metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[bis­­(quinolin-8-amine-κ2N,N′)cadmium(II)]-μ-cyanido-κ2N:C-[dicyanidonickel(II)]-μ-cyanido-κ2C:N]

crossmark logo

aDépartement de Chimie, Faculté des Sciences, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: setifi_zouaoui@yahoo.fr, md_douh@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 28 May 2021; accepted 1 June 2021; online 8 June 2021)

In the title compound, [CdNi(C9H8N2)2(CN)4]n, the Cd and Ni atoms both lie on centres of inversion in space group P21/c. The Cd atom is coordinated by two bidentate quinolin-8-amine ligands and by the N atoms of two cyano ligands, while the square planar Ni atom is coordinated by the C atoms of four cyano ligands. These units form a one-dimensional coordination polymer containing an (–NC—Ni—CN—Cd–)n backbone, and the coordination polymer chains are linked into a three-dimensional array by a combination of N—H⋯N and C—H⋯N hydrogen bonds, augmented by a ππ stacking inter­action.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition-metal coordination compounds in which cyano ligands play the main structure-forming role, so-called cyano­carbanion or cyano­metallate complexes, have been the subject of inter­est for many years, because of their magnetic and luminescent properties (Sieklucka et al., 2011[Sieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305-326.]; Benmansour et al., 2007[Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186-194.], 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255-262.], 2009[Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308-1314.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Setifi et al., 2009[Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269-1271.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Lehchili et al., 2017[Lehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27-33.]) including, in particular, their spin-crossover behaviour (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]; Setifi et al., 2013[Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242-247.], 2014[Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97-104.], Bartual-Murgui et al., 2013[Bartual-Murgui, C., Akou, A., Shepherd, H. J., Molnár, G., Real, J. A., Salmon, L. & Bousseksou, A. (2013). Chem. Eur. J. 19, 15036-15043.]). In a continuation of our general study of this area, we now report the crystal and mol­ecular structure of the title compound.

In the structure of the title compound, the Cd and Ni ions both lie on centres of inversion, selected for convenience as those at (0.5, 0.5, 0.5) and (0.5, 0.5, 0), respectively. The [Ni(CN)4]2− units adopts the usual square planar configuration, while the Cd centre is coordinated by two bidentate quinolin-8-amine units and by the N atoms of two cyano ligands. The structure thus consists of one-dimensional coordination polymer based on an (–NC—Ni—CN—Cd–)n backbone and running parallel to [001]. In the reference chain [Cd{quinolin-8-amine)2]2+ units centred at (0.5, 0.5, n + 0.5) alternate with [Ni(CN)4]2− units centred at (0.5, 0.5, n), where n represents an integer in each case (Fig. 1[link]). There are two types of N—H⋯N hydrogen bond in the structure (Table 1[link]). Those involving atom H8A lie within the coordination polymer chain, but those involving atom H8B link the chain along (0.5, 0.5, z) to those along (0.5, 0, z) and (0.5, 1, z), so forming a sheet of hydrogen-bonded chains lying parallel to (100) (Fig. 2[link]). Sheets of this type are linked into a three-dimensional array by two types of direction-specific inter­actions, a C—H⋯N hydrogen bond (Table 1[link]) and a ππ stacking inter­action. The C—H⋯N hydrogen bond combines with the inversion symmetry at both metal centres to generate a chain running parallel to the [20[\overline{1}]] direction (Fig. 3[link]), which links the (100) sheets into a three-dimensional structure. In addition, the carbocyclic rings in the quinolin-8-amine ligands at (x, y, z) and (2 − x, 1 − y, 1 − z), which lie in adjacent (100) sheets, are strictly parallel with an inter­planar spacing of 3.4070 (6) Å; the ring-centroid separation is 3.5856 (8) Å, with a ring-centroid offset of ca 1.117 (2) Å: the inter­actions between the two types of ring in these two ligands are similar (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4A/C5–C8/C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8A⋯N12i 0.880 (18) 2.416 (18) 3.2815 (18) 167.8 (15)
N8—H8B⋯N12ii 0.867 (19) 2.286 (19) 3.1275 (17) 163.9 (17)
C3—H3⋯Cg1iii 0.95 2.78 3.6266 (17) 149
C4—H4⋯N12iv 0.95 2.58 3.443 (2) 151
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The coordination polymer formed by the title compound. For the sake of clarity many of the C atom labels have been omitted: the atoms marked with a, b, c, d or e are at the symmetry positions (1 − x, 1 − y, −z), (1 − x, 1 − y, 1 − z), (x, y, −1 + z), (x, y, 1 + z) and (1 − x, 1 − y, 2 − z), respectively,. Displacement ellipsoids are drawn at the 80% probability level.
[Figure 2]
Figure 2
A projection along [100] of part of the crystal structure showing the formation of a hydrogen-bonded sheet of polymer chains, lying parallel to (100). For the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 3]
Figure 3
Part of the crystal structure showing the formation of a hydrogen-bonded chain running parallel to the [20[\overline{1}]] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 4]
Figure 4
Part of the crystal structure showing the π-stacking of quinolin-8-amine ligands. For the sake of clarity, the unit-cell outline and the H atoms have been omitted: the Cd atom marked with an asterisk (*) is at (1.5, 1/2, 1/2).

The structure of the title compound is very similar to that of the iron(II)–nickel analogue, whose structure has been studied at both 293 K and 120 K, where the iron adopts high-spin and low-spin configurations, respectively (Setifi et al., 2014[Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97-104.]). This structural similarity of the CdII and FeII compounds is somewhat unexpected in view of the different effective radii of these ions (Shannon & Prewitt, 1969[Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.], 1970[Shannon, R. D. & Prewitt, C. T. (1970). Acta Cryst. B26, 1046-1048.]), reflected in the differences between the M—N (M = Cd or Fe) distances in the two compounds, typically around 0.30 Å for each type of bond, itself reflected in the difference between the a repeat vectors, 9.4264 (3) Å for M = Cd but only 9.0035 (5) Å for M = Fe at 120 K.

Synthesis and crystallization

A solution of quinolin-8-amine (0.288 g, 2 mmol) in ethanol (10 ml) was added dropwise with stirring at 323 K to a solution of Cd[Ni(CN)4]·H2O (0.293 g, 1 mmol) in water (10 ml). This mixture was stirred for 4 h at 323 K and then filtered. Slow evaporation of the filtrate over a period of one week, at ambient temperature and in the presence of air, gave crystals suitable for single-crystal X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CdNi(C9H8N2)2(CN)4]
Mr 563.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 9.4264 (3), 11.8622 (3), 9.8257 (3)
β (°) 101.088 (2)
V3) 1078.18 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.89
Crystal size (mm) 0.15 × 0.11 × 0.07
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.668, 0.885
No. of measured, independent and observed [I > 2σ(I)] reflections 22794, 4057, 3319
Rint 0.024
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.063, 1.07
No. of reflections 4057
No. of parameters 154
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.51
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS86 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS86 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2020).

catena-Poly[[bis(quinolin-8-amine-κ2N,N')cadmium(II)]-µ-cyanido-κ2N:C-[dicyanidonickel(II)]-µ-cyanido-κ2C:N] top
Crystal data top
[CdNi(C9H8N2)2(CN)4]F(000) = 560
Mr = 563.53Dx = 1.736 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4264 (3) ÅCell parameters from 4057 reflections
b = 11.8622 (3) Åθ = 2.8–33.2°
c = 9.8257 (3) ŵ = 1.89 mm1
β = 101.088 (2)°T = 170 K
V = 1078.18 (6) Å3Block, pale yellow
Z = 20.15 × 0.11 × 0.07 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
4057 independent reflections
Radiation source: fine-focus sealed X-raytube3319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 33.2°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1412
Tmin = 0.668, Tmax = 0.885k = 1818
22794 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.6589P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4057 reflectionsΔρmax = 0.55 e Å3
154 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.01846 (4)
N10.69972 (12)0.60058 (9)0.46816 (12)0.0200 (2)
C20.69877 (16)0.69047 (12)0.38871 (16)0.0259 (3)
H20.61180.70940.32660.031*
C30.82124 (18)0.75965 (12)0.39193 (18)0.0286 (3)
H30.81730.82240.33120.034*
C40.94535 (17)0.73487 (12)0.48371 (16)0.0246 (3)
H41.02860.78090.48780.029*
C4A0.94994 (14)0.64063 (11)0.57272 (13)0.0200 (2)
C51.07330 (15)0.61251 (13)0.67437 (15)0.0252 (3)
H51.15830.65720.68420.030*
C61.06942 (16)0.52108 (14)0.75798 (16)0.0275 (3)
H61.15050.50450.82880.033*
C70.94610 (15)0.45098 (13)0.74017 (14)0.0239 (3)
H70.94650.38680.79810.029*
C80.82593 (14)0.47349 (11)0.64121 (13)0.0181 (2)
C8A0.82395 (13)0.57249 (10)0.55881 (12)0.0172 (2)
N80.70170 (12)0.40018 (9)0.61705 (12)0.0198 (2)
H8A0.694 (2)0.3681 (15)0.6961 (19)0.024*
H8B0.713 (2)0.3478 (16)0.5586 (19)0.024*
Ni10.50000.50000.00000.01665 (5)
C110.50450 (15)0.44216 (11)0.17628 (14)0.0217 (2)
N110.50472 (15)0.41011 (11)0.28716 (13)0.0272 (2)
C120.62164 (15)0.38568 (12)0.03912 (14)0.0219 (2)
N120.69773 (15)0.31621 (11)0.06549 (14)0.0292 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01554 (6)0.02316 (7)0.01642 (7)0.00368 (4)0.00242 (4)0.00056 (4)
N10.0186 (5)0.0198 (5)0.0214 (5)0.0013 (4)0.0032 (4)0.0026 (4)
C20.0242 (6)0.0248 (6)0.0282 (7)0.0007 (5)0.0040 (5)0.0077 (5)
C30.0302 (7)0.0236 (6)0.0329 (8)0.0038 (5)0.0088 (6)0.0078 (5)
C40.0241 (7)0.0227 (6)0.0287 (7)0.0071 (5)0.0098 (5)0.0012 (5)
C4A0.0184 (5)0.0209 (5)0.0214 (5)0.0029 (4)0.0059 (4)0.0036 (5)
C50.0182 (6)0.0307 (7)0.0264 (6)0.0041 (5)0.0032 (5)0.0058 (5)
C60.0196 (6)0.0353 (7)0.0250 (7)0.0001 (5)0.0023 (5)0.0013 (6)
C70.0240 (6)0.0249 (6)0.0217 (6)0.0015 (5)0.0015 (5)0.0025 (5)
C80.0186 (5)0.0188 (5)0.0172 (5)0.0005 (4)0.0044 (4)0.0011 (4)
C8A0.0175 (5)0.0175 (5)0.0172 (5)0.0010 (4)0.0045 (4)0.0012 (4)
N80.0223 (5)0.0171 (5)0.0202 (5)0.0020 (4)0.0045 (4)0.0005 (4)
Ni10.01888 (11)0.01653 (10)0.01467 (10)0.00374 (8)0.00356 (8)0.00017 (7)
C110.0235 (6)0.0203 (5)0.0213 (6)0.0032 (5)0.0041 (5)0.0022 (5)
N110.0343 (7)0.0269 (6)0.0205 (5)0.0014 (5)0.0056 (4)0.0007 (5)
C120.0244 (6)0.0217 (6)0.0196 (5)0.0029 (5)0.0040 (4)0.0016 (5)
N120.0300 (6)0.0264 (6)0.0326 (6)0.0073 (5)0.0094 (5)0.0018 (5)
Geometric parameters (Å, º) top
Cd1—N12.3005 (11)C5—C61.365 (2)
Cd1—N1i2.3005 (11)C5—H50.9500
Cd1—N82.3449 (12)C6—C71.412 (2)
Cd1—N8i2.3449 (12)C6—H60.9500
Cd1—N11i2.3554 (13)C7—C81.3698 (19)
Cd1—N112.3555 (13)C7—H70.9500
N1—C21.3205 (17)C8—C8A1.4245 (18)
N1—C8A1.3691 (17)C8—N81.4412 (17)
C2—C31.412 (2)N8—H8A0.880 (19)
C2—H20.9500N8—H8B0.868 (19)
C3—C41.365 (2)Ni1—C111.8559 (14)
C3—H30.9500Ni1—C11ii1.8560 (14)
C4—C4A1.4149 (19)Ni1—C121.8631 (13)
C4—H40.9500Ni1—C12ii1.8631 (13)
C4A—C51.4192 (19)C11—N111.1536 (18)
C4A—C8A1.4212 (17)C12—N121.1542 (18)
N1—Cd1—N1i180.0C6—C5—C4A119.80 (13)
N1—Cd1—N873.80 (4)C6—C5—H5120.1
N1i—Cd1—N8106.20 (4)C4A—C5—H5120.1
N1—Cd1—N8i106.20 (4)C5—C6—C7120.64 (14)
N1i—Cd1—N8i73.80 (4)C5—C6—H6119.7
N8—Cd1—N8i180.0C7—C6—H6119.7
N1—Cd1—N11i92.38 (4)C8—C7—C6121.45 (14)
N1i—Cd1—N11i87.62 (4)C8—C7—H7119.3
N8—Cd1—N11i86.85 (4)C6—C7—H7119.3
N8i—Cd1—N11i93.15 (4)C7—C8—C8A118.87 (12)
N1—Cd1—N1187.62 (4)C7—C8—N8122.28 (12)
N1i—Cd1—N1192.38 (4)C8A—C8—N8118.85 (11)
N8—Cd1—N1193.15 (4)N1—C8A—C4A121.24 (11)
N8i—Cd1—N1186.85 (4)N1—C8A—C8119.10 (11)
N11i—Cd1—N11180.0C4A—C8A—C8119.66 (12)
C2—N1—C8A119.26 (12)C8—N8—Cd1109.42 (8)
C2—N1—Cd1125.91 (9)C8—N8—H8A108.3 (12)
C8A—N1—Cd1113.91 (8)Cd1—N8—H8A117.2 (12)
N1—C2—C3122.93 (14)C8—N8—H8B109.8 (12)
N1—C2—H2118.5Cd1—N8—H8B103.4 (12)
C3—C2—H2118.5H8A—N8—H8B108.4 (17)
C4—C3—C2118.87 (13)C11—Ni1—C11ii180.0
C4—C3—H3120.6C11—Ni1—C1291.08 (6)
C2—C3—H3120.6C11ii—Ni1—C1288.92 (6)
C3—C4—C4A119.94 (13)C11—Ni1—C12ii88.92 (6)
C3—C4—H4120.0C11ii—Ni1—C12ii91.08 (6)
C4A—C4—H4120.0C12—Ni1—C12ii180.0
C4—C4A—C5122.97 (13)N11—C11—Ni1177.27 (13)
C4—C4A—C8A117.66 (12)C11—N11—Cd1133.82 (11)
C5—C4A—C8A119.37 (12)N12—C12—Ni1178.59 (13)
C8A—N1—C2—C30.4 (2)Cd1—N1—C8A—C4A167.20 (9)
Cd1—N1—C2—C3168.70 (12)C2—N1—C8A—C8178.04 (12)
N1—C2—C3—C41.9 (2)Cd1—N1—C8A—C812.30 (14)
C2—C3—C4—C4A0.5 (2)C4—C4A—C8A—N13.70 (18)
C3—C4—C4A—C5177.41 (14)C5—C4A—C8A—N1175.86 (12)
C3—C4—C4A—C8A2.1 (2)C4—C4A—C8A—C8176.80 (12)
C4—C4A—C5—C6179.15 (14)C5—C4A—C8A—C83.63 (18)
C8A—C4A—C5—C60.4 (2)C7—C8—C8A—N1174.40 (12)
C4A—C5—C6—C72.9 (2)N8—C8—C8A—N15.93 (17)
C5—C6—C7—C81.4 (2)C7—C8—C8A—C4A5.11 (18)
C6—C7—C8—C8A2.6 (2)N8—C8—C8A—C4A174.57 (11)
C6—C7—C8—N8177.03 (13)C7—C8—N8—Cd1160.34 (11)
C2—N1—C8A—C4A2.46 (19)C8A—C8—N8—Cd120.00 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4A/C5–C8/C8A ring.
D—H···AD—HH···AD···AD—H···A
N8—H8A···N12iii0.880 (18)2.416 (18)3.2815 (18)167.8 (15)
N8—H8B···N12iv0.867 (19)2.286 (19)3.1275 (17)163.9 (17)
C3—H3···Cg1v0.952.783.6266 (17)149
C4—H4···N12vi0.952.583.443 (2)151
Symmetry codes: (iii) x, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y+3/2, z1/2; (vi) x+2, y+1/2, z+1/2.
 

Acknowledgements

Author contributions are as follows. Conceptualization, ZS and MHAD; methodology, ZS and MHAD; investigation, SK and MT; writing (original draft), CG and ZS; writing (review and editing of the manuscript), CG, FS and ZS; visualization, ZS and FS; funding acquisition, ZS and MHAD; resources, FS; supervision, FS.

Funding information

FS gratefully acknowledges the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique), as well as the Université Ferhat Abbas Sétif 1 for financial support.

References

First citationBartual-Murgui, C., Akou, A., Shepherd, H. J., Molnár, G., Real, J. A., Salmon, L. & Bousseksou, A. (2013). Chem. Eur. J. 19, 15036–15043.  CAS PubMed Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194.  Web of Science CSD CrossRef Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationSetifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSetifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShannon, R. D. & Prewitt, C. T. (1970). Acta Cryst. B26, 1046–1048.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305–326.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds