organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl [(2,5-di­iodo-4-methyl­phen­yl)meth­yl]phospho­nate

crossmark logo

aUniversity of Mainz, Institut for Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 21 June 2021; accepted 22 June 2021; online 30 June 2021)

The title compound, C12H17I2O3P, was prepared in three steps from p-xylene. Heterodimers between nearly identical mol­ecules are connected via three hydrogen bonds from benzylic and ester methyl­ene groups to phospho­nate. The dimers form chains along the a-axis direction, stabilized by C—H⋯O bridges.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a project focusing on phenyl­ene­vinyl­ene emissive materials (Sugioni & Detert, 2004[Sugiono, E. & Detert, H. (2004). Synth. Met. 147, 233-236.]; Schmitt et al., 2008[Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sensor Lett, 6, 1-7.], 2013[Schmitt, V., Moschel, S. & Detert, H. (2013). Eur. J. Org. Chem. pp.5655-5669.]) and their electrical and magnetic properties (Cambré et al., 2007[Cambré, S., Ceuster, J. D., Goovaerts, E., Bouwen, A. & Detert, H. (2007). Appl. Magn. Reson. 31, 343-355.]; Nemkovich et al., 2010[Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37-41.]), the title compound was prepared as an inter­mediate for fluoro­phores with an E-type delayed emission and has been used for the synthesis of π-conjugated cruciforms (Zucchero et al., 2006[Zucchero, A. J., Wilson, J. N. & Bunz, U. H. F. (2006). J. Am. Chem. Soc. 128, 11872-11881.]). The asymmetric unit contains four mol­ecules. Heterodimers are formed via C—H⋯O hydrogen bonds (Table 1[link]) between nearly identical mol­ecules A and B. The only significant difference between A and B (Fig. 1[link]) is the conformation of one eth­oxy group. The aromatic unit with its four substituents is nearly perfectly planar, with a maximum deviation from the mean plane of 0.013 (16) Å at C3A. The bond angles on the 1,2,4,5-tetra­substituted ring nearly match the ideal 120°, only the arene-methyl­ene bond is slightly bent [125.6 (12)° A, 123.4(13°) B]. The A,B dimers are connected via three slightly bent C—H⋯O hydrogen bridges: C7A—H7A⋯O9B [3.275 (15) Å, 154.3°], C14A—H14B⋯O9B [3.407 (18) Å, 172.2°], and C11B—H11D⋯O9A [3.575 (18) Å, 168.5°]. Three further C—H⋯O bridges connect neighbouring dimers to form chains along the a-axis direction (Fig. 2[link]): C11A—H11A⋯O9B [3.377 (17) Å 157.9°, B shifted −1 along a], C7B—H7C⋯O9A [3.388 (15) Å, 151.6°, A shifted +1 along a] and C14B—H14D⋯O9A [3.324 (19) Å, 165.6°, A shifted +1 along a].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7A⋯O9B 0.99 2.36 3.275 (15) 154
C11A—H11B⋯O9Bi 0.99 2.44 3.377 (17) 158
C14A—H14B⋯O9B 0.99 2.42 3.407 (18) 172
C7B—H7C⋯O9Aii 0.99 2.48 3.388 (15) 152
C11B—H11D⋯O9A 0.99 2.60 3.575 (18) 169
C14B—H14D⋯O9Aii 0.99 2.36 3.324 (19) 166
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z.
[Figure 1]
Figure 1
View of the two independent molecules in the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the packing diagram. View along the b axis. Hydrogen bonds are drawn with dashed lines. The two independent mol­ecules are drawn in different colours.

Synthesis and crystallization

The title compound was prepared from p-xylene via iodination according to Wirth et al. (1964[Wirth, H. O., Herrmann, F. U. & Kern, W. (1964). Makromol. Chem. 80, 120-140.]) and bromination (Wheland & Martin, 1975[Wheland, R. S. & Martin, E. L. (1975). J. Org. Chem. 40, 3101-3109.]) followed by Michaelis–Arbusov reaction. Purification was via column chromatography on silica with an eluent gradient. Starting with toluene/ethyl acetate 1/1, the polarity was increased by reducing the toluene concentration first and addition of increasing amounts of methanol. A mixture of the di­iodo compound and some bromo-iodo analogues was obtained. The title compound crystallized from the oily product mixture within 12 years.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal was a two component twin. The fractional contribution of the major domain refined to 0.5155 (14).

Table 2
Experimental details

Crystal data
Chemical formula C12H17I2O3P
Mr 494.02
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.4909 (6), 10.9201 (9), 20.4720 (17)
α, β, γ (°) 89.070 (7), 80.799 (6), 71.451 (6)
V3) 1566.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.12
Crystal size (mm) 0.11 × 0.10 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED32; Stoe & Cie, 2019[Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.651, 0.820
No. of measured, independent and observed [I > 2σ(I)] reflections 22662, 22662, 15127
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.186, 1.09
No. of reflections 22662
No. of parameters 332
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.69, −1.26
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-AREA WinXpose 2.0.22.0 (Stoe & Cie, 2019); cell refinement: X-AREA Recipe 1.36.0 (Stoe & Cie, 2019); data reduction: X-AREA Integrate 1.78.3 (Stoe & Cie, 2019); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020).

Diethyl [(2,5-diiodo-4-methylphenyl)methyl]phosphonate top
Crystal data top
C12H17I2O3PZ = 4
Mr = 494.02F(000) = 936
Triclinic, P1Dx = 2.095 Mg m3
a = 7.4909 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9201 (9) ÅCell parameters from 14985 reflections
c = 20.4720 (17) Åθ = 2.9–28.3°
α = 89.070 (7)°µ = 4.12 mm1
β = 80.799 (6)°T = 120 K
γ = 71.451 (6)°Column, colourless
V = 1566.1 (2) Å30.11 × 0.10 × 0.04 mm
Data collection top
Stoe IPDS 2T
diffractometer
22662 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus15127 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1θmax = 28.0°, θmin = 2.8°
rotation method scansh = 99
Absorption correction: integration
(X-Red32; Stoe & Cie, 2019)
k = 1414
Tmin = 0.651, Tmax = 0.820l = 2626
22662 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0494P)2 + 24.353P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
22662 reflectionsΔρmax = 1.69 e Å3
332 parametersΔρmin = 1.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed at calculated positions and were refined in the riding-model approximation with Caromatic–H = 0.95 Å, Cmethylene–H = 0.99 Å, Cmethyl–H = 0.98 Å, and with Uiso(H) = 1.2 Ueq(Caromatic, Cmethylene) or with Uiso(H) = 1.5 Ueq(Cmethyl).

Refined as a 2-component twin. Twin law for transforming hkl(1) to hkl(2): 0.97100 0.03900 0.01800 0.98600 -0.98000 0.00900 0.98600 0.02000 -0.99100

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I1A0.75872 (15)0.26269 (8)0.13371 (5)0.0327 (2)
I2A0.68923 (17)0.33082 (9)0.00063 (5)0.0394 (3)
C1A0.6926 (18)0.0275 (12)0.1389 (6)0.023 (3)
C2A0.7307 (18)0.0795 (11)0.0976 (6)0.021 (2)
C3A0.749 (2)0.0701 (13)0.0282 (7)0.028 (3)
H3A0.7683610.1449940.0014900.033*
C4A0.739 (2)0.0447 (13)0.0017 (6)0.027 (3)
C5A0.701 (2)0.1543 (12)0.0394 (7)0.028 (3)
C6A0.6802 (19)0.1462 (11)0.1077 (6)0.023 (3)
H6A0.6569700.2219000.1342500.028*
C7A0.6757 (18)0.0270 (12)0.2123 (6)0.022 (2)
H7A0.7488980.0803420.2261690.026*
H7B0.7349800.0626050.2254330.026*
P8A0.4346 (5)0.0866 (3)0.25589 (16)0.0222 (6)
O9A0.3240 (14)0.2183 (8)0.2406 (5)0.030 (2)
O10A0.3510 (13)0.0234 (8)0.2415 (4)0.0245 (19)
C11A0.147 (2)0.0070 (14)0.2546 (8)0.035 (3)
H11A0.1158760.0586640.2214680.042*
H11B0.0729980.0849490.2507010.042*
C12A0.093 (2)0.0489 (17)0.3216 (8)0.043 (4)
H12A0.0407690.0457060.3280670.064*
H12B0.1101570.0086760.3546380.064*
H12C0.1742740.1375810.3267630.064*
O13A0.4539 (15)0.0703 (9)0.3315 (4)0.028 (2)
C14A0.495 (2)0.1709 (14)0.3673 (7)0.031 (3)
H14A0.3749290.2422580.3823490.038*
H14B0.5828330.2064350.3378670.038*
C15A0.583 (3)0.1122 (17)0.4254 (9)0.053 (5)
H15A0.4861860.0933300.4585430.080*
H15B0.6338660.1728670.4448340.080*
H15C0.6865940.0319690.4110940.080*
C16A0.764 (2)0.0499 (15)0.0766 (7)0.034 (3)
H16A0.7717800.0338170.0954560.051*
H16B0.8817930.0695480.0931950.051*
H16C0.6549340.1174140.0893950.051*
I1B0.63866 (15)0.75758 (9)0.36179 (5)0.0338 (2)
I2B1.01458 (17)0.17183 (9)0.50120 (5)0.0397 (3)
C1B0.868 (2)0.4691 (13)0.3608 (7)0.026 (3)
C2B0.752 (2)0.5771 (13)0.4004 (7)0.027 (3)
C3B0.713 (2)0.5666 (13)0.4682 (6)0.027 (3)
H3B0.6352360.6415170.4940470.032*
C4B0.782 (2)0.4539 (13)0.5001 (7)0.026 (3)
C5B0.896 (2)0.3482 (12)0.4599 (6)0.024 (3)
C6B0.9378 (18)0.3541 (13)0.3916 (7)0.025 (3)
H6B1.0149230.2787050.3659420.030*
C7B0.9231 (19)0.4726 (12)0.2861 (6)0.026 (3)
H7C1.0602150.4231530.2736320.031*
H7D0.9058850.5633630.2741290.031*
P8B0.7894 (5)0.4086 (3)0.23870 (16)0.0238 (7)
O9B0.7928 (15)0.2762 (8)0.2537 (5)0.030 (2)
O10B0.5903 (14)0.5151 (9)0.2494 (5)0.031 (2)
C11B0.442 (2)0.5089 (14)0.2103 (9)0.040 (4)
H11C0.4959510.4961760.1625900.048*
H11D0.3957260.4355470.2242320.048*
C12B0.282 (2)0.6327 (16)0.2225 (10)0.049 (4)
H12D0.3322620.7051470.2137150.073*
H12E0.2193320.6390490.2686950.073*
H12F0.1899320.6356020.1931000.073*
O13B0.8694 (15)0.4266 (9)0.1634 (4)0.030 (2)
C14B1.036 (2)0.3272 (14)0.1298 (7)0.035 (3)
H14C0.9972410.2640280.1061330.042*
H14D1.1160790.2806080.1622410.042*
C15B1.146 (3)0.3913 (18)0.0819 (10)0.051 (5)
H15D1.2566810.3257260.0570190.076*
H15E1.1892780.4504080.1060480.076*
H15F1.0639750.4401260.0512300.076*
C16B0.736 (2)0.4469 (16)0.5744 (7)0.036 (3)
H16D0.6841670.3755990.5850120.053*
H16E0.6406610.5284070.5926050.053*
H16F0.8519400.4321940.5936240.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1A0.0344 (5)0.0278 (4)0.0367 (5)0.0107 (4)0.0074 (4)0.0072 (4)
I2A0.0430 (6)0.0349 (5)0.0403 (5)0.0136 (4)0.0055 (4)0.0130 (4)
C1A0.016 (6)0.029 (6)0.025 (6)0.008 (5)0.005 (5)0.013 (5)
C2A0.016 (6)0.021 (5)0.028 (6)0.005 (5)0.005 (5)0.010 (5)
C3A0.027 (7)0.025 (6)0.031 (6)0.007 (5)0.007 (5)0.006 (5)
C4A0.025 (7)0.036 (7)0.027 (6)0.016 (6)0.006 (5)0.001 (6)
C5A0.032 (8)0.025 (6)0.028 (6)0.011 (5)0.007 (5)0.015 (5)
C6A0.025 (6)0.018 (5)0.024 (6)0.004 (5)0.002 (5)0.006 (5)
C7A0.024 (6)0.024 (6)0.020 (5)0.008 (5)0.012 (5)0.003 (5)
P8A0.0215 (16)0.0229 (14)0.0223 (14)0.0073 (12)0.0043 (12)0.0062 (12)
O9A0.026 (5)0.024 (4)0.038 (5)0.007 (4)0.005 (4)0.008 (4)
O10A0.019 (4)0.026 (4)0.030 (4)0.010 (3)0.003 (4)0.004 (4)
C11A0.025 (7)0.032 (7)0.053 (9)0.015 (6)0.011 (6)0.015 (6)
C12A0.041 (9)0.057 (9)0.040 (8)0.031 (8)0.007 (7)0.013 (7)
O13A0.040 (6)0.026 (4)0.017 (4)0.010 (4)0.004 (4)0.004 (4)
C14A0.034 (8)0.040 (7)0.025 (6)0.018 (6)0.002 (5)0.002 (6)
C15A0.056 (11)0.044 (9)0.056 (10)0.001 (8)0.031 (9)0.007 (8)
C16A0.026 (7)0.047 (8)0.025 (6)0.007 (6)0.005 (5)0.005 (6)
I1B0.0360 (5)0.0285 (4)0.0367 (5)0.0093 (4)0.0080 (4)0.0068 (4)
I2B0.0475 (6)0.0346 (5)0.0398 (5)0.0125 (4)0.0172 (4)0.0130 (4)
C1B0.024 (7)0.027 (6)0.028 (6)0.011 (5)0.005 (5)0.002 (6)
C2B0.025 (7)0.025 (6)0.033 (7)0.008 (5)0.005 (5)0.006 (6)
C3B0.026 (7)0.029 (6)0.027 (6)0.008 (5)0.009 (5)0.003 (5)
C4B0.025 (7)0.031 (6)0.031 (6)0.019 (6)0.008 (5)0.004 (6)
C5B0.024 (7)0.027 (6)0.028 (6)0.017 (5)0.009 (5)0.009 (5)
C6B0.017 (6)0.028 (6)0.033 (6)0.008 (5)0.007 (5)0.001 (5)
C7B0.022 (6)0.026 (6)0.030 (6)0.008 (5)0.005 (5)0.006 (5)
P8B0.0235 (17)0.0233 (14)0.0260 (15)0.0078 (12)0.0074 (13)0.0034 (13)
O9B0.034 (5)0.027 (5)0.033 (5)0.014 (4)0.011 (4)0.008 (4)
O10B0.024 (5)0.033 (5)0.037 (5)0.009 (4)0.009 (4)0.005 (4)
C11B0.024 (7)0.032 (7)0.070 (10)0.009 (6)0.021 (7)0.003 (7)
C12B0.027 (8)0.049 (9)0.073 (11)0.014 (7)0.017 (8)0.010 (9)
O13B0.033 (6)0.030 (5)0.025 (4)0.007 (4)0.001 (4)0.004 (4)
C14B0.040 (9)0.034 (7)0.026 (6)0.006 (6)0.003 (6)0.003 (6)
C15B0.042 (10)0.051 (9)0.059 (10)0.023 (8)0.010 (8)0.005 (9)
C16B0.043 (9)0.048 (8)0.024 (6)0.025 (7)0.008 (6)0.001 (6)
Geometric parameters (Å, º) top
I1A—C2A2.080 (12)I1B—C2B2.082 (15)
I2A—C5A2.064 (13)I2B—C5B2.077 (14)
C1A—C2A1.380 (17)C1B—C6B1.38 (2)
C1A—C6A1.418 (18)C1B—C2B1.398 (17)
C1A—C7A1.487 (16)C1B—C7B1.521 (18)
C2A—C3A1.410 (18)C2B—C3B1.382 (19)
C3A—C4A1.37 (2)C3B—C4B1.37 (2)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.400 (18)C4B—C5B1.385 (18)
C4A—C16A1.517 (18)C4B—C16B1.510 (19)
C5A—C6A1.386 (18)C5B—C6B1.388 (19)
C6A—H6A0.9500C6B—H6B0.9500
C7A—P8A1.799 (13)C7B—P8B1.792 (14)
C7A—H7A0.9900C7B—H7C0.9900
C7A—H7B0.9900C7B—H7D0.9900
P8A—O9A1.471 (9)P8B—O9B1.466 (9)
P8A—O10A1.572 (9)P8B—O10B1.558 (10)
P8A—O13A1.579 (9)P8B—O13B1.595 (10)
O10A—C11A1.462 (17)O10B—C11B1.487 (18)
C11A—C12A1.47 (2)C11B—C12B1.49 (2)
C11A—H11A0.9900C11B—H11C0.9900
C11A—H11B0.9900C11B—H11D0.9900
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
O13A—C14A1.465 (16)O13B—C14B1.450 (17)
C14A—C15A1.49 (2)C14B—C15B1.49 (2)
C14A—H14A0.9900C14B—H14C0.9900
C14A—H14B0.9900C14B—H14D0.9900
C15A—H15A0.9800C15B—H15D0.9800
C15A—H15B0.9800C15B—H15E0.9800
C15A—H15C0.9800C15B—H15F0.9800
C16A—H16A0.9800C16B—H16D0.9800
C16A—H16B0.9800C16B—H16E0.9800
C16A—H16C0.9800C16B—H16F0.9800
C2A—C1A—C6A116.4 (11)C6B—C1B—C2B117.9 (12)
C2A—C1A—C7A125.6 (12)C6B—C1B—C7B118.8 (11)
C6A—C1A—C7A117.8 (11)C2B—C1B—C7B123.4 (13)
C1A—C2A—C3A121.6 (12)C3B—C2B—C1B119.8 (14)
C1A—C2A—I1A122.2 (9)C3B—C2B—I1B117.6 (9)
C3A—C2A—I1A116.1 (9)C1B—C2B—I1B122.6 (10)
C4A—C3A—C2A121.6 (11)C4B—C3B—C2B123.5 (12)
C4A—C3A—H3A119.2C4B—C3B—H3B118.2
C2A—C3A—H3A119.2C2B—C3B—H3B118.2
C3A—C4A—C5A117.6 (12)C3B—C4B—C5B115.7 (12)
C3A—C4A—C16A119.8 (12)C3B—C4B—C16B121.7 (12)
C5A—C4A—C16A122.6 (13)C5B—C4B—C16B122.6 (13)
C6A—C5A—C4A121.2 (12)C4B—C5B—C6B122.8 (13)
C6A—C5A—I2A118.2 (9)C4B—C5B—I2B120.1 (9)
C4A—C5A—I2A120.6 (10)C6B—C5B—I2B117.1 (9)
C5A—C6A—C1A121.6 (11)C1B—C6B—C5B120.4 (12)
C5A—C6A—H6A119.2C1B—C6B—H6B119.8
C1A—C6A—H6A119.2C5B—C6B—H6B119.8
C1A—C7A—P8A114.5 (9)C1B—C7B—P8B114.7 (10)
C1A—C7A—H7A108.6C1B—C7B—H7C108.6
P8A—C7A—H7A108.6P8B—C7B—H7C108.6
C1A—C7A—H7B108.6C1B—C7B—H7D108.6
P8A—C7A—H7B108.6P8B—C7B—H7D108.6
H7A—C7A—H7B107.6H7C—C7B—H7D107.6
O9A—P8A—O10A116.1 (6)O9B—P8B—O10B116.8 (6)
O9A—P8A—O13A113.4 (5)O9B—P8B—O13B114.2 (5)
O10A—P8A—O13A102.7 (5)O10B—P8B—O13B101.9 (6)
O9A—P8A—C7A115.6 (6)O9B—P8B—C7B114.9 (6)
O10A—P8A—C7A102.7 (5)O10B—P8B—C7B102.5 (6)
O13A—P8A—C7A104.8 (6)O13B—P8B—C7B104.8 (6)
C11A—O10A—P8A123.0 (8)C11B—O10B—P8B120.1 (8)
O10A—C11A—C12A110.5 (13)C12B—C11B—O10B107.8 (12)
O10A—C11A—H11A109.6C12B—C11B—H11C110.1
C12A—C11A—H11A109.6O10B—C11B—H11C110.1
O10A—C11A—H11B109.6C12B—C11B—H11D110.1
C12A—C11A—H11B109.6O10B—C11B—H11D110.1
H11A—C11A—H11B108.1H11C—C11B—H11D108.5
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C14A—O13A—P8A119.4 (9)C14B—O13B—P8B118.9 (9)
O13A—C14A—C15A108.4 (13)O13B—C14B—C15B107.8 (12)
O13A—C14A—H14A110.0O13B—C14B—H14C110.2
C15A—C14A—H14A110.0C15B—C14B—H14C110.2
O13A—C14A—H14B110.0O13B—C14B—H14D110.2
C15A—C14A—H14B110.0C15B—C14B—H14D110.2
H14A—C14A—H14B108.4H14C—C14B—H14D108.5
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
C14A—C15A—H15B109.5C14B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C14A—C15A—H15C109.5C14B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C4A—C16A—H16A109.5C4B—C16B—H16D109.5
C4A—C16A—H16B109.5C4B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C4A—C16A—H16C109.5C4B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C6A—C1A—C2A—C3A2.4 (19)C6B—C1B—C2B—C3B1 (2)
C7A—C1A—C2A—C3A178.4 (13)C7B—C1B—C2B—C3B178.3 (13)
C6A—C1A—C2A—I1A179.0 (10)C6B—C1B—C2B—I1B179.4 (10)
C7A—C1A—C2A—I1A3.0 (18)C7B—C1B—C2B—I1B0.2 (19)
C1A—C2A—C3A—C4A3 (2)C1B—C2B—C3B—C4B1 (2)
I1A—C2A—C3A—C4A177.9 (11)I1B—C2B—C3B—C4B179.1 (11)
C2A—C3A—C4A—C5A3 (2)C2B—C3B—C4B—C5B0 (2)
C2A—C3A—C4A—C16A178.6 (13)C2B—C3B—C4B—C16B179.9 (14)
C3A—C4A—C5A—C6A2 (2)C3B—C4B—C5B—C6B1 (2)
C16A—C4A—C5A—C6A179.6 (14)C16B—C4B—C5B—C6B179.8 (13)
C3A—C4A—C5A—I2A178.7 (11)C3B—C4B—C5B—I2B178.6 (10)
C16A—C4A—C5A—I2A3.0 (19)C16B—C4B—C5B—I2B0.9 (18)
C4A—C5A—C6A—C1A1 (2)C2B—C1B—C6B—C5B1 (2)
I2A—C5A—C6A—C1A178.0 (10)C7B—C1B—C6B—C5B178.0 (12)
C2A—C1A—C6A—C5A1 (2)C4B—C5B—C6B—C1B1 (2)
C7A—C1A—C6A—C5A177.7 (13)I2B—C5B—C6B—C1B178.2 (10)
C2A—C1A—C7A—P8A104.0 (13)C6B—C1B—C7B—P8B79.6 (14)
C6A—C1A—C7A—P8A80.1 (14)C2B—C1B—C7B—P8B101.3 (14)
C1A—C7A—P8A—O9A56.9 (11)C1B—C7B—P8B—O9B55.2 (11)
C1A—C7A—P8A—O10A70.5 (10)C1B—C7B—P8B—O10B72.5 (11)
C1A—C7A—P8A—O13A177.4 (9)C1B—C7B—P8B—O13B178.6 (9)
O9A—P8A—O10A—C11A39.4 (12)O9B—P8B—O10B—C11B62.1 (12)
O13A—P8A—O10A—C11A84.9 (11)O13B—P8B—O10B—C11B63.0 (12)
C7A—P8A—O10A—C11A166.5 (10)C7B—P8B—O10B—C11B171.3 (11)
P8A—O10A—C11A—C12A91.8 (13)P8B—O10B—C11B—C12B170.5 (12)
O9A—P8A—O13A—C14A42.8 (12)O9B—P8B—O13B—C14B40.2 (13)
O10A—P8A—O13A—C14A168.8 (10)O10B—P8B—O13B—C14B167.0 (11)
C7A—P8A—O13A—C14A84.3 (11)C7B—P8B—O13B—C14B86.4 (11)
P8A—O13A—C14A—C15A157.0 (12)P8B—O13B—C14B—C15B147.0 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7A—H7A···O9B0.992.363.275 (15)154
C11A—H11B···O9Bi0.992.443.377 (17)158
C14A—H14B···O9B0.992.423.407 (18)172
C7B—H7C···O9Aii0.992.483.388 (15)152
C11B—H11D···O9A0.992.603.575 (18)169
C14B—H14D···O9Aii0.992.363.324 (19)166
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

References

First citationCambré, S., Ceuster, J. D., Goovaerts, E., Bouwen, A. & Detert, H. (2007). Appl. Magn. Reson. 31, 343–355.  Google Scholar
First citationNemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41.  Web of Science CrossRef CAS Google Scholar
First citationSchmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sensor Lett, 6, 1–7.  Google Scholar
First citationSchmitt, V., Moschel, S. & Detert, H. (2013). Eur. J. Org. Chem. pp.5655–5669.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSugiono, E. & Detert, H. (2004). Synth. Met. 147, 233–236.  Google Scholar
First citationWheland, R. S. & Martin, E. L. (1975). J. Org. Chem. 40, 3101–3109.  Google Scholar
First citationWirth, H. O., Herrmann, F. U. & Kern, W. (1964). Makromol. Chem. 80, 120–140.  Google Scholar
First citationZucchero, A. J., Wilson, J. N. & Bunz, U. H. F. (2006). J. Am. Chem. Soc. 128, 11872–11881.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds