metal-organic compounds
Dioxidomolybdenum(VI) complex featuring a 2,4-difluoro-substituted amine bis(phenolate) ligand
aThe School of Science, Technology, and Mathematics, Ohio Northern University, 525 S. Main Street, Ada, OH 45810, USA
*Correspondence e-mail: b-wile@onu.edu
Synthetic complexes containing a cis-[MoO2]2+ core are well-established models for the molybdenum co-factor (Moco). Here we report the of such a model complex bearing a tetradentate amine bis(phenolate) ligand with fluorine substituents on the phenolate rings, namely, [2,2′-({[2-(dimethylamino)ethyl]azanediyl}bis(methylene))bis(4,6-difluorophenolato)]dioxidomolybdenum(VI)), [Mo(C18H18F4N2O2)O2]. Distortion from idealized octahedral symmetry about the Mo center is evident in the large O=Mo=O angle [108.54 (4)°] and the small N–Mo–Ophenolate angles [79.79 (4), 81.21 (3), 77.83 (3), and 84.59 (3)°]. The dihedral angle between the phenolate rings is 60.06 (4)°, and π–π stacking is observed between aromatic rings related by inversion (1 − x, 1 − y, 1 − z). The lower data-collection temperature of 150 K vs room-temperature data collection reported previously [KOWXIF; Cao et al. (2014). Transit. Met. Chem. 39, 933–937] and larger 2θ range for data collection (5.8–66.6° versus 6–54.96°) led to a structure with lower R1 and ωR2 values (0.019 and 0.049 vs 0.0310 and 0.0566 for KOWXIF). Comparison of the metrical parameters with KOWXIF suggests that this dataset offers a more realistic depiction of bonding within the MoVI=O moiety.
Keywords: crystal structure; molybdenum; oxo; Moco.
CCDC reference: 2083619
Structure description
Molybdenum-containing metalloenzymes are abundant and serve as excellent motivation for biomimetic catalyst development. The relevance of xanthine oxidase, DMSO reductase, sulfite oxidase to oxygen atom transfer and proton-coupled electron-transfer reactions have driven interest in related mononuclear Mo complexes for generating H2 or expanding opportunities for storage of energy generated by increasingly efficient solar cells. The native enzymes contain a molybdenum cofactor (Moco) in which the MoVI=O moiety is supported by dithiolene-containing molybdopterin ligands (Kisker et al., 1997). A robust molybdenum–oxo complex bearing a pentadentate pyridyl ligand was notably shown to catalytically generate H2 from water at a low overpotential (Karunadasa et al., 2010). Related molybdenum–oxo complexes featuring an amine bis(phenolate) moiety have been similarly shown to promote H2 generation (Cao et al., 2014) and oxygen atom transfer (Maurya et al., 2016). Insight into the structural features that enable such activity at the Mo=O moiety are thus an important component of iterating the design of these species for use as sustainable aqueous catalysts.
The Mo complex reported here (2, Fig. 1) is chemically identical to that reported by Cao et al. (2014, KOWXIF). The lower collection temperature (150 K versus room temperature in KOWXIF) and larger 2θ range for data collection (5.8–66.6° versus 6–54.96° in the previous report) led to a structure solution with lower R1 and ωR2 values (0.019 and 0.049 versus 0.0310 and 0.0566 in KOWXIF). Slight differences in the bond lengths for the compound in these structures warrant further comment and may be of interest from a mechanistic perspective. For example, it is generally accepted that an Mo=O bond in the cis-[MoO2]2+ core of DMSO reductase model compounds is formally strengthened (consistent with Mo≡O) during oxygen atom transfer (Enemark, et al., 2004).
Both structures have P space-group symmetry, though a, c, β, and γ were different by ±3 s.u. While the Mo—O(phenolate) and Mo—N bonds in this structure are nearly identical to those reported by Cao et al., the Mo=O bond lengths reported here are notably longer than those in KOWXIF and are in line with expectations for related MoVI–oxo species (Enemark, et al., 2004). However, these differences in bond length are within the accuracy limits for light atoms imposed by the spherical atom scattering factor approximation (e.g. Dawson, 1964). Relevant lengths and angles for both are summarized in Table 1. Differences in the metrical parameters for these structures suggest that the model presented here gives a better representation of the bonding for 2, when compared with other MoVI oxo species.
