organic compounds
8-Hydroxy-6-methoxy-7-(3-methylbut-2-enyloxy)coumarin (capensine)
aInstitute of Bioorganic Chemistry, UzAS, M. Ulugbek Str. 83, 100125, Tashkent, Uzbekistan, bNational University of Uzbekistan, University Str. 4, Tashkent 100174, Uzbekistan, and cKey Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People's Republic of China
*Correspondence e-mail: li_izotova@mail.ru
The title coumarin derivative, C15H16O5, was isolated from the roots of Sophora japonica. The coumarin (2H-chromen-2-one) fragment is almost planar, with an r.m.s. deviation of 0.0356 Å. The carbon atom of the methoxy substituent is coplanar with the benzopyran oxa-heterocycle. The 3-methylbut-2-enyloxy group is disordered over two sets of sites with occupation factors of 0.920 (3) and 0.080 (3). In the crystal, molecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into chains propagating along the [101] direction.
Keywords: crystal structure; coumarin; capensin; isolation; natural product; hydrogen bonding.
CCDC reference: 2080647
Structure description
Coumarin derivatives constitute the core structure of various natural products and are a pharmacophore of numerous medicinal agents with antimicrobial, antifungal or antioxidant properties (Hulushe et al., 2020; Mladenović et al., 2009; Al-Ayed, 2011). The properties of coumarin derivatives are also of interest as targets for synthetic organic chemists and serve as intermediates in the synthesis of new biologically active compounds. In addition, certain derivatives of are known to induce apoptosis by cytochrome C release and caspase activation (Johansson et al., 2003). A number of articles report coumarin derivative such as 7-hydroxy-coumarin (Gourdeau et al., 2004), 7,8-diacetoxy-4-methylcoumarin or 7,8-diacetoxy-4-methyl-coumarin (Skommer et al., 2006; Patchett et al., 2000) with selective cytotoxicity towards cancer cells, which inhibit the growth of certain types of lung cancer cells.
The title compound, the coumarin capensine, was first isolated from Haplofyllum obtusifolium and its atomic connectivity has been established by chemical and spectroscopic methods (Matkarimov et al., 1980; Vdovin et al., 1987). The same coumarin was isolated from the roots of Sophora japonica. Slow evaporation from a solution in methanol yielded monoclinic crystals with P21/n with one crystallographically independent molecule. The molecular structure of the title compound is presented in Fig. 1. The benzopyran ring system is practically planar, the r.m.s. deviation from planarity being 0.0356 Å. The methoxy substituent at atom C8 lies almost within the plane of the benzopyran oxa-heterocycle. The torsion angle C7—C6—O3—C10 is 178.18 (3). The 3-methylbut-2-enyloxy substituent at atom C7 is disordered over two sets of sites by a rotation around the C11—C12 bond. The two orientations are not equivalent – the site occupation factors are 0.920 (3) and 0.080 (3).
The hydroxyl group O5—H at C8 participates in a bifurcated hydrogen bond: intramolecular and intermolecular (Table 1). The intramolecular hydrogen bond O5—H5⋯O4 [2.758 (1) Å, 111°] closes a five-membered ring with an S(5) graph-set motif (Etter, 1990). The same hydroxyl H atom also bonds towards the ester keto oxygen atom O2 in a neighboring molecule (at − + x, − y, − + z), which, in turn, is hydrogen-bonded to the C11B (C12A) atoms of the 3-methylbut-2-enyloxy substituent at atom C7 of the first molecule via C11B—H11D⋯O2i and C12A—H12A⋯O2i hydrogen bonds (Table 1), thus connecting molecules into chains propagating along the [101] direction (Fig. 2).
Synthesis and crystallization
The title compound was isolated from the roots of Sophora japonica. The roots (2.5 kg) of S. japonica were extracted with ethanol at room temperature, which afforded a light-yellow residue (228.1 g) after solvent evaporation under reduced pressure. The residue was diluted with water (1:1), washed with non-polar solvents (hexane, petroleum ether, gasoline) to remove lipophilic substances, and then subjected to sequential liquid–liquid extraction with chloroform, ethyl acetate, and n-butanol. The obtained chloroform fraction (30.4 g) was subjected to on silica gel in gradient solvent systems; were isolated from the eluates obtained by repeated on a polyamide sorbent, preparative TLC on Silufol UV-254 in the following system: chloroform–petroleum ether–ethanol (8:2:2), Rf = 0.74 and fractional crystallization from chloroform. The yield of capensine was 55 mg (0.0022%), m.p. 139–141°C. Suitable crystals for X-ray structural analysis were obtained by slow evaporation from a solution in methanol at room temperature.
Refinement
Crystal data, data collection and structure . Disorder was observed for the 7-(3-methylbut-2-enyloxy)group. The disordered atoms C11–C15 were modelled over two positions. The geometries of the two moieties were restrained to be similar to each other (SAME command of SHELXL, e.s.d. used was 0.02 Å). Uij components of disordered atoms were restrained to be similar for atoms closer to each other than 2.0 Å (SIMU restraint of SHELXL, e.s.d. used was 0.01 Å2). The occupancy ratio refined to 0.920 (3):0.080 (3).
details are summarized in Table 2Structural data
CCDC reference: 2080647
https://doi.org/10.1107/S241431462100451X/zl4043sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462100451X/zl4043Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: XP (Siemens, 1994).C15H16O5 | F(000) = 584 |
Mr = 276.28 | Dx = 1.344 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 11.4373 (2) Å | Cell parameters from 7342 reflections |
b = 9.2045 (1) Å | θ = 4.2–76.0° |
c = 13.9862 (2) Å | µ = 0.84 mm−1 |
β = 112.030 (2)° | T = 293 K |
V = 1364.89 (4) Å3 | Prism, colourless |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Rigaku Oxford Diffraction Xcalibur, Ruby diffractometer | Rint = 0.026 |
Radiation source: Enhance (Cu) X-ray Source | θmax = 76.0°, θmin = 5.9° |
/ω scans | h = −13→14 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | k = −11→11 |
Tmin = 0.707, Tmax = 1.000 | l = −17→16 |
12421 measured reflections | 3 standard reflections every 100 reflections |
2826 independent reflections | intensity decay: 2.6% |
2658 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0784P)2 + 0.2588P] where P = (Fo2 + 2Fc2)/3 |
