metal-organic compounds
catena-Poly[[bis(quinolin-8-amine-κ2N,N′)cadmium(II)]-μ-cyanido-κ2N:C-[dicyanidonickel(II)]-μ-cyanido-κ2C:N]
aDépartement de Chimie, Faculté des Sciences, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: setifi_zouaoui@yahoo.fr, md_douh@yahoo.com
In the title compound, [CdNi(C9H8N2)2(CN)4]n, the Cd and Ni atoms both lie on centres of inversion in P21/c. The Cd atom is coordinated by two bidentate quinolin-8-amine ligands and by the N atoms of two cyano ligands, while the square planar Ni atom is coordinated by the C atoms of four cyano ligands. These units form a one-dimensional coordination polymer containing an (–NC—Ni—CN—Cd–)n backbone, and the coordination polymer chains are linked into a three-dimensional array by a combination of N—H⋯N and C—H⋯N hydrogen bonds, augmented by a π–π stacking interaction.
Keywords: synthesis; crystal structure; coordination polymer; hydrogen bonding.
CCDC reference: 2087407
Structure description
Transition-metal coordination compounds in which cyano ligands play the main structure-forming role, so-called cyanocarbanion or cyanometallate complexes, have been the subject of interest for many years, because of their magnetic and luminescent properties (Sieklucka et al., 2011; Benmansour et al., 2007, 2008, 2009, 2012; Setifi et al., 2009; Yuste et al., 2009; Lehchili et al., 2017) including, in particular, their spin-crossover behaviour (Benmansour et al., 2010; Setifi et al., 2013, 2014, Bartual-Murgui et al., 2013). In a continuation of our general study of this area, we now report the crystal and molecular structure of the title compound.
In the structure of the title compound, the Cd and Ni ions both lie on centres of inversion, selected for convenience as those at (0.5, 0.5, 0.5) and (0.5, 0.5, 0), respectively. The [Ni(CN)4]2− units adopts the usual square planar configuration, while the Cd centre is coordinated by two bidentate quinolin-8-amine units and by the N atoms of two cyano ligands. The structure thus consists of one-dimensional coordination polymer based on an (–NC—Ni—CN—Cd–)n backbone and running parallel to [001]. In the reference chain [Cd{quinolin-8-amine)2]2+ units centred at (0.5, 0.5, n + 0.5) alternate with [Ni(CN)4]2− units centred at (0.5, 0.5, n), where n represents an integer in each case (Fig. 1). There are two types of N—H⋯N hydrogen bond in the structure (Table 1). Those involving atom H8A lie within the coordination polymer chain, but those involving atom H8B link the chain along (0.5, 0.5, z) to those along (0.5, 0, z) and (0.5, 1, z), so forming a sheet of hydrogen-bonded chains lying parallel to (100) (Fig. 2). Sheets of this type are linked into a three-dimensional array by two types of direction-specific interactions, a C—H⋯N hydrogen bond (Table 1) and a π–π stacking interaction. The C—H⋯N hydrogen bond combines with the inversion symmetry at both metal centres to generate a chain running parallel to the [20] direction (Fig. 3), which links the (100) sheets into a three-dimensional structure. In addition, the carbocyclic rings in the quinolin-8-amine ligands at (x, y, z) and (2 − x, 1 − y, 1 − z), which lie in adjacent (100) sheets, are strictly parallel with an interplanar spacing of 3.4070 (6) Å; the ring-centroid separation is 3.5856 (8) Å, with a ring-centroid offset of ca 1.117 (2) Å: the interactions between the two types of ring in these two ligands are similar (Fig. 4).
The structure of the title compound is very similar to that of the iron(II)–nickel analogue, whose structure has been studied at both 293 K and 120 K, where the iron adopts high-spin and low-spin configurations, respectively (Setifi et al., 2014). This structural similarity of the CdII and FeII compounds is somewhat unexpected in view of the different effective radii of these ions (Shannon & Prewitt, 1969, 1970), reflected in the differences between the M—N (M = Cd or Fe) distances in the two compounds, typically around 0.30 Å for each type of bond, itself reflected in the difference between the a repeat vectors, 9.4264 (3) Å for M = Cd but only 9.0035 (5) Å for M = Fe at 120 K.
Synthesis and crystallization
A solution of quinolin-8-amine (0.288 g, 2 mmol) in ethanol (10 ml) was added dropwise with stirring at 323 K to a solution of Cd[Ni(CN)4]·H2O (0.293 g, 1 mmol) in water (10 ml). This mixture was stirred for 4 h at 323 K and then filtered. Slow evaporation of the filtrate over a period of one week, at ambient temperature and in the presence of air, gave crystals suitable for single-crystal X-ray diffraction.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2087407
https://doi.org/10.1107/S241431462100568X/bt4114sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462100568X/bt4114Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS86 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2020).[CdNi(C9H8N2)2(CN)4] | F(000) = 560 |
Mr = 563.53 | Dx = 1.736 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4264 (3) Å | Cell parameters from 4057 reflections |
b = 11.8622 (3) Å | θ = 2.8–33.2° |
c = 9.8257 (3) Å | µ = 1.89 mm−1 |
β = 101.088 (2)° | T = 170 K |
V = 1078.18 (6) Å3 | Block, pale yellow |
Z = 2 | 0.15 × 0.11 × 0.07 mm |
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini diffractometer | 4057 independent reflections |
Radiation source: fine-focus sealed X-raytube | 3319 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 33.2°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −14→12 |
Tmin = 0.668, Tmax = 0.885 | k = −18→18 |
22794 measured reflections | l = −12→15 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0239P)2 + 0.6589P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
4057 reflections | Δρmax = 0.55 e Å−3 |
154 parameters | Δρmin = −0.50 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.5000 | 0.5000 | 0.01846 (4) | |
N1 | 0.69972 (12) | 0.60058 (9) | 0.46816 (12) | 0.0200 (2) | |
C2 | 0.69877 (16) | 0.69047 (12) | 0.38871 (16) | 0.0259 (3) | |
H2 | 0.6118 | 0.7094 | 0.3266 | 0.031* | |
C3 | 0.82124 (18) | 0.75965 (12) | 0.39193 (18) | 0.0286 (3) | |
H3 | 0.8173 | 0.8224 | 0.3312 | 0.034* | |
C4 | 0.94535 (17) | 0.73487 (12) | 0.48371 (16) | 0.0246 (3) | |
H4 | 1.0286 | 0.7809 | 0.4878 | 0.029* | |
C4A | 0.94994 (14) | 0.64063 (11) | 0.57272 (13) | 0.0200 (2) | |
C5 | 1.07330 (15) | 0.61251 (13) | 0.67437 (15) | 0.0252 (3) | |
H5 | 1.1583 | 0.6572 | 0.6842 | 0.030* | |
C6 | 1.06942 (16) | 0.52108 (14) | 0.75798 (16) | 0.0275 (3) | |
H6 | 1.1505 | 0.5045 | 0.8288 | 0.033* | |
C7 | 0.94610 (15) | 0.45098 (13) | 0.74017 (14) | 0.0239 (3) | |
H7 | 0.9465 | 0.3868 | 0.7981 | 0.029* | |
C8 | 0.82593 (14) | 0.47349 (11) | 0.64121 (13) | 0.0181 (2) | |
C8A | 0.82395 (13) | 0.57249 (10) | 0.55881 (12) | 0.0172 (2) | |
N8 | 0.70170 (12) | 0.40018 (9) | 0.61705 (12) | 0.0198 (2) | |
H8A | 0.694 (2) | 0.3681 (15) | 0.6961 (19) | 0.024* | |
H8B | 0.713 (2) | 0.3478 (16) | 0.5586 (19) | 0.024* | |
Ni1 | 0.5000 | 0.5000 | 0.0000 | 0.01665 (5) | |
C11 | 0.50450 (15) | 0.44216 (11) | 0.17628 (14) | 0.0217 (2) | |
N11 | 0.50472 (15) | 0.41011 (11) | 0.28716 (13) | 0.0272 (2) | |
C12 | 0.62164 (15) | 0.38568 (12) | −0.03912 (14) | 0.0219 (2) | |
N12 | 0.69773 (15) | 0.31621 (11) | −0.06549 (14) | 0.0292 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01554 (6) | 0.02316 (7) | 0.01642 (7) | −0.00368 (4) | 0.00242 (4) | 0.00056 (4) |
N1 | 0.0186 (5) | 0.0198 (5) | 0.0214 (5) | −0.0013 (4) | 0.0032 (4) | 0.0026 (4) |
C2 | 0.0242 (6) | 0.0248 (6) | 0.0282 (7) | −0.0007 (5) | 0.0040 (5) | 0.0077 (5) |
C3 | 0.0302 (7) | 0.0236 (6) | 0.0329 (8) | −0.0038 (5) | 0.0088 (6) | 0.0078 (5) |
C4 | 0.0241 (7) | 0.0227 (6) | 0.0287 (7) | −0.0071 (5) | 0.0098 (5) | −0.0012 (5) |
C4A | 0.0184 (5) | 0.0209 (5) | 0.0214 (5) | −0.0029 (4) | 0.0059 (4) | −0.0036 (5) |
C5 | 0.0182 (6) | 0.0307 (7) | 0.0264 (6) | −0.0041 (5) | 0.0032 (5) | −0.0058 (5) |
C6 | 0.0196 (6) | 0.0353 (7) | 0.0250 (7) | −0.0001 (5) | −0.0023 (5) | −0.0013 (6) |
C7 | 0.0240 (6) | 0.0249 (6) | 0.0217 (6) | 0.0015 (5) | 0.0015 (5) | 0.0025 (5) |
C8 | 0.0186 (5) | 0.0188 (5) | 0.0172 (5) | −0.0005 (4) | 0.0044 (4) | −0.0011 (4) |
C8A | 0.0175 (5) | 0.0175 (5) | 0.0172 (5) | −0.0010 (4) | 0.0045 (4) | −0.0012 (4) |
N8 | 0.0223 (5) | 0.0171 (5) | 0.0202 (5) | −0.0020 (4) | 0.0045 (4) | 0.0005 (4) |
Ni1 | 0.01888 (11) | 0.01653 (10) | 0.01467 (10) | 0.00374 (8) | 0.00356 (8) | −0.00017 (7) |
C11 | 0.0235 (6) | 0.0203 (5) | 0.0213 (6) | 0.0032 (5) | 0.0041 (5) | −0.0022 (5) |
N11 | 0.0343 (7) | 0.0269 (6) | 0.0205 (5) | 0.0014 (5) | 0.0056 (4) | −0.0007 (5) |
C12 | 0.0244 (6) | 0.0217 (6) | 0.0196 (5) | 0.0029 (5) | 0.0040 (4) | 0.0016 (5) |
N12 | 0.0300 (6) | 0.0264 (6) | 0.0326 (6) | 0.0073 (5) | 0.0094 (5) | 0.0018 (5) |
Cd1—N1 | 2.3005 (11) | C5—C6 | 1.365 (2) |
Cd1—N1i | 2.3005 (11) | C5—H5 | 0.9500 |
Cd1—N8 | 2.3449 (12) | C6—C7 | 1.412 (2) |
Cd1—N8i | 2.3449 (12) | C6—H6 | 0.9500 |
Cd1—N11i | 2.3554 (13) | C7—C8 | 1.3698 (19) |
Cd1—N11 | 2.3555 (13) | C7—H7 | 0.9500 |
N1—C2 | 1.3205 (17) | C8—C8A | 1.4245 (18) |
N1—C8A | 1.3691 (17) | C8—N8 | 1.4412 (17) |
C2—C3 | 1.412 (2) | N8—H8A | 0.880 (19) |
C2—H2 | 0.9500 | N8—H8B | 0.868 (19) |
C3—C4 | 1.365 (2) | Ni1—C11 | 1.8559 (14) |
C3—H3 | 0.9500 | Ni1—C11ii | 1.8560 (14) |
C4—C4A | 1.4149 (19) | Ni1—C12 | 1.8631 (13) |
C4—H4 | 0.9500 | Ni1—C12ii | 1.8631 (13) |
C4A—C5 | 1.4192 (19) | C11—N11 | 1.1536 (18) |
C4A—C8A | 1.4212 (17) | C12—N12 | 1.1542 (18) |
N1—Cd1—N1i | 180.0 | C6—C5—C4A | 119.80 (13) |
N1—Cd1—N8 | 73.80 (4) | C6—C5—H5 | 120.1 |
N1i—Cd1—N8 | 106.20 (4) | C4A—C5—H5 | 120.1 |
N1—Cd1—N8i | 106.20 (4) | C5—C6—C7 | 120.64 (14) |
N1i—Cd1—N8i | 73.80 (4) | C5—C6—H6 | 119.7 |
N8—Cd1—N8i | 180.0 | C7—C6—H6 | 119.7 |
N1—Cd1—N11i | 92.38 (4) | C8—C7—C6 | 121.45 (14) |
N1i—Cd1—N11i | 87.62 (4) | C8—C7—H7 | 119.3 |
N8—Cd1—N11i | 86.85 (4) | C6—C7—H7 | 119.3 |
N8i—Cd1—N11i | 93.15 (4) | C7—C8—C8A | 118.87 (12) |
N1—Cd1—N11 | 87.62 (4) | C7—C8—N8 | 122.28 (12) |
N1i—Cd1—N11 | 92.38 (4) | C8A—C8—N8 | 118.85 (11) |
N8—Cd1—N11 | 93.15 (4) | N1—C8A—C4A | 121.24 (11) |
N8i—Cd1—N11 | 86.85 (4) | N1—C8A—C8 | 119.10 (11) |
N11i—Cd1—N11 | 180.0 | C4A—C8A—C8 | 119.66 (12) |
C2—N1—C8A | 119.26 (12) | C8—N8—Cd1 | 109.42 (8) |
C2—N1—Cd1 | 125.91 (9) | C8—N8—H8A | 108.3 (12) |
C8A—N1—Cd1 | 113.91 (8) | Cd1—N8—H8A | 117.2 (12) |
N1—C2—C3 | 122.93 (14) | C8—N8—H8B | 109.8 (12) |
N1—C2—H2 | 118.5 | Cd1—N8—H8B | 103.4 (12) |
C3—C2—H2 | 118.5 | H8A—N8—H8B | 108.4 (17) |
C4—C3—C2 | 118.87 (13) | C11—Ni1—C11ii | 180.0 |
C4—C3—H3 | 120.6 | C11—Ni1—C12 | 91.08 (6) |
C2—C3—H3 | 120.6 | C11ii—Ni1—C12 | 88.92 (6) |
C3—C4—C4A | 119.94 (13) | C11—Ni1—C12ii | 88.92 (6) |
C3—C4—H4 | 120.0 | C11ii—Ni1—C12ii | 91.08 (6) |
C4A—C4—H4 | 120.0 | C12—Ni1—C12ii | 180.0 |
C4—C4A—C5 | 122.97 (13) | N11—C11—Ni1 | 177.27 (13) |
C4—C4A—C8A | 117.66 (12) | C11—N11—Cd1 | 133.82 (11) |
C5—C4A—C8A | 119.37 (12) | N12—C12—Ni1 | 178.59 (13) |
C8A—N1—C2—C3 | 0.4 (2) | Cd1—N1—C8A—C4A | −167.20 (9) |
Cd1—N1—C2—C3 | 168.70 (12) | C2—N1—C8A—C8 | −178.04 (12) |
N1—C2—C3—C4 | −1.9 (2) | Cd1—N1—C8A—C8 | 12.30 (14) |
C2—C3—C4—C4A | 0.5 (2) | C4—C4A—C8A—N1 | −3.70 (18) |
C3—C4—C4A—C5 | −177.41 (14) | C5—C4A—C8A—N1 | 175.86 (12) |
C3—C4—C4A—C8A | 2.1 (2) | C4—C4A—C8A—C8 | 176.80 (12) |
C4—C4A—C5—C6 | 179.15 (14) | C5—C4A—C8A—C8 | −3.63 (18) |
C8A—C4A—C5—C6 | −0.4 (2) | C7—C8—C8A—N1 | −174.40 (12) |
C4A—C5—C6—C7 | 2.9 (2) | N8—C8—C8A—N1 | 5.93 (17) |
C5—C6—C7—C8 | −1.4 (2) | C7—C8—C8A—C4A | 5.11 (18) |
C6—C7—C8—C8A | −2.6 (2) | N8—C8—C8A—C4A | −174.57 (11) |
C6—C7—C8—N8 | 177.03 (13) | C7—C8—N8—Cd1 | 160.34 (11) |
C2—N1—C8A—C4A | 2.46 (19) | C8A—C8—N8—Cd1 | −20.00 (13) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
Cg1 is the centroid of the C4A/C5–C8/C8A ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8A···N12iii | 0.880 (18) | 2.416 (18) | 3.2815 (18) | 167.8 (15) |
N8—H8B···N12iv | 0.867 (19) | 2.286 (19) | 3.1275 (17) | 163.9 (17) |
C3—H3···Cg1v | 0.95 | 2.78 | 3.6266 (17) | 149 |
C4—H4···N12vi | 0.95 | 2.58 | 3.443 (2) | 151 |
Symmetry codes: (iii) x, y, z+1; (iv) x, −y+1/2, z+1/2; (v) x, −y+3/2, z−1/2; (vi) −x+2, y+1/2, −z+1/2. |
Acknowledgements
Author contributions are as follows. Conceptualization, ZS and MHAD; methodology, ZS and MHAD; investigation, SK and MT; writing (original draft), CG and ZS; writing (review and editing of the manuscript), CG, FS and ZS; visualization, ZS and FS; funding acquisition, ZS and MHAD; resources, FS; supervision, FS.
Funding information
FS gratefully acknowledges the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique), as well as the Université Ferhat Abbas Sétif 1 for financial support.
References
Bartual-Murgui, C., Akou, A., Shepherd, H. J., Molnár, G., Real, J. A., Salmon, L. & Bousseksou, A. (2013). Chem. Eur. J. 19, 15036–15043. CAS PubMed Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. Web of Science CSD CrossRef CAS PubMed Google Scholar
Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194. Web of Science CSD CrossRef Google Scholar
Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314. Web of Science CSD CrossRef CAS Google Scholar
Lehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27–33. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271. Web of Science CSD CrossRef PubMed CAS Google Scholar
Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247. Web of Science CSD CrossRef CAS Google Scholar
Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104. Web of Science CSD CrossRef CAS PubMed Google Scholar
Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946. CrossRef CAS IUCr Journals Web of Science Google Scholar
Shannon, R. D. & Prewitt, C. T. (1970). Acta Cryst. B26, 1046–1048. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305–326. Web of Science CrossRef Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.