No hydrogen bonding was observed, though short contacts exist between inversion-related molecules contained in the ortho carbons C16 and C18i [symmetry code: (i) 1 − x, 1 − y, 1 − z] in close proximity [3.2807 (15) Å, i.e. ∼0.12 Å closer than the sum of the vdW radii]. Close contact is noted for the para F3 and proximal meta C16ii [symmetry code: (ii) 2 − x, 2 − y, 1 − z] of an adjacent inversion-related molecule [3.1622 (14) Å, i.e. ∼0.01 Å closer than the sum of the vdW radii]. This marginally short contact is consistent with π–π stacking between the phenolate rings related by the inversion center; this interaction is shown in Fig. 2. A similar, though much more pronounced contact is noted between ortho F2 and the amine methyl group, C3iii [symmetry code: (iii) −x, −y, −z] [2.9229 (13) Å, ∼0.247 Å closer than the sum of the vdW radii]. Each MoVI=O moiety lies above planes defined by the amine bis(phenolate) ligand and the other oxo [0.3037 (4) Å above the plane defined by O1, O2, O4, and N2; 0.2696 (4) Å above the plane defined by O1, O2, O3, and N1]. This distortion from an ideal octahedral geometry is consistent with related MoVI oxo species, and is evident in the large O3—Mo1—O4 bond angle [108.54 (4)°]. The dihedral between aromatic rings was found to be 60.06 (4)°. The torsion angle along the diamine N1—C1—C2—N2 [−55.84 (11)°] is consistent with the syn conformation of amine donors within the unstrained five-membered ring formed upon chelation.
The orientation of one phenolate ring brings theSynthesis and crystallization
The ligand H2ONNOF (1) was prepared by the method reported previously (Graziano et al., 2019). The Mo complex (2) was prepared using a modified version of the method reported by Lehtonen & Sillanpää (2005). The reaction scheme is shown in Fig. 3. MoO2(acac)2 (0.330 g, 1.01 mmol) and the ligand H2ONNOF (1; 0.373 g, 1.00 mmol) were combined in a 20 ml scintillation vial with a PTFE-coated stir bar and suspended in 10 ml of anhydrous methanol. The reaction mixture was left to stir for 4 h at 295 K, at which time solvent and other volatiles were removed in vacuo to yield a yellow solid (0.500 g, 1.00 mmol, >99%). The product was purified by on silica using an increasing linear gradient of dichloromethane in acetone as the After removing the solvent and other volatiles, single crystals suitable for diffraction studies were obtained by slow evaporation from a concentrated solution of acetone. Characterization data for this compound match those previously reported by Cao et al. (2014). M.p. = 463–467 K.
Refinement
Crystal data, data collection and structure . No disorder or solvent were present.
details are summarized in Table 2
|
Structural data
CCDC reference: 2083619
https://doi.org/10.1107/S2414314621005162/pk4033sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621005162/pk4033Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020).[Mo(C18H18F4N2O2)O2] | Z = 2 |
Mr = 498.28 | F(000) = 500 |
Triclinic, P1 | Dx = 1.811 Mg m−3 |
a = 7.3179 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.0093 (4) Å | Cell parameters from 9173 reflections |
c = 17.5057 (9) Å | θ = 2.3–33.2° |
α = 91.8513 (18)° | µ = 0.79 mm−1 |
β = 92.9102 (18)° | T = 150 K |
γ = 116.6842 (16)° | Block, orange |
V = 913.82 (8) Å3 | 0.26 × 0.24 × 0.15 mm |
Bruker AXS D8 Quest CMOS diffractometer | 7013 independent reflections |
Radiation source: fine focus sealed tube X-ray source | 6541 reflections with I > 2σ(I) |
Triumph curved graphite crystal monochromator | Rint = 0.027 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 33.3°, θmin = 2.9° |
ω and phi scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.702, Tmax = 0.747 | l = −26→25 |
47859 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.049 | w = 1/[σ2(Fo2) + (0.0194P)2 + 0.4598P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.001 |
7013 reflections | Δρmax = 0.92 e Å−3 |
266 parameters | Δρmin = −0.48 e Å−3 |
0 restraints | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0171 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.35403 (2) | 0.27852 (2) | 0.23176 (2) | 0.01088 (3) | |
F1 | 0.30483 (14) | 0.85179 (12) | −0.04843 (5) | 0.03105 (18) | |
F2 | 0.23146 (13) | 0.24459 (11) | −0.02051 (4) | 0.02510 (15) | |
F3 | 0.77983 (14) | 0.98402 (12) | 0.50141 (5) | 0.0357 (2) | |
F4 | 0.74459 (12) | 0.40003 (12) | 0.42642 (5) | 0.02571 (15) | |
O2 | 0.24235 (12) | 0.28426 (11) | 0.13025 (4) | 0.01475 (13) | |
O1 | 0.37637 (12) | 0.30006 (11) | 0.34515 (4) | 0.01499 (13) | |
O3 | 0.39279 (13) | 0.08489 (11) | 0.21952 (5) | 0.01831 (15) | |
O4 | 0.58252 (12) | 0.47327 (11) | 0.22506 (5) | 0.01743 (14) | |
N1 | 0.18199 (13) | 0.46786 (12) | 0.25408 (5) | 0.01204 (14) | |
N2 | 0.00004 (13) | 0.06353 (12) | 0.24545 (5) | 0.01375 (15) | |
C1 | −0.03936 (15) | 0.35240 (15) | 0.22876 (6) | 0.01565 (18) | |
H1A | −0.055488 | 0.333606 | 0.172183 | 0.019* | |
H1B | −0.118429 | 0.419086 | 0.244487 | 0.019* | |
C2 | −0.12266 (16) | 0.16343 (15) | 0.26393 (7) | 0.01739 (18) | |
H2A | −0.119764 | 0.181957 | 0.320249 | 0.021* | |
H2B | −0.267036 | 0.086095 | 0.244251 | 0.021* | |
C3 | −0.08879 (17) | −0.05342 (15) | 0.17262 (6) | 0.01864 (19) | |
H3A | −0.099801 | 0.024782 | 0.132488 | 0.028* | |
H3B | −0.225312 | −0.153590 | 0.180273 | 0.028* | |
H3C | 0.000294 | −0.108430 | 0.157166 | 0.028* | |
C4 | −0.01342 (18) | −0.06387 (16) | 0.30686 (7) | 0.0197 (2) | |
H4A | −0.157319 | −0.152867 | 0.311224 | 0.029* | |
H4B | 0.043768 | 0.009500 | 0.355647 | 0.029* | |
H4C | 0.064405 | −0.132458 | 0.294289 | 0.029* | |
C5 | 0.27534 (17) | 0.63562 (14) | 0.20820 (6) | 0.01565 (18) | |
H5A | 0.419181 | 0.712021 | 0.228692 | 0.019* | |
H5B | 0.201603 | 0.711773 | 0.216119 | 0.019* | |
C6 | 0.27467 (16) | 0.59822 (14) | 0.12285 (6) | 0.01432 (17) | |
C7 | 0.29093 (17) | 0.74157 (16) | 0.07532 (6) | 0.01792 (19) | |
H7 | 0.303492 | 0.856995 | 0.096826 | 0.021* | |
C8 | 0.28844 (18) | 0.71284 (17) | −0.00284 (7) | 0.0202 (2) | |
C9 | 0.26776 (18) | 0.54719 (17) | −0.03773 (6) | 0.0203 (2) | |
H9 | 0.265023 | 0.529975 | −0.091799 | 0.024* | |
C10 | 0.25135 (17) | 0.40861 (16) | 0.01002 (6) | 0.01692 (18) | |
C11 | 0.25771 (15) | 0.43022 (14) | 0.08992 (6) | 0.01363 (16) | |
C12 | 0.19506 (17) | 0.53698 (15) | 0.33577 (6) | 0.01572 (18) | |
H12A | 0.159066 | 0.642284 | 0.336701 | 0.019* | |
H12B | 0.091704 | 0.435217 | 0.363450 | 0.019* | |
C13 | 0.40118 (16) | 0.60117 (15) | 0.37784 (6) | 0.01528 (17) | |
C14 | 0.50261 (19) | 0.77546 (16) | 0.41804 (6) | 0.0204 (2) | |
H14 | 0.449901 | 0.864217 | 0.415639 | 0.024* | |
C15 | 0.6818 (2) | 0.81511 (17) | 0.46142 (7) | 0.0238 (2) | |
C16 | 0.76763 (18) | 0.69352 (18) | 0.46549 (7) | 0.0229 (2) | |
H16 | 0.892175 | 0.725565 | 0.495342 | 0.028* | |
C17 | 0.66479 (17) | 0.52275 (16) | 0.42429 (6) | 0.01820 (19) | |
C18 | 0.47924 (16) | 0.47139 (14) | 0.38146 (6) | 0.01454 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.01022 (4) | 0.01143 (4) | 0.01228 (4) | 0.00609 (3) | 0.00069 (3) | 0.00012 (3) |
F1 | 0.0408 (5) | 0.0298 (4) | 0.0230 (4) | 0.0155 (4) | 0.0016 (3) | 0.0148 (3) |
F2 | 0.0352 (4) | 0.0255 (4) | 0.0153 (3) | 0.0151 (3) | −0.0014 (3) | −0.0060 (3) |
F3 | 0.0359 (5) | 0.0233 (4) | 0.0305 (4) | −0.0005 (3) | −0.0042 (3) | −0.0120 (3) |
F4 | 0.0204 (3) | 0.0338 (4) | 0.0257 (4) | 0.0149 (3) | −0.0020 (3) | 0.0034 (3) |
O2 | 0.0190 (3) | 0.0142 (3) | 0.0122 (3) | 0.0086 (3) | 0.0002 (3) | 0.0003 (2) |
O1 | 0.0168 (3) | 0.0141 (3) | 0.0131 (3) | 0.0064 (3) | −0.0015 (3) | 0.0004 (2) |
O3 | 0.0197 (4) | 0.0168 (3) | 0.0226 (4) | 0.0121 (3) | 0.0000 (3) | −0.0005 (3) |
O4 | 0.0132 (3) | 0.0168 (3) | 0.0207 (4) | 0.0052 (3) | 0.0030 (3) | 0.0011 (3) |
N1 | 0.0128 (3) | 0.0130 (3) | 0.0117 (3) | 0.0070 (3) | 0.0008 (3) | 0.0003 (3) |
N2 | 0.0130 (4) | 0.0134 (4) | 0.0146 (4) | 0.0056 (3) | 0.0011 (3) | 0.0011 (3) |
C1 | 0.0116 (4) | 0.0176 (4) | 0.0199 (5) | 0.0088 (3) | −0.0005 (3) | 0.0006 (3) |
C2 | 0.0114 (4) | 0.0181 (4) | 0.0228 (5) | 0.0066 (3) | 0.0032 (3) | 0.0013 (4) |
C3 | 0.0171 (4) | 0.0155 (4) | 0.0183 (5) | 0.0035 (4) | −0.0019 (4) | −0.0024 (4) |
C4 | 0.0220 (5) | 0.0165 (4) | 0.0196 (5) | 0.0073 (4) | 0.0040 (4) | 0.0067 (4) |
C5 | 0.0218 (5) | 0.0123 (4) | 0.0142 (4) | 0.0088 (4) | 0.0018 (3) | 0.0012 (3) |
C6 | 0.0147 (4) | 0.0148 (4) | 0.0136 (4) | 0.0067 (3) | 0.0007 (3) | 0.0019 (3) |
C7 | 0.0195 (5) | 0.0169 (4) | 0.0180 (5) | 0.0086 (4) | 0.0009 (4) | 0.0047 (4) |
C8 | 0.0194 (5) | 0.0226 (5) | 0.0178 (5) | 0.0084 (4) | 0.0009 (4) | 0.0086 (4) |
C9 | 0.0187 (5) | 0.0276 (5) | 0.0132 (4) | 0.0092 (4) | 0.0004 (4) | 0.0041 (4) |
C10 | 0.0165 (4) | 0.0203 (5) | 0.0133 (4) | 0.0080 (4) | −0.0004 (3) | −0.0012 (3) |
C11 | 0.0130 (4) | 0.0159 (4) | 0.0119 (4) | 0.0065 (3) | 0.0002 (3) | 0.0009 (3) |
C12 | 0.0183 (4) | 0.0188 (4) | 0.0129 (4) | 0.0108 (4) | 0.0025 (3) | −0.0004 (3) |
C13 | 0.0177 (4) | 0.0154 (4) | 0.0111 (4) | 0.0060 (3) | 0.0020 (3) | 0.0001 (3) |
C14 | 0.0250 (5) | 0.0170 (5) | 0.0155 (5) | 0.0062 (4) | 0.0032 (4) | −0.0019 (4) |
C15 | 0.0247 (5) | 0.0192 (5) | 0.0152 (5) | −0.0006 (4) | 0.0014 (4) | −0.0041 (4) |
C16 | 0.0177 (5) | 0.0267 (5) | 0.0138 (5) | 0.0008 (4) | −0.0008 (4) | 0.0007 (4) |
C17 | 0.0149 (4) | 0.0230 (5) | 0.0137 (4) | 0.0059 (4) | 0.0006 (3) | 0.0030 (4) |
C18 | 0.0146 (4) | 0.0158 (4) | 0.0107 (4) | 0.0046 (3) | 0.0007 (3) | 0.0011 (3) |
Mo1—O3 | 1.7062 (8) | C4—H4A | 0.9800 |
Mo1—O4 | 1.7123 (8) | C4—H4B | 0.9800 |
Mo1—O2 | 1.9287 (8) | C4—H4C | 0.9800 |
Mo1—O1 | 1.9788 (8) | C5—C6 | 1.5137 (15) |
Mo1—N1 | 2.4008 (8) | C5—H5A | 0.9900 |
Mo1—N2 | 2.4117 (9) | C5—H5B | 0.9900 |
F1—C8 | 1.3554 (13) | C6—C11 | 1.3968 (14) |
F2—C10 | 1.3444 (13) | C6—C7 | 1.4048 (15) |
F3—C15 | 1.3605 (14) | C7—C8 | 1.3779 (16) |
F4—C17 | 1.3506 (14) | C7—H7 | 0.9500 |
O2—C11 | 1.3494 (12) | C8—C9 | 1.3835 (18) |
O1—C18 | 1.3494 (12) | C9—C10 | 1.3767 (16) |
N1—C5 | 1.4894 (13) | C9—H9 | 0.9500 |
N1—C1 | 1.4936 (13) | C10—C11 | 1.3997 (14) |
N1—C12 | 1.4994 (13) | C12—C13 | 1.4993 (15) |
N2—C4 | 1.4825 (14) | C12—H12A | 0.9900 |
N2—C2 | 1.4863 (14) | C12—H12B | 0.9900 |
N2—C3 | 1.4890 (14) | C13—C18 | 1.3945 (15) |
C1—C2 | 1.5202 (15) | C13—C14 | 1.3956 (15) |
C1—H1A | 0.9900 | C14—C15 | 1.3809 (18) |
C1—H1B | 0.9900 | C14—H14 | 0.9500 |
C2—H2A | 0.9900 | C15—C16 | 1.377 (2) |
C2—H2B | 0.9900 | C16—C17 | 1.3835 (16) |
C3—H3A | 0.9800 | C16—H16 | 0.9500 |
C3—H3B | 0.9800 | C17—C18 | 1.3965 (15) |
C3—H3C | 0.9800 | ||
O3—Mo1—O4 | 108.54 (4) | H4A—C4—H4C | 109.5 |
O3—Mo1—O2 | 99.96 (4) | H4B—C4—H4C | 109.5 |
O4—Mo1—O2 | 95.43 (4) | N1—C5—C6 | 116.27 (8) |
O3—Mo1—O1 | 98.19 (4) | N1—C5—H5A | 108.2 |
O4—Mo1—O1 | 93.41 (4) | C6—C5—H5A | 108.2 |
O2—Mo1—O1 | 156.09 (3) | N1—C5—H5B | 108.2 |
O3—Mo1—N1 | 160.10 (4) | C6—C5—H5B | 108.2 |
O4—Mo1—N1 | 91.35 (3) | H5A—C5—H5B | 107.4 |
O2—Mo1—N1 | 77.83 (3) | C11—C6—C7 | 119.31 (10) |
O1—Mo1—N1 | 79.79 (3) | C11—C6—C5 | 123.44 (9) |
O3—Mo1—N2 | 86.27 (4) | C7—C6—C5 | 117.24 (9) |
O4—Mo1—N2 | 165.19 (3) | C8—C7—C6 | 119.25 (10) |
O2—Mo1—N2 | 81.21 (3) | C8—C7—H7 | 120.4 |
O1—Mo1—N2 | 84.59 (3) | C6—C7—H7 | 120.4 |
N1—Mo1—N2 | 73.84 (3) | F1—C8—C7 | 119.02 (11) |
C11—O2—Mo1 | 130.56 (7) | F1—C8—C9 | 117.80 (11) |
C18—O1—Mo1 | 118.88 (6) | C7—C8—C9 | 123.17 (10) |
C5—N1—C1 | 110.73 (8) | C10—C9—C8 | 116.50 (10) |
C5—N1—C12 | 107.20 (8) | C10—C9—H9 | 121.7 |
C1—N1—C12 | 107.89 (8) | C8—C9—H9 | 121.7 |
C5—N1—Mo1 | 108.18 (6) | F2—C10—C9 | 119.27 (10) |
C1—N1—Mo1 | 107.55 (6) | F2—C10—C11 | 117.50 (10) |
C12—N1—Mo1 | 115.29 (6) | C9—C10—C11 | 123.23 (10) |
C4—N2—C2 | 109.15 (9) | O2—C11—C6 | 124.11 (9) |
C4—N2—C3 | 107.68 (9) | O2—C11—C10 | 117.37 (9) |
C2—N2—C3 | 109.18 (8) | C6—C11—C10 | 118.50 (9) |
C4—N2—Mo1 | 109.89 (6) | C13—C12—N1 | 114.57 (8) |
C2—N2—Mo1 | 111.74 (6) | C13—C12—H12A | 108.6 |
C3—N2—Mo1 | 109.11 (6) | N1—C12—H12A | 108.6 |
N1—C1—C2 | 110.46 (8) | C13—C12—H12B | 108.6 |
N1—C1—H1A | 109.6 | N1—C12—H12B | 108.6 |
C2—C1—H1A | 109.6 | H12A—C12—H12B | 107.6 |
N1—C1—H1B | 109.6 | C18—C13—C14 | 120.78 (10) |
C2—C1—H1B | 109.6 | C18—C13—C12 | 116.82 (9) |
H1A—C1—H1B | 108.1 | C14—C13—C12 | 122.11 (10) |
N2—C2—C1 | 111.22 (9) | C15—C14—C13 | 118.05 (11) |
N2—C2—H2A | 109.4 | C15—C14—H14 | 121.0 |
C1—C2—H2A | 109.4 | C13—C14—H14 | 121.0 |
N2—C2—H2B | 109.4 | F3—C15—C16 | 118.40 (11) |
C1—C2—H2B | 109.4 | F3—C15—C14 | 118.20 (12) |
H2A—C2—H2B | 108.0 | C16—C15—C14 | 123.39 (11) |
N2—C3—H3A | 109.5 | C15—C16—C17 | 117.20 (11) |
N2—C3—H3B | 109.5 | C15—C16—H16 | 121.4 |
H3A—C3—H3B | 109.5 | C17—C16—H16 | 121.4 |
N2—C3—H3C | 109.5 | F4—C17—C16 | 119.01 (10) |
H3A—C3—H3C | 109.5 | F4—C17—C18 | 118.73 (10) |
H3B—C3—H3C | 109.5 | C16—C17—C18 | 122.26 (11) |
N2—C4—H4A | 109.5 | O1—C18—C13 | 120.64 (9) |
N2—C4—H4B | 109.5 | O1—C18—C17 | 121.10 (10) |
H4A—C4—H4B | 109.5 | C13—C18—C17 | 118.26 (10) |
N2—C4—H4C | 109.5 | ||
C5—N1—C1—C2 | 168.55 (8) | C9—C10—C11—O2 | −179.23 (10) |
C12—N1—C1—C2 | −74.42 (10) | F2—C10—C11—C6 | −178.89 (9) |
Mo1—N1—C1—C2 | 50.54 (9) | C9—C10—C11—C6 | 2.21 (16) |
C4—N2—C2—C1 | 152.57 (9) | C5—N1—C12—C13 | −79.49 (11) |
C3—N2—C2—C1 | −89.97 (10) | C1—N1—C12—C13 | 161.21 (9) |
Mo1—N2—C2—C1 | 30.82 (10) | Mo1—N1—C12—C13 | 41.02 (11) |
N1—C1—C2—N2 | −55.84 (11) | N1—C12—C13—C18 | −57.38 (13) |
C1—N1—C5—C6 | −61.33 (11) | N1—C12—C13—C14 | 128.74 (11) |
C12—N1—C5—C6 | −178.78 (9) | C18—C13—C14—C15 | −0.08 (16) |
Mo1—N1—C5—C6 | 56.29 (10) | C12—C13—C14—C15 | 173.57 (10) |
N1—C5—C6—C11 | −21.87 (15) | C13—C14—C15—F3 | −179.23 (10) |
N1—C5—C6—C7 | 157.75 (9) | C13—C14—C15—C16 | 1.60 (18) |
C11—C6—C7—C8 | 0.42 (16) | F3—C15—C16—C17 | 179.98 (11) |
C5—C6—C7—C8 | −179.21 (10) | C14—C15—C16—C17 | −0.85 (18) |
C6—C7—C8—F1 | −179.79 (10) | C15—C16—C17—F4 | 179.60 (10) |
C6—C7—C8—C9 | 0.90 (18) | C15—C16—C17—C18 | −1.46 (17) |
F1—C8—C9—C10 | −179.97 (10) | Mo1—O1—C18—C13 | 68.58 (11) |
C7—C8—C9—C10 | −0.66 (17) | Mo1—O1—C18—C17 | −112.20 (9) |
C8—C9—C10—F2 | −179.82 (10) | C14—C13—C18—O1 | 177.19 (10) |
C8—C9—C10—C11 | −0.93 (17) | C12—C13—C18—O1 | 3.22 (14) |
Mo1—O2—C11—C6 | −31.59 (15) | C14—C13—C18—C17 | −2.06 (16) |
Mo1—O2—C11—C10 | 149.93 (8) | C12—C13—C18—C17 | −176.03 (9) |
C7—C6—C11—O2 | 179.65 (10) | F4—C17—C18—O1 | 2.58 (15) |
C5—C6—C11—O2 | −0.74 (16) | C16—C17—C18—O1 | −176.36 (10) |
C7—C6—C11—C10 | −1.89 (15) | F4—C17—C18—C13 | −178.18 (9) |
C5—C6—C11—C10 | 177.72 (10) | C16—C17—C18—C13 | 2.88 (16) |
F2—C10—C11—O2 | −0.32 (14) |
This work (CLB-1-87) | KOWXIF (Cao et al., 2014) | ||
Mo—O1 | 1.9788 (8) | 1.976 (3) | |
Mo—O2 | 1.9287 (8) | 1.919 (3) | |
Mo—O3 | 1.7062 (8) | 1.693 (2) | difference greater than ±3 s.u. |
Mo—O4 | 1.7123 (7) | 1.700 (3) | difference greater than ±3 s.u. |
Mo—N1 | 2.4008 (8) | 2.395 (3) | |
Mo—N2 | 2.4117 (9) | 2.412 (3) | |
O1—Mo1—O3 | 98.19 (4) | 98.6 (1) | |
O1—Mo1—O4 | 93.41 (4) | 93.4 (1) | |
O1—Mo1—N1 | 79.79 (3) | 79.7 (1) | |
O1—Mo1—N2 | 84.59 (3) | 84.5 (1) | |
O2—Mo1—O3 | 99.96 (4) | 99.9 (1) | |
O2—Mo1—O4 | 95.43 (4) | 95.8 (1) | |
O2—Mo1—N1 | 77.83 (3) | 77.5 (1) | |
O2—Mo1—N2 | 81.21 (3) | 81.0 (1) | |
O3—Mo1—O4 | 108.54 (4) | 108.2 (1) | |
N1—Mo1—N2 | 73.84 (3) | 73.8 (1) | |
N1—C1—C2—N2 | -55.84 (11) | 56.4 (4) |
Acknowledgements
Data collection and
were conducted by Matthias Zeller (Purdue University). The authors wish to thank Brendan Graziano for helpful discussions.Funding information
This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). Acknowledgment is made to the donors of The American Chemical Society Petroleum Research Fund for support of this research (grant No. 56549-UR3). Partial funding for this project was provided by the Getty College of Arts and Sciences at Ohio Northern University.
References
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Cao, J.-P., Zhao, J.-X., Lu, H.-X. & Zhan, S.-Z. (2014). Transition Met. Chem. 39, 933–937. CSD CrossRef CAS Google Scholar
Dawson, B. (1964). Acta Cryst. 17, 990–996. CrossRef IUCr Journals Web of Science Google Scholar
Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200. Web of Science CrossRef PubMed CAS Google Scholar
Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185–196. Web of Science CSD CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Karunadasa, H. I., Chang, C. J. & Long, J. R. (2010). Nature, 464, 1329–1333. CSD CrossRef CAS PubMed Google Scholar
Kisker, C., Schindelin, H. & Rees, D. C. (1997). Annu. Rev. Biochem. 66, 233–267. CrossRef CAS PubMed Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lehtonen, A. & Sillanpää, R. (2005). Polyhedron, 24, 257–265. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maurya, M. R., Uprety, B. & Avecilla, F. (2016). Eur. J. Inorg. Chem. pp. 4802–4813. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.