organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

8-Hy­dr­oxy-6-meth­­oxy-7-(3-methyl­but-2-en­yl­oxy)coumarin (capensine)

crossmark logo

aInstitute of Bioorganic Chemistry, UzAS, M. Ulugbek Str. 83, 100125, Tashkent, Uzbekistan, bNational University of Uzbekistan, University Str. 4, Tashkent 100174, Uzbekistan, and cKey Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People's Republic of China
*Correspondence e-mail: li_izotova@mail.ru

Edited by M. Zeller, Purdue University, USA (Received 23 April 2021; accepted 28 April 2021; online 11 May 2021)

The title coumarin derivative, C15H16O5, was isolated from the roots of Sophora japonica. The coumarin (2H-chromen-2-one) fragment is almost planar, with an r.m.s. deviation of 0.0356 Å. The carbon atom of the meth­oxy substituent is coplanar with the benzo­pyran oxa-heterocycle. The 3-methyl­but-2-en­yloxy group is disordered over two sets of sites with occupation factors of 0.920 (3) and 0.080 (3). In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into chains propagating along the [101] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarin derivatives constitute the core structure of various natural products and are a pharmacophore of numerous medicinal agents with anti­microbial, anti­fungal or anti­oxidant properties (Hulushe et al., 2020[Hulushe, S. T., Manyeruke, M. H., Hosten, E. C. & Kaye, P. T. (2020). Z. Kristallogr. 235, 221-222.]; Mladenović et al., 2009[Mladenović, M., Vuković, N., Nićiforović, N., Sukdolak, S. & Solujić, S. (2009). Molecules, 14, 1495-1512.]; Al-Ayed, 2011[Al-Ayed, A. (2011). Molecules, 16, 10292-10302.]). The properties of coumarin derivatives are also of inter­est as targets for synthetic organic chemists and serve as inter­mediates in the synthesis of new biologically active compounds. In addition, certain derivatives of coumarins are known to induce apoptosis by cytochrome C release and caspase activation (Johansson et al., 2003[Johansson, A. C., Steen, H., Ollinger, K. & Roberg, K. (2003). Cell Death Differ. 10, 1253-1259.]). A number of articles report coumarin derivative such as 7-hy­droxy-coumarin (Gourdeau et al., 2004[Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375-1384.]), 7,8-diacet­oxy-4-methyl­coumarin or 7,8-diacet­oxy-4-methyl-coumarin (Skommer et al., 2006[Skommer, J., Wlodkowic, D., Mättö, M., Eray, M. & Pelkonen, J. (2006). Leuk. Res. 30, 322-331.]; Patchett et al., 2000[Patchett, A. A. & Nargund, R. P. (2000). Annu. Rep. Med. Chem. 35, 289-298.]) with selective cytotoxicity towards cancer cells, which inhibit the growth of certain types of lung cancer cells.

The title compound, the coumarin capensine, was first isolated from Haplofyllum obtusifolium and its atomic connectivity has been established by chemical and spectroscopic methods (Matkarimov et al., 1980[Matkarimov, A. D., Batirov, E. Kh., Malikov, V. M. & Seitmuratov, E. (1980). Khim. Prir. Soedin. 565-569.]; Vdovin et al., 1987[Vdovin, A. D., Batirov, E. Kh., Matkarimov, A. D., Yagudaev, M. R. & Malikov, V. M. (1987). Khim. Prir. Soedin. 6, 796-799.]). The same coumarin was isolated from the roots of Sophora japonica. Slow evaporation from a solution in methanol yielded monoclinic crystals with space group P21/n with one crystallographically independent mol­ecule. The mol­ecular structure of the title compound is presented in Fig. 1[link]. The benzo­pyran ring system is practically planar, the r.m.s. deviation from planarity being 0.0356 Å. The meth­oxy substituent at atom C8 lies almost within the plane of the benzo­pyran oxa-heterocycle. The torsion angle C7—C6—O3—C10 is 178.18 (3). The 3-methyl­but-2-en­yloxy substituent at atom C7 is disordered over two sets of sites by a rotation around the C11—C12 bond. The two orientations are not equivalent – the site occupation factors are 0.920 (3) and 0.080 (3).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The hydroxyl group O5—H at C8 participates in a bifurcated hydrogen bond: intra­molecular and inter­molecular (Table 1[link]). The intra­molecular hydrogen bond O5—H5⋯O4 [2.758 (1) Å, 111°] closes a five-membered ring with an S(5) graph-set motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). The same hydroxyl H atom also bonds towards the ester keto oxygen atom O2 in a neighboring mol­ecule (at −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z), which, in turn, is hydrogen-bonded to the C11B (C12A) atoms of the 3-methyl­but-2-en­yloxy substituent at atom C7 of the first mol­ecule via C11B—H11D⋯O2i and C12A—H12A⋯O2i hydrogen bonds (Table 1[link]), thus connecting mol­ecules into chains propagating along the [101] direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 0.82 2.35 2.7580 (13) 111
O5—H5A⋯O2i 0.82 2.09 2.8484 (13) 153
C11B—H11D⋯O2i 0.97 2.41 3.19 (3) 137
C12A—H12A⋯O2i 0.93 2.54 3.3468 (19) 145
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound in a projection on the (101) plane. Inter­molecular hydrogen bonds are shown as dashed lines. The figure shows only the major occupancy component of the disordered 3-methyl­but-2-en­yloxy substituent at atom C7.

Synthesis and crystallization

The title compound was isolated from the roots of Sophora japonica. The roots (2.5 kg) of S. japonica were extracted with ethanol at room temperature, which afforded a light-yellow residue (228.1 g) after solvent evaporation under reduced pressure. The residue was diluted with water (1:1), washed with non-polar solvents (hexane, petroleum ether, gasoline) to remove lipophilic substances, and then subjected to sequential liquid–liquid extraction with chloro­form, ethyl acetate, and n-butanol. The obtained chloro­form fraction (30.4 g) was subjected to column chromatography on silica gel in gradient solvent systems; coumarins were isolated from the eluates obtained by repeated chromatography on a polyamide sorbent, preparative TLC on Silufol UV-254 in the following system: chloro­form–petroleum ether–ethanol (8:2:2), Rf = 0.74 and fractional crystallization from chloro­form. The yield of capensine was 55 mg (0.0022%), m.p. 139–141°C. Suitable crystals for X-ray structural analysis were obtained by slow evaporation from a solution in methanol at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Disorder was observed for the 7-(3-methyl­but-2-en­yloxy)group. The disordered atoms C11–C15 were modelled over two positions. The geometries of the two moieties were restrained to be similar to each other (SAME command of SHELXL, e.s.d. used was 0.02 Å). Uij components of disordered atoms were restrained to be similar for atoms closer to each other than 2.0 Å (SIMU restraint of SHELXL, e.s.d. used was 0.01 Å2). The occupancy ratio refined to 0.920 (3):0.080 (3).

Table 2
Experimental details

Crystal data
Chemical formula C15H16O5
Mr 276.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 11.4373 (2), 9.2045 (1), 13.9862 (2)
β (°) 112.030 (2)
V3) 1364.89 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.84
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.707, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12421, 2826, 2658
Rint 0.026
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.06
No. of reflections 2826
No. of parameters 233
No. of restraints 152
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: XP (Siemens, 1994).

8-Hydroxy-6-methoxy-7-(3-methylbut-2-enyloxy)-2H-chromen-2-one top
Crystal data top
C15H16O5F(000) = 584
Mr = 276.28Dx = 1.344 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.4373 (2) ÅCell parameters from 7342 reflections
b = 9.2045 (1) Åθ = 4.2–76.0°
c = 13.9862 (2) ŵ = 0.84 mm1
β = 112.030 (2)°T = 293 K
V = 1364.89 (4) Å3Prism, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Ruby
diffractometer
Rint = 0.026
Radiation source: Enhance (Cu) X-ray Sourceθmax = 76.0°, θmin = 5.9°
/ω scansh = 1314
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1111
Tmin = 0.707, Tmax = 1.000l = 1716
12421 measured reflections3 standard reflections every 100 reflections
2826 independent reflections intensity decay: 2.6%
2658 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.2588P]
where P = (Fo2 + 2Fc2)/3
2826 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.24 e Å3
152 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in idealized positions and refined as riding. Methyl and hydroxyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3 and OH, and 1.2 for C—H and CH2 units, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.59277 (8)0.31729 (9)0.90699 (6)0.0387 (2)
O20.71917 (11)0.16510 (11)1.02027 (8)0.0581 (3)
O30.41699 (11)0.86743 (10)0.76809 (7)0.0528 (3)
O40.34926 (8)0.63380 (10)0.63957 (6)0.0394 (2)
O50.42264 (9)0.35773 (10)0.71482 (7)0.0455 (3)
H5A0.3619720.3803200.6630220.068*
C10.68442 (12)0.29021 (14)1.00155 (10)0.0408 (3)
C20.73150 (12)0.41184 (15)1.07060 (10)0.0435 (3)
H2A0.7939280.3961021.1352980.052*
C30.68748 (11)0.54680 (14)1.04379 (9)0.0384 (3)
H3A0.7179410.6227901.0903740.046*
C40.59337 (11)0.57447 (13)0.94328 (9)0.0332 (3)
C50.54701 (12)0.71408 (13)0.90989 (9)0.0372 (3)
H5B0.5722670.7921820.9552230.045*
C60.46380 (12)0.73575 (13)0.80966 (10)0.0377 (3)
C70.42467 (11)0.61589 (13)0.74204 (9)0.0352 (3)
C80.46321 (11)0.47571 (13)0.77651 (9)0.0341 (3)
C90.55012 (11)0.45657 (12)0.87717 (9)0.0323 (3)
C100.4522 (2)0.98950 (16)0.83649 (13)0.0673 (5)
H10B0.4156531.0762670.7991590.101*
H10C0.5424430.9985980.8647520.101*
H10D0.4222710.9754720.8914000.101*
C11A0.4264 (2)0.6569 (3)0.57834 (14)0.0551 (5)0.920 (3)
H11A0.4957990.5882140.5988000.066*0.920 (3)
H11B0.4612550.7543370.5897400.066*0.920 (3)
C12A0.34670 (15)0.63675 (18)0.46744 (11)0.0470 (4)0.920 (3)
H12A0.2961200.5542660.4497430.056*0.920 (3)
C13A0.3414 (5)0.7259 (3)0.39174 (16)0.0518 (6)0.920 (3)
C14A0.4154 (3)0.8638 (3)0.4076 (2)0.0904 (8)0.920 (3)
H14A0.4531020.8707560.3568900.136*0.920 (3)
H14B0.4803850.8639600.4753300.136*0.920 (3)
H14C0.3603380.9451270.4007070.136*0.920 (3)
C15A0.2580 (2)0.6955 (5)0.28248 (15)0.0918 (9)0.920 (3)
H15A0.3082610.6881630.2410290.138*0.920 (3)
H15B0.1981250.7729940.2570100.138*0.920 (3)
H15C0.2138890.6057080.2791730.138*0.920 (3)
C11B0.412 (3)0.601 (2)0.5635 (18)0.047 (3)0.080 (3)
H11C0.5007240.5797840.6004300.057*0.080 (3)
H11D0.3729320.5159120.5226060.057*0.080 (3)
C12B0.3977 (19)0.726 (2)0.4962 (13)0.058 (3)0.080 (3)
H12B0.4382590.8111990.5273010.070*0.080 (3)
C13B0.333 (7)0.732 (4)0.3955 (17)0.061 (4)0.080 (3)
C14B0.280 (2)0.610 (3)0.3204 (19)0.068 (4)0.080 (3)
H14D0.3275700.6006560.2769110.102*0.080 (3)
H14E0.1934470.6301790.2787680.102*0.080 (3)
H14F0.2850310.5207830.3574610.102*0.080 (3)
C15B0.340 (3)0.874 (3)0.345 (2)0.083 (5)0.080 (3)
H15D0.2619230.9251820.3287730.124*0.080 (3)
H15E0.3550210.8558620.2831560.124*0.080 (3)
H15F0.4077530.9310490.3916190.124*0.080 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0444 (5)0.0305 (4)0.0309 (4)0.0043 (3)0.0022 (4)0.0006 (3)
O20.0673 (7)0.0397 (5)0.0455 (6)0.0162 (5)0.0036 (5)0.0023 (4)
O30.0732 (7)0.0304 (5)0.0369 (5)0.0063 (4)0.0001 (5)0.0015 (4)
O40.0415 (5)0.0409 (5)0.0271 (4)0.0033 (3)0.0030 (3)0.0017 (3)
O50.0540 (6)0.0333 (5)0.0322 (5)0.0014 (4)0.0034 (4)0.0061 (3)
C10.0414 (6)0.0386 (6)0.0334 (6)0.0074 (5)0.0039 (5)0.0036 (5)
C20.0403 (6)0.0451 (7)0.0312 (6)0.0027 (5)0.0024 (5)0.0007 (5)
C30.0385 (6)0.0379 (6)0.0306 (6)0.0043 (5)0.0034 (5)0.0041 (5)
C40.0343 (6)0.0331 (6)0.0280 (5)0.0024 (4)0.0067 (4)0.0009 (4)
C50.0443 (6)0.0307 (6)0.0307 (6)0.0030 (5)0.0072 (5)0.0033 (4)
C60.0442 (6)0.0295 (6)0.0335 (6)0.0008 (5)0.0080 (5)0.0017 (4)
C70.0370 (6)0.0357 (6)0.0265 (5)0.0008 (5)0.0044 (4)0.0008 (4)
C80.0363 (6)0.0325 (6)0.0278 (6)0.0012 (4)0.0054 (5)0.0038 (4)
C90.0347 (6)0.0289 (5)0.0290 (6)0.0012 (4)0.0072 (4)0.0006 (4)
C100.1004 (14)0.0298 (7)0.0472 (8)0.0073 (7)0.0003 (8)0.0003 (6)
C11A0.0470 (9)0.0785 (14)0.0333 (9)0.0019 (10)0.0077 (7)0.0064 (9)
C12A0.0507 (8)0.0515 (8)0.0348 (7)0.0030 (6)0.0115 (6)0.0035 (6)
C13A0.0497 (12)0.0699 (11)0.0369 (8)0.0131 (8)0.0174 (7)0.0060 (8)
C14A0.118 (2)0.0772 (15)0.0821 (16)0.0091 (14)0.0441 (16)0.0170 (12)
C15A0.0702 (13)0.170 (3)0.0332 (9)0.0054 (16)0.0166 (9)0.0043 (13)
C11B0.043 (5)0.060 (6)0.039 (5)0.002 (5)0.016 (4)0.006 (5)
C12B0.056 (4)0.068 (5)0.045 (4)0.005 (4)0.014 (4)0.000 (4)
C13B0.058 (5)0.075 (5)0.046 (5)0.007 (5)0.014 (5)0.001 (5)
C14B0.056 (8)0.092 (9)0.059 (8)0.013 (8)0.025 (7)0.009 (8)
C15B0.072 (9)0.098 (9)0.067 (9)0.012 (8)0.014 (8)0.008 (8)
Geometric parameters (Å, º) top
O1—C11.3675 (15)C11A—H11A0.9700
O1—C91.3794 (14)C11A—H11B0.9700
O2—C11.2143 (16)C12A—C13A1.323 (3)
O3—C61.3639 (14)C12A—H12A0.9300
O3—C101.4321 (17)C13A—C15A1.493 (3)
O4—C71.3776 (13)C13A—C14A1.495 (4)
O4—C11A1.457 (2)C14A—H14A0.9600
O4—C11B1.52 (3)C14A—H14B0.9600
O5—C81.3560 (14)C14A—H14C0.9600
O5—H5A0.8200C15A—H15A0.9600
C1—C21.4442 (18)C15A—H15B0.9600
C2—C31.3400 (19)C15A—H15C0.9600
C2—H2A0.9300C11B—C12B1.462 (17)
C3—C41.4368 (16)C11B—H11C0.9700
C3—H3A0.9300C11B—H11D0.9700
C4—C91.3907 (16)C12B—C13B1.323 (18)
C4—C51.4017 (17)C12B—H12B0.9300
C5—C61.3819 (17)C13B—C14B1.50 (2)
C5—H5B0.9300C13B—C15B1.50 (2)
C6—C71.4122 (17)C14B—H14D0.9600
C7—C81.3900 (16)C14B—H14E0.9600
C8—C91.3968 (15)C14B—H14F0.9600
C10—H10B0.9600C15B—H15D0.9600
C10—H10C0.9600C15B—H15E0.9600
C10—H10D0.9600C15B—H15F0.9600
C11A—C12A1.487 (2)
C1—O1—C9121.18 (10)H11A—C11A—H11B108.3
C6—O3—C10116.44 (10)C13A—C12A—C11A125.7 (2)
C7—O4—C11A110.36 (11)C13A—C12A—H12A117.2
C7—O4—C11B115.4 (9)C11A—C12A—H12A117.2
C8—O5—H5A109.5C12A—C13A—C15A121.5 (3)
O2—C1—O1116.84 (12)C12A—C13A—C14A123.7 (2)
O2—C1—C2125.54 (12)C15A—C13A—C14A114.8 (2)
O1—C1—C2117.62 (11)C13A—C14A—H14A109.5
C3—C2—C1121.65 (11)C13A—C14A—H14B109.5
C3—C2—H2A119.2H14A—C14A—H14B109.5
C1—C2—H2A119.2C13A—C14A—H14C109.5
C2—C3—C4120.20 (11)H14A—C14A—H14C109.5
C2—C3—H3A119.9H14B—C14A—H14C109.5
C4—C3—H3A119.9C13A—C15A—H15A109.5
C9—C4—C5119.87 (11)C13A—C15A—H15B109.5
C9—C4—C3117.47 (11)H15A—C15A—H15B109.5
C5—C4—C3122.64 (11)C13A—C15A—H15C109.5
C6—C5—C4120.05 (11)H15A—C15A—H15C109.5
C6—C5—H5B120.0H15B—C15A—H15C109.5
C4—C5—H5B120.0C12B—C11B—O4108.9 (17)
O3—C6—C5124.86 (11)C12B—C11B—H11C109.9
O3—C6—C7115.70 (11)O4—C11B—H11C109.9
C5—C6—C7119.42 (11)C12B—C11B—H11D109.9
O4—C7—C8117.73 (10)O4—C11B—H11D109.9
O4—C7—C6121.38 (10)H11C—C11B—H11D108.3
C8—C7—C6120.89 (11)C13B—C12B—C11B127 (2)
O5—C8—C7122.30 (10)C13B—C12B—H12B116.6
O5—C8—C9118.99 (10)C11B—C12B—H12B116.6
C7—C8—C9118.67 (10)C12B—C13B—C14B129 (2)
O1—C9—C4121.79 (10)C12B—C13B—C15B115 (2)
O1—C9—C8117.34 (10)C14B—C13B—C15B114 (2)
C4—C9—C8120.85 (11)C13B—C14B—H14D109.5
O3—C10—H10B109.5C13B—C14B—H14E109.5
O3—C10—H10C109.5H14D—C14B—H14E109.5
H10B—C10—H10C109.5C13B—C14B—H14F109.5
O3—C10—H10D109.5H14D—C14B—H14F109.5
H10B—C10—H10D109.5H14E—C14B—H14F109.5
H10C—C10—H10D109.5C13B—C15B—H15D109.5
O4—C11A—C12A108.98 (15)C13B—C15B—H15E109.5
O4—C11A—H11A109.9H15D—C15B—H15E109.5
C12A—C11A—H11A109.9C13B—C15B—H15F109.5
O4—C11A—H11B109.9H15D—C15B—H15F109.5
C12A—C11A—H11B109.9H15E—C15B—H15F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.822.352.7580 (13)111
O5—H5A···O2i0.822.092.8484 (13)153
C11B—H11D···O2i0.972.413.19 (3)137
C12A—H12A···O2i0.932.543.3468 (19)145
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

We are grateful to Professor Erkin Botirov and Dr Abdurashid M. Karimov (Coumarins and Teprenoids Laboratory of S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan), for their methodological recommendations on the isolation of capensine.

Funding information

Funding for this research was provided by: Central Asian Drug Discovery and Development Center (grant CAM 201907).

References

First citationAl-Ayed, A. (2011). Molecules, 16, 10292–10302.  Web of Science CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384.  Web of Science PubMed CAS Google Scholar
First citationHulushe, S. T., Manyeruke, M. H., Hosten, E. C. & Kaye, P. T. (2020). Z. Kristallogr. 235, 221–222.  CAS Google Scholar
First citationJohansson, A. C., Steen, H., Ollinger, K. & Roberg, K. (2003). Cell Death Differ. 10, 1253–1259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatkarimov, A. D., Batirov, E. Kh., Malikov, V. M. & Seitmuratov, E. (1980). Khim. Prir. Soedin. 565–569.  Google Scholar
First citationMladenović, M., Vuković, N., Nićiforović, N., Sukdolak, S. & Solujić, S. (2009). Molecules, 14, 1495–1512.  Web of Science PubMed Google Scholar
First citationPatchett, A. A. & Nargund, R. P. (2000). Annu. Rep. Med. Chem. 35, 289–298.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSkommer, J., Wlodkowic, D., Mättö, M., Eray, M. & Pelkonen, J. (2006). Leuk. Res. 30, 322–331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVdovin, A. D., Batirov, E. Kh., Matkarimov, A. D., Yagudaev, M. R. & Malikov, V. M. (1987). Khim. Prir. Soedin. 6, 796–799.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds