 (2) | 0.015 (1) | 0.012 (2) |
C8 | 0.029 (1) | 0.028 (1) | 0.030 (1) | 0.002 (1) | 0.006 (1) | −0.002 (1) |
N8 | 0.036 (1) | 0.047 (1) | 0.046 (2) | 0.001 (1) | 0.019 (1) | 0.001 (1) |
C9 | 0.077 (2) | 0.033 (2) | 0.034 (2) | −0.009 (2) | 0.018 (2) | 0.002 (1) |
C10 | 0.028 (1) | 0.032 (1) | 0.026 (1) | −0.002 (1) | 0.012 (1) | 0.002 (1) |
N9 | 0.026 (1) | 0.0231 (9) | 0.025 (1) | −0.0002 (8) | 0.0083 (8) | −0.0007 (8) |
C11 | 0.035 (1) | 0.028 (1) | 0.024 (1) | −0.001 (1) | 0.011 (1) | 0.002 (1) |
O1 | 0.047 (1) | 0.041 (1) | 0.033 (1) | −0.0185 (9) | 0.0192 (9) | −0.0055 (8) |
O2 | 0.054 (1) | 0.047 (1) | 0.026 (1) | −0.016 (1) | 0.0161 (8) | −0.0048 (8) |
C12 | 0.073 (2) | 0.056 (2) | 0.026 (2) | −0.030 (2) | 0.012 (2) | −0.010 (1) |
C13 | 0.054 (2) | 0.100 (3) | 0.046 (2) | −0.014 (2) | 0.010 (2) | −0.022 (2) |
C14 | 0.049 (2) | 0.060 (2) | 0.030 (1) | 0.027 (2) | 0.020 (1) | 0.009 (1) |
C15 | 0.035 (1) | 0.022 (1) | 0.021 (1) | 0.004 (1) | 0.0097 (9) | 0.0004 (9) |
N10 | 0.0255 (9) | 0.0230 (9) | 0.021 (1) | 0.0000 (8) | 0.0092 (7) | 0.0005 (7) |
C16 | 0.025 (1) | 0.027 (1) | 0.022 (1) | 0.0028 (9) | 0.0096 (9) | 0.0022 (9) |
O3 | 0.059 (1) | 0.032 (1) | 0.032 (1) | 0.0192 (9) | 0.0095 (9) | −0.0016 (8) |
O4 | 0.068 (1) | 0.049 (1) | 0.023 (1) | 0.026 (1) | 0.0046 (9) | 0.0007 (9) |
C17 | 0.052 (2) | 0.062 (2) | 0.026 (2) | 0.027 (2) | 0.010 (1) | 0.013 (1) |
C18 | 0.041 (2) | 0.104 (3) | 0.048 (2) | 0.015 (2) | 0.014 (2) | 0.014 (2) |
B1—C4 | 1.585 (4) | C11—O2 | 1.330 (3) |
B1—C1 | 1.585 (4) | O2—C12 | 1.455 (3) |
B1—C3 | 1.591 (4) | C12—C13 | 1.490 (6) |
B1—C2 | 1.600 (4) | C12—H12A | 0.9900 |
C1—N1 | 1.142 (4) | C12—H12B | 0.9900 |
C2—N2 | 1.135 (3) | C13—H13A | 0.9800 |
C3—N3 | 1.137 (3) | C13—H13B | 0.9800 |
C4—N4 | 1.138 (4) | C13—H13C | 0.9800 |
B2—C7 | 1.585 (4) | C14—C15 | 1.514 (4) |
B2—C6 | 1.586 (4) | C14—H14A | 0.9800 |
B2—C5 | 1.586 (4) | C14—H14B | 0.9800 |
B2—C8 | 1.590 (4) | C14—H14C | 0.9800 |
C5—N5 | 1.140 (4) | C15—N10 | 1.482 (3) |
C6—N6 | 1.139 (4) | C15—C16 | 1.510 (3) |
C7—N7 | 1.134 (4) | C15—H15A | 1.0000 |
C8—N8 | 1.138 (3) | N10—H10B | 0.9100 |
C9—C10 | 1.497 (4) | N10—H10C | 0.9100 |
C9—H9A | 0.9800 | N10—H10D | 0.9100 |
C9—H9B | 0.9800 | C16—O3 | 1.188 (3) |
C9—H9C | 0.9800 | C16—O4 | 1.312 (3) |
C10—N9 | 1.489 (3) | O4—C17 | 1.451 (3) |
C10—C11 | 1.505 (4) | C17—C18 | 1.479 (5) |
C10—H10A | 1.0000 | C17—H17A | 0.9900 |
N9—H9D | 0.9100 | C17—H17B | 0.9900 |
N9—H9E | 0.9100 | C18—H18A | 0.9800 |
N9—H9F | 0.9100 | C18—H18B | 0.9800 |
C11—O1 | 1.192 (3) | C18—H18C | 0.9800 |
C4—B1—C1 | 110.0 (2) | C13—C12—H12A | 109.8 |
C4—B1—C3 | 110.2 (2) | O2—C12—H12B | 109.8 |
C1—B1—C3 | 111.2 (2) | C13—C12—H12B | 109.8 |
C4—B1—C2 | 108.5 (2) | H12A—C12—H12B | 108.2 |
C1—B1—C2 | 109.0 (2) | C12—C13—H13A | 109.5 |
C3—B1—C2 | 107.8 (2) | C12—C13—H13B | 109.5 |
N1—C1—B1 | 178.8 (3) | H13A—C13—H13B | 109.5 |
N2—C2—B1 | 179.0 (3) | C12—C13—H13C | 109.5 |
N3—C3—B1 | 177.5 (3) | H13A—C13—H13C | 109.5 |
N4—C4—B1 | 179.1 (3) | H13B—C13—H13C | 109.5 |
C7—B2—C6 | 111.0 (2) | C15—C14—H14A | 109.5 |
C7—B2—C5 | 108.4 (2) | C15—C14—H14B | 109.5 |
C6—B2—C5 | 108.9 (2) | H14A—C14—H14B | 109.5 |
C7—B2—C8 | 110.0 (2) | C15—C14—H14C | 109.5 |
C6—B2—C8 | 108.3 (2) | H14A—C14—H14C | 109.5 |
C5—B2—C8 | 110.2 (2) | H14B—C14—H14C | 109.5 |
N5—C5—B2 | 177.8 (3) | N10—C15—C16 | 108.8 (2) |
N6—C6—B2 | 178.7 (3) | N10—C15—C14 | 110.3 (2) |
N7—C7—B2 | 177.6 (4) | C16—C15—C14 | 111.6 (2) |
N8—C8—B2 | 179.8 (3) | N10—C15—H15A | 108.7 |
C10—C9—H9A | 109.5 | C16—C15—H15A | 108.7 |
C10—C9—H9B | 109.5 | C14—C15—H15A | 108.7 |
H9A—C9—H9B | 109.5 | C15—N10—H10B | 109.5 |
C10—C9—H9C | 109.5 | C15—N10—H10C | 109.5 |
H9A—C9—H9C | 109.5 | H10B—N10—H10C | 109.5 |
H9B—C9—H9C | 109.5 | C15—N10—H10D | 109.5 |
N9—C10—C9 | 112.0 (2) | H10B—N10—H10D | 109.5 |
N9—C10—C11 | 108.2 (2) | H10C—N10—H10D | 109.5 |
C9—C10—C11 | 110.3 (2) | O3—C16—O4 | 126.0 (2) |
N9—C10—H10A | 108.8 | O3—C16—C15 | 124.2 (2) |
C9—C10—H10A | 108.8 | O4—C16—C15 | 109.8 (2) |
C11—C10—H10A | 108.8 | C16—O4—C17 | 119.4 (2) |
C10—N9—H9D | 109.5 | O4—C17—C18 | 107.6 (3) |
C10—N9—H9E | 109.5 | O4—C17—H17A | 110.2 |
H9D—N9—H9E | 109.5 | C18—C17—H17A | 110.2 |
C10—N9—H9F | 109.5 | O4—C17—H17B | 110.2 |
H9D—N9—H9F | 109.5 | C18—C17—H17B | 110.2 |
H9E—N9—H9F | 109.5 | H17A—C17—H17B | 108.5 |
O1—C11—O2 | 125.8 (2) | C17—C18—H18A | 109.5 |
O1—C11—C10 | 124.3 (2) | C17—C18—H18B | 109.5 |
O2—C11—C10 | 109.8 (2) | H18A—C18—H18B | 109.5 |
C11—O2—C12 | 117.2 (2) | C17—C18—H18C | 109.5 |
O2—C12—C13 | 109.4 (3) | H18A—C18—H18C | 109.5 |
O2—C12—H12A | 109.8 | H18B—C18—H18C | 109.5 |
N9—C10—C11—O1 | −7.2 (3) | N10—C15—C16—O3 | −6.3 (3) |
C9—C10—C11—O1 | 115.7 (3) | C14—C15—C16—O3 | 115.6 (3) |
N9—C10—C11—O2 | 175.3 (2) | N10—C15—C16—O4 | 175.1 (2) |
C9—C10—C11—O2 | −61.9 (3) | C14—C15—C16—O4 | −63.0 (3) |
O1—C11—O2—C12 | −9.5 (4) | O3—C16—O4—C17 | 2.5 (4) |
C10—C11—O2—C12 | 168.1 (2) | C15—C16—O4—C17 | −178.9 (3) |
C11—O2—C12—C13 | −86.1 (3) | C16—O4—C17—C18 | 136.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9F···N6i | 0.91 | 2.16 | 2.920 (3) | 141 |
N10—H10B···N4ii | 0.91 | 2.05 | 2.953 (3) | 174 |
N10—H10D···N1 | 0.91 | 2.07 | 2.961 (3) | 166 |
N9—H9E···N8iii | 0.91 | 2.14 | 3.001 (3) | 158 |
N10—H10C···N2iv | 0.91 | 2.15 | 3.015 (3) | 159 |
N9—H9D···N5v | 0.91 | 2.14 | 3.017 (3) | 161 |
N9—H9F···N3vi | 0.91 | 2.64 | 3.147 (3) | 116 |
Symmetry codes: (i) x−1/2, y+1/2, z−1; (ii) x+1/2, y+1/2, z; (iii) x, y, z−1; (iv) x, y+1, z; (v) x−1/2, y−1/2, z−1; (vi) −x+1/2, y+1/2, −z. |
Acknowledgements
The authors thank Dr A. Villinger (Universität Rostock) for maintaining the functionality of the X-ray facilities. The publication of this article was funded by the Open Access Fund of the Leibniz Association.
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. KO-1616-4 to MK).
References
Bernsdorf, A., Brand, H., Hellmann, R., Köckerling, M., Schulz, A., Villinger, A. & Voss, K. (2009). J. Am. Chem. Soc. 131, 8958–8970. CSD CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2019). Diamond. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2017). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dimitrijević, D. P., Novaković, S. B., Radić, G. R., Jevtić, V. V., Menéndez-Taboada, L., García-Granda, S. & Trifunović, S. R. (2013). J. Serb. Chem. Soc. 78, 1531–1537. Google Scholar
Flemming, A., Hoffmann, M. & Köckerling, M. (2010). Z. Anorg. Allg. Chem. 636, 562–568. CSD CrossRef CAS Google Scholar
Hallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508–3576. Web of Science CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siegesmund, A., Topp, A., Nitschke, C. & Köckerling, M. (2017). ChemistrySelect, 2, 11328–11335. CSD CrossRef CAS Google Scholar
Welton, T. (1999). Chem. Rev. 99, 2071–2084. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.