2826 reflections | (Δ/σ)max = 0.001 |
233 parameters | Δρmax = 0.24 e Å−3 |
152 restraints | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All hydrogen atoms were placed in idealized positions and refined as riding. Methyl and hydroxyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3 and OH, and 1.2 for C—H and CH2 units, respectively. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.59277 (8) | 0.31729 (9) | 0.90699 (6) | 0.0387 (2) | |
O2 | 0.71917 (11) | 0.16510 (11) | 1.02027 (8) | 0.0581 (3) | |
O3 | 0.41699 (11) | 0.86743 (10) | 0.76809 (7) | 0.0528 (3) | |
O4 | 0.34926 (8) | 0.63380 (10) | 0.63957 (6) | 0.0394 (2) | |
O5 | 0.42264 (9) | 0.35773 (10) | 0.71482 (7) | 0.0455 (3) | |
H5A | 0.361972 | 0.380320 | 0.663022 | 0.068* | |
C1 | 0.68442 (12) | 0.29021 (14) | 1.00155 (10) | 0.0408 (3) | |
C2 | 0.73150 (12) | 0.41184 (15) | 1.07060 (10) | 0.0435 (3) | |
H2A | 0.793928 | 0.396102 | 1.135298 | 0.052* | |
C3 | 0.68748 (11) | 0.54680 (14) | 1.04379 (9) | 0.0384 (3) | |
H3A | 0.717941 | 0.622790 | 1.090374 | 0.046* | |
C4 | 0.59337 (11) | 0.57447 (13) | 0.94328 (9) | 0.0332 (3) | |
C5 | 0.54701 (12) | 0.71408 (13) | 0.90989 (9) | 0.0372 (3) | |
H5B | 0.572267 | 0.792182 | 0.955223 | 0.045* | |
C6 | 0.46380 (12) | 0.73575 (13) | 0.80966 (10) | 0.0377 (3) | |
C7 | 0.42467 (11) | 0.61589 (13) | 0.74204 (9) | 0.0352 (3) | |
C8 | 0.46321 (11) | 0.47571 (13) | 0.77651 (9) | 0.0341 (3) | |
C9 | 0.55012 (11) | 0.45657 (12) | 0.87717 (9) | 0.0323 (3) | |
C10 | 0.4522 (2) | 0.98950 (16) | 0.83649 (13) | 0.0673 (5) | |
H10B | 0.415653 | 1.076267 | 0.799159 | 0.101* | |
H10C | 0.542443 | 0.998598 | 0.864752 | 0.101* | |
H10D | 0.422271 | 0.975472 | 0.891400 | 0.101* | |
C11A | 0.4264 (2) | 0.6569 (3) | 0.57834 (14) | 0.0551 (5) | 0.920 (3) |
H11A | 0.495799 | 0.588214 | 0.598800 | 0.066* | 0.920 (3) |
H11B | 0.461255 | 0.754337 | 0.589740 | 0.066* | 0.920 (3) |
C12A | 0.34670 (15) | 0.63675 (18) | 0.46744 (11) | 0.0470 (4) | 0.920 (3) |
H12A | 0.296120 | 0.554266 | 0.449743 | 0.056* | 0.920 (3) |
C13A | 0.3414 (5) | 0.7259 (3) | 0.39174 (16) | 0.0518 (6) | 0.920 (3) |
C14A | 0.4154 (3) | 0.8638 (3) | 0.4076 (2) | 0.0904 (8) | 0.920 (3) |
H14A | 0.453102 | 0.870756 | 0.356890 | 0.136* | 0.920 (3) |
H14B | 0.480385 | 0.863960 | 0.475330 | 0.136* | 0.920 (3) |
H14C | 0.360338 | 0.945127 | 0.400707 | 0.136* | 0.920 (3) |
C15A | 0.2580 (2) | 0.6955 (5) | 0.28248 (15) | 0.0918 (9) | 0.920 (3) |
H15A | 0.308261 | 0.688163 | 0.241029 | 0.138* | 0.920 (3) |
H15B | 0.198125 | 0.772994 | 0.257010 | 0.138* | 0.920 (3) |
H15C | 0.213889 | 0.605708 | 0.279173 | 0.138* | 0.920 (3) |
C11B | 0.412 (3) | 0.601 (2) | 0.5635 (18) | 0.047 (3) | 0.080 (3) |
H11C | 0.500724 | 0.579784 | 0.600430 | 0.057* | 0.080 (3) |
H11D | 0.372932 | 0.515912 | 0.522606 | 0.057* | 0.080 (3) |
C12B | 0.3977 (19) | 0.726 (2) | 0.4962 (13) | 0.058 (3) | 0.080 (3) |
H12B | 0.438259 | 0.811199 | 0.527301 | 0.070* | 0.080 (3) |
C13B | 0.333 (7) | 0.732 (4) | 0.3955 (17) | 0.061 (4) | 0.080 (3) |
C14B | 0.280 (2) | 0.610 (3) | 0.3204 (19) | 0.068 (4) | 0.080 (3) |
H14D | 0.327570 | 0.600656 | 0.276911 | 0.102* | 0.080 (3) |
H14E | 0.193447 | 0.630179 | 0.278768 | 0.102* | 0.080 (3) |
H14F | 0.285031 | 0.520783 | 0.357461 | 0.102* | 0.080 (3) |
C15B | 0.340 (3) | 0.874 (3) | 0.345 (2) | 0.083 (5) | 0.080 (3) |
H15D | 0.261923 | 0.925182 | 0.328773 | 0.124* | 0.080 (3) |
H15E | 0.355021 | 0.855862 | 0.283156 | 0.124* | 0.080 (3) |
H15F | 0.407753 | 0.931049 | 0.391619 | 0.124* | 0.080 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0444 (5) | 0.0305 (4) | 0.0309 (4) | 0.0043 (3) | 0.0022 (4) | −0.0006 (3) |
O2 | 0.0673 (7) | 0.0397 (5) | 0.0455 (6) | 0.0162 (5) | −0.0036 (5) | 0.0023 (4) |
O3 | 0.0732 (7) | 0.0304 (5) | 0.0369 (5) | 0.0063 (4) | 0.0001 (5) | 0.0015 (4) |
O4 | 0.0415 (5) | 0.0409 (5) | 0.0271 (4) | 0.0033 (3) | 0.0030 (3) | 0.0017 (3) |
O5 | 0.0540 (6) | 0.0333 (5) | 0.0322 (5) | 0.0014 (4) | −0.0034 (4) | −0.0061 (3) |
C1 | 0.0414 (6) | 0.0386 (6) | 0.0334 (6) | 0.0074 (5) | 0.0039 (5) | 0.0036 (5) |
C2 | 0.0403 (6) | 0.0451 (7) | 0.0312 (6) | 0.0027 (5) | −0.0024 (5) | 0.0007 (5) |
C3 | 0.0385 (6) | 0.0379 (6) | 0.0306 (6) | −0.0043 (5) | 0.0034 (5) | −0.0041 (5) |
C4 | 0.0343 (6) | 0.0331 (6) | 0.0280 (5) | −0.0024 (4) | 0.0067 (4) | −0.0009 (4) |
C5 | 0.0443 (6) | 0.0307 (6) | 0.0307 (6) | −0.0030 (5) | 0.0072 (5) | −0.0033 (4) |
C6 | 0.0442 (6) | 0.0295 (6) | 0.0335 (6) | 0.0008 (5) | 0.0080 (5) | 0.0017 (4) |
C7 | 0.0370 (6) | 0.0357 (6) | 0.0265 (5) | 0.0008 (5) | 0.0044 (4) | 0.0008 (4) |
C8 | 0.0363 (6) | 0.0325 (6) | 0.0278 (6) | −0.0012 (4) | 0.0054 (5) | −0.0038 (4) |
C9 | 0.0347 (6) | 0.0289 (5) | 0.0290 (6) | 0.0012 (4) | 0.0072 (4) | 0.0006 (4) |
C10 | 0.1004 (14) | 0.0298 (7) | 0.0472 (8) | 0.0073 (7) | −0.0003 (8) | −0.0003 (6) |
C11A | 0.0470 (9) | 0.0785 (14) | 0.0333 (9) | −0.0019 (10) | 0.0077 (7) | 0.0064 (9) |
C12A | 0.0507 (8) | 0.0515 (8) | 0.0348 (7) | −0.0030 (6) | 0.0115 (6) | −0.0035 (6) |
C13A | 0.0497 (12) | 0.0699 (11) | 0.0369 (8) | 0.0131 (8) | 0.0174 (7) | 0.0060 (8) |
C14A | 0.118 (2) | 0.0772 (15) | 0.0821 (16) | −0.0091 (14) | 0.0441 (16) | 0.0170 (12) |
C15A | 0.0702 (13) | 0.170 (3) | 0.0332 (9) | 0.0054 (16) | 0.0166 (9) | 0.0043 (13) |
C11B | 0.043 (5) | 0.060 (6) | 0.039 (5) | 0.002 (5) | 0.016 (4) | −0.006 (5) |
C12B | 0.056 (4) | 0.068 (5) | 0.045 (4) | 0.005 (4) | 0.014 (4) | 0.000 (4) |
C13B | 0.058 (5) | 0.075 (5) | 0.046 (5) | 0.007 (5) | 0.014 (5) | 0.001 (5) |
C14B | 0.056 (8) | 0.092 (9) | 0.059 (8) | 0.013 (8) | 0.025 (7) | 0.009 (8) |
C15B | 0.072 (9) | 0.098 (9) | 0.067 (9) | 0.012 (8) | 0.014 (8) | −0.008 (8) |
O1—C1 | 1.3675 (15) | C11A—H11A | 0.9700 |
O1—C9 | 1.3794 (14) | C11A—H11B | 0.9700 |
O2—C1 | 1.2143 (16) | C12A—C13A | 1.323 (3) |
O3—C6 | 1.3639 (14) | C12A—H12A | 0.9300 |
O3—C10 | 1.4321 (17) | C13A—C15A | 1.493 (3) |
O4—C7 | 1.3776 (13) | C13A—C14A | 1.495 (4) |
O4—C11A | 1.457 (2) | C14A—H14A | 0.9600 |
O4—C11B | 1.52 (3) | C14A—H14B | 0.9600 |
O5—C8 | 1.3560 (14) | C14A—H14C | 0.9600 |
O5—H5A | 0.8200 | C15A—H15A | 0.9600 |
C1—C2 | 1.4442 (18) | C15A—H15B | 0.9600 |
C2—C3 | 1.3400 (19) | C15A—H15C | 0.9600 |
C2—H2A | 0.9300 | C11B—C12B | 1.462 (17) |
C3—C4 | 1.4368 (16) | C11B—H11C | 0.9700 |
C3—H3A | 0.9300 | C11B—H11D | 0.9700 |
C4—C9 | 1.3907 (16) | C12B—C13B | 1.323 (18) |
C4—C5 | 1.4017 (17) | C12B—H12B | 0.9300 |
C5—C6 | 1.3819 (17) | C13B—C14B | 1.50 (2) |
C5—H5B | 0.9300 | C13B—C15B | 1.50 (2) |
C6—C7 | 1.4122 (17) | C14B—H14D | 0.9600 |
C7—C8 | 1.3900 (16) | C14B—H14E | 0.9600 |
C8—C9 | 1.3968 (15) | C14B—H14F | 0.9600 |
C10—H10B | 0.9600 | C15B—H15D | 0.9600 |
C10—H10C | 0.9600 | C15B—H15E | 0.9600 |
C10—H10D | 0.9600 | C15B—H15F | 0.9600 |
C11A—C12A | 1.487 (2) | ||
C1—O1—C9 | 121.18 (10) | H11A—C11A—H11B | 108.3 |
C6—O3—C10 | 116.44 (10) | C13A—C12A—C11A | 125.7 (2) |
C7—O4—C11A | 110.36 (11) | C13A—C12A—H12A | 117.2 |
C7—O4—C11B | 115.4 (9) | C11A—C12A—H12A | 117.2 |
C8—O5—H5A | 109.5 | C12A—C13A—C15A | 121.5 (3) |
O2—C1—O1 | 116.84 (12) | C12A—C13A—C14A | 123.7 (2) |
O2—C1—C2 | 125.54 (12) | C15A—C13A—C14A | 114.8 (2) |
O1—C1—C2 | 117.62 (11) | C13A—C14A—H14A | 109.5 |
C3—C2—C1 | 121.65 (11) | C13A—C14A—H14B | 109.5 |
C3—C2—H2A | 119.2 | H14A—C14A—H14B | 109.5 |
C1—C2—H2A | 119.2 | C13A—C14A—H14C | 109.5 |
C2—C3—C4 | 120.20 (11) | H14A—C14A—H14C | 109.5 |
C2—C3—H3A | 119.9 | H14B—C14A—H14C | 109.5 |
C4—C3—H3A | 119.9 | C13A—C15A—H15A | 109.5 |
C9—C4—C5 | 119.87 (11) | C13A—C15A—H15B | 109.5 |
C9—C4—C3 | 117.47 (11) | H15A—C15A—H15B | 109.5 |
C5—C4—C3 | 122.64 (11) | C13A—C15A—H15C | 109.5 |
C6—C5—C4 | 120.05 (11) | H15A—C15A—H15C | 109.5 |
C6—C5—H5B | 120.0 | H15B—C15A—H15C | 109.5 |
C4—C5—H5B | 120.0 | C12B—C11B—O4 | 108.9 (17) |
O3—C6—C5 | 124.86 (11) | C12B—C11B—H11C | 109.9 |
O3—C6—C7 | 115.70 (11) | O4—C11B—H11C | 109.9 |
C5—C6—C7 | 119.42 (11) | C12B—C11B—H11D | 109.9 |
O4—C7—C8 | 117.73 (10) | O4—C11B—H11D | 109.9 |
O4—C7—C6 | 121.38 (10) | H11C—C11B—H11D | 108.3 |
C8—C7—C6 | 120.89 (11) | C13B—C12B—C11B | 127 (2) |
O5—C8—C7 | 122.30 (10) | C13B—C12B—H12B | 116.6 |
O5—C8—C9 | 118.99 (10) | C11B—C12B—H12B | 116.6 |
C7—C8—C9 | 118.67 (10) | C12B—C13B—C14B | 129 (2) |
O1—C9—C4 | 121.79 (10) | C12B—C13B—C15B | 115 (2) |
O1—C9—C8 | 117.34 (10) | C14B—C13B—C15B | 114 (2) |
C4—C9—C8 | 120.85 (11) | C13B—C14B—H14D | 109.5 |
O3—C10—H10B | 109.5 | C13B—C14B—H14E | 109.5 |
O3—C10—H10C | 109.5 | H14D—C14B—H14E | 109.5 |
H10B—C10—H10C | 109.5 | C13B—C14B—H14F | 109.5 |
O3—C10—H10D | 109.5 | H14D—C14B—H14F | 109.5 |
H10B—C10—H10D | 109.5 | H14E—C14B—H14F | 109.5 |
H10C—C10—H10D | 109.5 | C13B—C15B—H15D | 109.5 |
O4—C11A—C12A | 108.98 (15) | C13B—C15B—H15E | 109.5 |
O4—C11A—H11A | 109.9 | H15D—C15B—H15E | 109.5 |
C12A—C11A—H11A | 109.9 | C13B—C15B—H15F | 109.5 |
O4—C11A—H11B | 109.9 | H15D—C15B—H15F | 109.5 |
C12A—C11A—H11B | 109.9 | H15E—C15B—H15F | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4 | 0.82 | 2.35 | 2.7580 (13) | 111 |
O5—H5A···O2i | 0.82 | 2.09 | 2.8484 (13) | 153 |
C11B—H11D···O2i | 0.97 | 2.41 | 3.19 (3) | 137 |
C12A—H12A···O2i | 0.93 | 2.54 | 3.3468 (19) | 145 |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
We are grateful to Professor Erkin Botirov and Dr Abdurashid M. Karimov (Coumarins and Teprenoids Laboratory of S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan), for their methodological recommendations on the isolation of capensine.
Funding information
Funding for this research was provided by: Central Asian Drug Discovery and Development Center (grant CAM 201907).
References
Al-Ayed, A. (2011). Molecules, 16, 10292–10302. Web of Science CAS PubMed Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384. Web of Science PubMed CAS Google Scholar
Hulushe, S. T., Manyeruke, M. H., Hosten, E. C. & Kaye, P. T. (2020). Z. Kristallogr. 235, 221–222. CAS Google Scholar
Johansson, A. C., Steen, H., Ollinger, K. & Roberg, K. (2003). Cell Death Differ. 10, 1253–1259. Web of Science CrossRef PubMed CAS Google Scholar
Matkarimov, A. D., Batirov, E. Kh., Malikov, V. M. & Seitmuratov, E. (1980). Khim. Prir. Soedin. 565–569. Google Scholar
Mladenović, M., Vuković, N., Nićiforović, N., Sukdolak, S. & Solujić, S. (2009). Molecules, 14, 1495–1512. Web of Science PubMed Google Scholar
Patchett, A. A. & Nargund, R. P. (2000). Annu. Rep. Med. Chem. 35, 289–298. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Skommer, J., Wlodkowic, D., Mättö, M., Eray, M. & Pelkonen, J. (2006). Leuk. Res. 30, 322–331. Web of Science CrossRef PubMed CAS Google Scholar
Vdovin, A. D., Batirov, E. Kh., Matkarimov, A. D., Yagudaev, M. R. & Malikov, V. M. (1987). Khim. Prir. Soedin. 6, 796–799. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.