organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[6-(Di­methyl­amino)-9-phenyl-3H-telluro­xan­then-3-yl­­idene]-N-methyl­methanaminium hexa­fluoro­phosphate monoclinic polymorph1

crossmark logo

a730 Natural Sciences Complex, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA, and b771 Natural Sciences Complex, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
*Correspondence e-mail: jbb6@buffalo.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 May 2021; accepted 25 May 2021; online 15 June 2021)

The title compound C23H23N2Te+·PF6, is a monoclinic polymorph of the previously reported triclinic structure [Calitree et al. (2007[Calitree, B., Donnelly, D. J., Holt, J. J., Gannon, M. K., Nygren, C. L., Sukumaran, D. K., Autschbach, J. & Detty, M. R. (2007). Organometallics, 26, 6248-6257.]). Organometallics, 26, 6248–6257]. In the crystal, parallel offset ππ stacking [shortest centroid–centroid separation = 3.9620 (9) Å] and ionic inter­actions help to establish the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcogen dyes with near-infrared absorption are used in the targeting of mitochondria of tumors (Detty et al., 1990[Detty, M. R., Merkel, P. B., Hilf, R., Gibson, S. L. & Powers, S. K. (1990). J. Med. Chem. 33, 1108-1116.]; Leonard et al., 1999[Leonard, K., Nelen, M., Raghu, M. & Detty, M. R. (1999). J. Heterocycl. Chem. 36, 707-717.]) and enhancing the sensitivity of medical imaging (Bedics et al., 2015[Bedics, M. A., Kearns, H., Cox, J. M., Mabbott, S., Ali, F., Shand, N. C., Faulds, K., Benedict, J. B., Graham, D. & Detty, M. R. (2015). Chem. Sci. 6, 2302-2306.]; Kryman et al., 2016[Kryman, M. W., McCormick, T. M. & Detty, M. R. (2016). Organometallics, 35, 1944-1955.]). The title compound crystallizes with a single C23H23N2Te+ telluroxanthene cation and its PF6 counter-ion in the asymmetric unit (Fig. 1[link]). The present monoclinic structure is a polymorph of the previously reported triclinic phase (Calitree et al., 2007[Calitree, B., Donnelly, D. J., Holt, J. J., Gannon, M. K., Nygren, C. L., Sukumaran, D. K., Autschbach, J. & Detty, M. R. (2007). Organometallics, 26, 6248-6257.]; Cambridge Structural Database refcode CIRPAV), which was recrystallized from the mixed solvents of aceto­nitrile and ether.

[Figure 1]
Figure 1
Asymmetric unit of the title compound with displacement ellipsoids drawn at 50%.

The mean plane of the pendant phenyl ring (C19–C23) is nearly orthogonal to the plane of the central telluroxanthene ring (C1/C6/C7/C8/C13/Te1), which subtends a dihedral angle of 70.40 (6)°. The amine bonds (C3—N2 and C11—N1) on either side of the nearly planar telluroxanthene core (r.m.s. deviation = 0.035 Å) are almost the same length [1.343 (3) and 1.347 (3) Å, respectively] indicating delocalization of the positive charge of the cation. The crystal packing is shown in Fig. 2[link]. The telluroxanthene cations form centrosymmetric dimer pairs, which π-stack to form columns propagating parallel to [100]. Neighboring columns inter­act along [010] to form a herringbone pattern when viewed parallel to [001] (Fig. 3[link]).

[Figure 2]
Figure 2
Crystal packing of the title compound viewed along [001].
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along [100].

Synthesis and crystallization

The synthesis of title compound was previously reported (Calitree et al., 2007[Calitree, B., Donnelly, D. J., Holt, J. J., Gannon, M. K., Nygren, C. L., Sukumaran, D. K., Autschbach, J. & Detty, M. R. (2007). Organometallics, 26, 6248-6257.]). The title compound was dissolved in a solution of ethanol and water (70/30) and recrystallized by slow evaporation to give metallic green prisms suitable for X-ray diffraction.

Refinement

Crystal data, data collection, and refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C23H23N2Te+·PF6
Mr 600.00
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 8.7763 (6), 23.9606 (17), 10.8738 (8)
β (°) 99.256 (2)
V3) 2256.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.6 × 0.5 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.689, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 56521, 8157, 6766
Rint 0.071
(sin θ/λ)max−1) 0.767
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 1.02
No. of reflections 8157
No. of parameters 302
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.59
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-[6-(Dimethylamino)-9-phenyl-3H-telluroxanthen-3-ylidene]-N-methylmethanaminium hexafluorophosphate top
Crystal data top
C23H23N2Te+·PF6F(000) = 1184
Mr = 600.00Dx = 1.766 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7763 (6) ÅCell parameters from 9937 reflections
b = 23.9606 (17) Åθ = 2.5–30.3°
c = 10.8738 (8) ŵ = 1.45 mm1
β = 99.256 (2)°T = 90 K
V = 2256.8 (3) Å3Plate, metallic green
Z = 40.6 × 0.5 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
6766 reflections with I > 2σ(I)
φ and ω scansRint = 0.071
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 33.0°, θmin = 1.7°
Tmin = 0.689, Tmax = 0.746h = 1312
56521 measured reflectionsk = 3636
8157 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0237P)2 + 2.0434P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.005
8157 reflectionsΔρmax = 0.67 e Å3
302 parametersΔρmin = 0.59 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.37770 (2)0.57306 (2)0.60576 (2)0.01836 (4)
P10.20110 (7)0.81612 (2)0.40997 (5)0.02187 (11)
F30.1105 (2)0.77039 (8)0.32013 (17)0.0596 (6)
F40.3481 (2)0.80903 (9)0.34268 (19)0.0567 (5)
N20.6606 (2)0.74434 (7)0.42304 (17)0.0210 (3)
F50.2897 (2)0.86218 (8)0.49805 (18)0.0576 (5)
F20.0542 (2)0.82231 (11)0.47618 (17)0.0693 (7)
F10.1372 (3)0.86213 (8)0.30973 (18)0.0595 (5)
F60.2649 (3)0.77015 (8)0.50973 (19)0.0644 (6)
N10.0763 (2)0.37834 (8)0.56622 (18)0.0248 (4)
C130.2664 (2)0.50923 (8)0.49838 (18)0.0164 (3)
C70.3079 (2)0.55013 (8)0.29042 (18)0.0156 (3)
C10.4416 (2)0.61632 (8)0.45709 (17)0.0156 (3)
C60.4000 (2)0.59734 (8)0.33084 (18)0.0155 (3)
C50.4606 (2)0.63079 (8)0.24046 (19)0.0189 (4)
H50.4410680.6192480.1558100.023*
C120.2101 (2)0.46640 (8)0.56335 (19)0.0191 (4)
H120.2256450.4679750.6517770.023*
C110.1301 (2)0.42024 (8)0.5026 (2)0.0190 (4)
C190.1629 (2)0.57900 (8)0.08336 (19)0.0188 (4)
H190.1196270.6086200.1244570.023*
C180.2679 (2)0.54247 (8)0.15202 (17)0.0154 (3)
C40.5441 (2)0.67792 (9)0.26909 (19)0.0199 (4)
H40.5803990.6983010.2046450.024*
C30.5786 (2)0.69747 (8)0.39471 (19)0.0171 (4)
C90.1639 (2)0.46274 (9)0.30664 (19)0.0207 (4)
H90.1458270.4612840.2181770.025*
C80.2473 (2)0.50933 (8)0.36550 (18)0.0163 (3)
C20.5249 (2)0.66452 (8)0.48724 (19)0.0186 (4)
H20.5467990.6759270.5719150.022*
C100.1088 (3)0.42026 (9)0.3704 (2)0.0231 (4)
H100.0552330.3902050.3256410.028*
C200.1214 (3)0.57237 (9)0.04422 (19)0.0212 (4)
H200.0492540.5972240.0900580.025*
C230.3309 (2)0.49957 (9)0.08981 (19)0.0195 (4)
H230.4027250.4744870.1352300.023*
C220.2894 (3)0.49323 (9)0.0381 (2)0.0229 (4)
H220.3328610.4638460.0798400.027*
C170.7068 (3)0.77967 (9)0.3255 (2)0.0259 (4)
H17A0.7580350.7567670.2696280.039*
H17B0.7780700.8085760.3637290.039*
H17C0.6151170.7973160.2778110.039*
C160.6824 (3)0.76688 (10)0.5492 (2)0.0278 (5)
H16A0.5823950.7785260.5697500.042*
H16B0.7518100.7991230.5545010.042*
H16C0.7274870.7381450.6081760.042*
C210.1849 (3)0.52966 (9)0.10492 (19)0.0224 (4)
H210.1567220.5253080.1924690.027*
C150.0866 (3)0.38130 (10)0.7010 (2)0.0307 (5)
H15A0.1953620.3813230.7399520.046*
H15B0.0344100.3489390.7304160.046*
H15C0.0369420.4156400.7234350.046*
C140.0003 (3)0.32985 (10)0.5022 (3)0.0327 (5)
H14A0.1040100.3401890.4621210.049*
H14B0.0060290.2999210.5625610.049*
H14C0.0598240.3168830.4387800.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.02524 (7)0.01836 (7)0.01140 (6)0.00151 (5)0.00277 (5)0.00012 (4)
P10.0231 (3)0.0232 (3)0.0192 (3)0.0027 (2)0.0032 (2)0.0013 (2)
F30.0821 (14)0.0652 (12)0.0340 (9)0.0458 (11)0.0166 (9)0.0173 (9)
F40.0367 (9)0.0773 (14)0.0610 (12)0.0056 (9)0.0226 (9)0.0010 (10)
N20.0213 (8)0.0186 (8)0.0219 (9)0.0039 (6)0.0003 (7)0.0002 (7)
F50.0738 (13)0.0491 (11)0.0467 (11)0.0247 (10)0.0002 (10)0.0150 (9)
F20.0339 (9)0.146 (2)0.0308 (9)0.0007 (11)0.0147 (7)0.0149 (11)
F10.0782 (14)0.0536 (11)0.0438 (10)0.0231 (10)0.0010 (10)0.0201 (9)
F60.0841 (15)0.0490 (11)0.0559 (12)0.0037 (10)0.0014 (11)0.0296 (9)
N10.0276 (9)0.0207 (8)0.0274 (9)0.0028 (7)0.0082 (8)0.0048 (7)
C130.0176 (8)0.0161 (8)0.0159 (8)0.0018 (7)0.0036 (7)0.0004 (7)
C70.0162 (8)0.0173 (8)0.0130 (8)0.0011 (7)0.0015 (7)0.0000 (7)
C10.0171 (8)0.0174 (8)0.0123 (8)0.0022 (7)0.0026 (7)0.0021 (6)
C60.0154 (8)0.0172 (8)0.0136 (8)0.0009 (7)0.0016 (7)0.0003 (7)
C50.0201 (9)0.0219 (9)0.0150 (9)0.0005 (7)0.0041 (7)0.0002 (7)
C120.0235 (9)0.0189 (9)0.0156 (9)0.0030 (7)0.0052 (7)0.0013 (7)
C110.0198 (9)0.0166 (9)0.0211 (9)0.0011 (7)0.0050 (7)0.0030 (7)
C190.0217 (9)0.0191 (9)0.0157 (9)0.0019 (7)0.0030 (7)0.0011 (7)
C180.0169 (8)0.0164 (8)0.0130 (8)0.0024 (7)0.0024 (7)0.0002 (6)
C40.0212 (9)0.0218 (9)0.0166 (9)0.0026 (7)0.0032 (7)0.0011 (7)
C30.0156 (8)0.0166 (8)0.0186 (9)0.0010 (7)0.0016 (7)0.0003 (7)
C90.0233 (10)0.0236 (10)0.0146 (9)0.0043 (8)0.0010 (7)0.0005 (7)
C80.0167 (8)0.0166 (8)0.0155 (8)0.0004 (7)0.0019 (7)0.0005 (7)
C20.0223 (9)0.0181 (9)0.0149 (8)0.0000 (7)0.0018 (7)0.0011 (7)
C100.0268 (11)0.0212 (10)0.0209 (10)0.0062 (8)0.0024 (8)0.0010 (8)
C200.0225 (10)0.0251 (10)0.0156 (9)0.0014 (8)0.0018 (7)0.0031 (7)
C230.0207 (9)0.0198 (9)0.0179 (9)0.0024 (7)0.0029 (7)0.0000 (7)
C220.0241 (10)0.0252 (10)0.0199 (10)0.0004 (8)0.0052 (8)0.0069 (8)
C170.0277 (11)0.0231 (10)0.0272 (11)0.0077 (8)0.0056 (9)0.0013 (9)
C160.0341 (12)0.0243 (10)0.0239 (11)0.0074 (9)0.0012 (9)0.0056 (8)
C210.0242 (10)0.0304 (11)0.0125 (9)0.0024 (8)0.0022 (7)0.0024 (8)
C150.0397 (13)0.0275 (11)0.0291 (12)0.0046 (10)0.0188 (10)0.0083 (9)
C140.0342 (12)0.0215 (10)0.0410 (14)0.0079 (9)0.0015 (11)0.0078 (10)
Geometric parameters (Å, º) top
Te1—C132.0711 (19)C19—C201.386 (3)
Te1—C12.0723 (19)C18—C231.393 (3)
P1—F31.5930 (17)C4—H40.9500
P1—F41.5911 (18)C4—C31.430 (3)
P1—F51.5813 (17)C3—C21.418 (3)
P1—F21.5816 (18)C9—H90.9500
P1—F11.5877 (17)C9—C81.429 (3)
P1—F61.5838 (18)C9—C101.363 (3)
N2—C31.343 (3)C2—H20.9500
N2—C171.464 (3)C10—H100.9500
N2—C161.458 (3)C20—H200.9500
N1—C111.347 (3)C20—C211.382 (3)
N1—C151.456 (3)C23—H230.9500
N1—C141.460 (3)C23—C221.388 (3)
C13—C121.382 (3)C22—H220.9500
C13—C81.428 (3)C22—C211.385 (3)
C7—C61.419 (3)C17—H17A0.9800
C7—C181.501 (3)C17—H17B0.9800
C7—C81.430 (3)C17—H17C0.9800
C1—C61.436 (3)C16—H16A0.9800
C1—C21.378 (3)C16—H16B0.9800
C6—C51.435 (3)C16—H16C0.9800
C5—H50.9500C21—H210.9500
C5—C41.355 (3)C15—H15A0.9800
C12—H120.9500C15—H15B0.9800
C12—C111.416 (3)C15—H15C0.9800
C11—C101.419 (3)C14—H14A0.9800
C19—H190.9500C14—H14B0.9800
C19—C181.397 (3)C14—H14C0.9800
C13—Te1—C195.27 (8)N2—C3—C4121.10 (19)
F4—P1—F390.36 (11)N2—C3—C2122.01 (18)
F5—P1—F3179.21 (12)C2—C3—C4116.88 (18)
F5—P1—F489.82 (11)C8—C9—H9118.2
F5—P1—F290.94 (12)C10—C9—H9118.2
F5—P1—F190.93 (11)C10—C9—C8123.63 (19)
F5—P1—F689.14 (11)C13—C8—C7125.81 (18)
F2—P1—F388.88 (11)C13—C8—C9114.86 (17)
F2—P1—F4179.18 (13)C9—C8—C7119.29 (18)
F2—P1—F191.36 (12)C1—C2—C3121.47 (18)
F2—P1—F688.73 (12)C1—C2—H2119.3
F1—P1—F388.30 (12)C3—C2—H2119.3
F1—P1—F488.93 (11)C11—C10—H10119.5
F6—P1—F391.63 (12)C9—C10—C11121.0 (2)
F6—P1—F490.98 (12)C9—C10—H10119.5
F6—P1—F1179.88 (14)C19—C20—H20119.9
C3—N2—C17121.19 (18)C21—C20—C19120.11 (19)
C3—N2—C16120.66 (18)C21—C20—H20119.9
C16—N2—C17117.25 (17)C18—C23—H23119.8
C11—N1—C15120.73 (19)C22—C23—C18120.46 (19)
C11—N1—C14121.3 (2)C22—C23—H23119.8
C15—N1—C14117.96 (19)C23—C22—H22120.0
C12—C13—Te1115.80 (14)C21—C22—C23120.09 (19)
C12—C13—C8121.69 (18)C21—C22—H22120.0
C8—C13—Te1122.50 (14)N2—C17—H17A109.5
C6—C7—C18115.97 (16)N2—C17—H17B109.5
C6—C7—C8127.88 (18)N2—C17—H17C109.5
C8—C7—C18116.15 (17)H17A—C17—H17B109.5
C6—C1—Te1121.88 (14)H17A—C17—H17C109.5
C2—C1—Te1115.68 (14)H17B—C17—H17C109.5
C2—C1—C6122.44 (18)N2—C16—H16A109.5
C7—C6—C1126.39 (17)N2—C16—H16B109.5
C7—C6—C5119.26 (17)N2—C16—H16C109.5
C5—C6—C1114.35 (17)H16A—C16—H16B109.5
C6—C5—H5118.2H16A—C16—H16C109.5
C4—C5—C6123.68 (19)H16B—C16—H16C109.5
C4—C5—H5118.2C20—C21—C22120.00 (19)
C13—C12—H12118.9C20—C21—H21120.0
C13—C12—C11122.21 (19)C22—C21—H21120.0
C11—C12—H12118.9N1—C15—H15A109.5
N1—C11—C12122.1 (2)N1—C15—H15B109.5
N1—C11—C10121.37 (19)N1—C15—H15C109.5
C12—C11—C10116.57 (18)H15A—C15—H15B109.5
C18—C19—H19119.7H15A—C15—H15C109.5
C20—C19—H19119.7H15B—C15—H15C109.5
C20—C19—C18120.53 (19)N1—C14—H14A109.5
C19—C18—C7119.16 (17)N1—C14—H14B109.5
C23—C18—C7122.02 (17)N1—C14—H14C109.5
C23—C18—C19118.82 (18)H14A—C14—H14B109.5
C5—C4—H4119.5H14A—C14—H14C109.5
C5—C4—C3121.07 (19)H14B—C14—H14C109.5
C3—C4—H4119.5
Te1—C13—C12—C11179.33 (15)C18—C7—C6—C56.0 (3)
Te1—C13—C8—C73.9 (3)C18—C7—C8—C13177.95 (18)
Te1—C13—C8—C9178.28 (14)C18—C7—C8—C94.3 (3)
Te1—C1—C6—C73.0 (3)C18—C19—C20—C210.5 (3)
Te1—C1—C6—C5176.93 (13)C18—C23—C22—C210.0 (3)
Te1—C1—C2—C3178.68 (15)C4—C3—C2—C10.9 (3)
N2—C3—C2—C1179.61 (19)C8—C13—C12—C110.2 (3)
N1—C11—C10—C9179.8 (2)C8—C7—C6—C15.3 (3)
C13—C12—C11—N1179.5 (2)C8—C7—C6—C5174.64 (19)
C13—C12—C11—C100.6 (3)C8—C7—C18—C19108.2 (2)
C7—C6—C5—C4177.11 (19)C8—C7—C18—C2371.0 (2)
C7—C18—C23—C22179.00 (19)C8—C9—C10—C110.8 (3)
C1—C6—C5—C43.0 (3)C2—C1—C6—C7176.38 (19)
C6—C7—C18—C1971.2 (2)C2—C1—C6—C53.7 (3)
C6—C7—C18—C23109.6 (2)C10—C9—C8—C131.5 (3)
C6—C7—C8—C131.4 (3)C10—C9—C8—C7176.5 (2)
C6—C7—C8—C9176.38 (19)C20—C19—C18—C7178.77 (19)
C6—C1—C2—C31.9 (3)C20—C19—C18—C230.5 (3)
C6—C5—C4—C30.4 (3)C23—C22—C21—C200.1 (3)
C5—C4—C3—N2179.61 (19)C17—N2—C3—C45.2 (3)
C5—C4—C3—C21.6 (3)C17—N2—C3—C2176.13 (19)
C12—C13—C8—C7176.66 (19)C16—N2—C3—C4174.0 (2)
C12—C13—C8—C91.2 (3)C16—N2—C3—C27.3 (3)
C12—C11—C10—C90.3 (3)C15—N1—C11—C125.5 (3)
C19—C18—C23—C220.2 (3)C15—N1—C11—C10174.4 (2)
C19—C20—C21—C220.4 (3)C14—N1—C11—C12177.2 (2)
C18—C7—C6—C1174.05 (18)C14—N1—C11—C103.0 (3)
 

Footnotes

1This paper is dedicated to the late Professor Michael R. Detty.

Both authors contributed equally to this work

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-2003932).

References

First citationBedics, M. A., Kearns, H., Cox, J. M., Mabbott, S., Ali, F., Shand, N. C., Faulds, K., Benedict, J. B., Graham, D. & Detty, M. R. (2015). Chem. Sci. 6, 2302–2306.  CrossRef CAS PubMed Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalitree, B., Donnelly, D. J., Holt, J. J., Gannon, M. K., Nygren, C. L., Sukumaran, D. K., Autschbach, J. & Detty, M. R. (2007). Organometallics, 26, 6248–6257.  CrossRef CAS Google Scholar
First citationDetty, M. R., Merkel, P. B., Hilf, R., Gibson, S. L. & Powers, S. K. (1990). J. Med. Chem. 33, 1108–1116.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKryman, M. W., McCormick, T. M. & Detty, M. R. (2016). Organometallics, 35, 1944–1955.  CrossRef CAS Google Scholar
First citationLeonard, K., Nelen, M., Raghu, M. & Detty, M. R. (1999). J. Heterocycl. Chem. 36, 707–717.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds