metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Dioxidomolybdenum(VI) complex featuring a 2,4-di­fluoro-substituted amine bis­­(phenolate) ligand

crossmark logo

aThe School of Science, Technology, and Mathematics, Ohio Northern University, 525 S. Main Street, Ada, OH 45810, USA
*Correspondence e-mail: b-wile@onu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 1 April 2021; accepted 13 May 2021; online 21 May 2021)

Synthetic complexes containing a cis-[MoO2]2+ core are well-established models for the molybdenum co-factor (Moco). Here we report the crystal structure of such a model complex bearing a tetra­dentate amine bis­(phenolate) ligand with fluorine substituents on the phenolate rings, namely, [2,2′-({[2-(di­methyl­amino)­eth­yl]aza­nedi­yl}bis­(methyl­ene))bis­(4,6-di­fluoro­phenolato)]dioxidomolybden­um(VI)), [Mo(C18H18F4N2O2)O2]. Distortion from idealized octa­hedral symmetry about the Mo center is evident in the large O=Mo=O angle [108.54 (4)°] and the small N–Mo–Ophenolate angles [79.79 (4), 81.21 (3), 77.83 (3), and 84.59 (3)°]. The dihedral angle between the phenolate rings is 60.06 (4)°, and ππ stacking is observed between aromatic rings related by inversion (1 − x, 1 − y, 1 − z). The lower data-collection temperature of 150 K vs room-temperature data collection reported previously [KOWXIF; Cao et al. (2014[Cao, J.-P., Zhao, J.-X., Lu, H.-X. & Zhan, S.-Z. (2014). Transition Met. Chem. 39, 933-937.]). Transit. Met. Chem. 39, 933–937] and larger 2θ range for data collection (5.8–66.6° versus 6–54.96°) led to a structure with lower R1 and ωR2 values (0.019 and 0.049 vs 0.0310 and 0.0566 for KOWXIF). Comparison of the metrical parameters with KOWXIF suggests that this dataset offers a more realistic depiction of bonding within the MoVI=O moiety.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Molybdenum-containing metalloenzymes are abundant and serve as excellent motivation for biomimetic catalyst development. The relevance of xanthine oxidase, DMSO reductase, sulfite oxidase to oxygen atom transfer and proton-coupled electron-transfer reactions have driven inter­est in related mononuclear Mo complexes for generating H2 or expanding opportunities for storage of energy generated by increasingly efficient solar cells. The native enzymes contain a molybdenum cofactor (Moco) in which the MoVI=O moiety is supported by di­thiol­ene-containing molybdopterin ligands (Kisker et al., 1997[Kisker, C., Schindelin, H. & Rees, D. C. (1997). Annu. Rev. Biochem. 66, 233-267.]). A robust molybdenum–oxo complex bearing a penta­dentate pyridyl ligand was notably shown to catalytically generate H2 from water at a low overpotential (Karunadasa et al., 2010[Karunadasa, H. I., Chang, C. J. & Long, J. R. (2010). Nature, 464, 1329-1333.]). Related molybdenum–oxo complexes featuring an amine bis­(phenolate) moiety have been similarly shown to promote H2 generation (Cao et al., 2014[Cao, J.-P., Zhao, J.-X., Lu, H.-X. & Zhan, S.-Z. (2014). Transition Met. Chem. 39, 933-937.]) and oxygen atom transfer (Maurya et al., 2016[Maurya, M. R., Uprety, B. & Avecilla, F. (2016). Eur. J. Inorg. Chem. pp. 4802-4813.]). Insight into the structural features that enable such activity at the Mo=O moiety are thus an important component of iterating the design of these species for use as sustainable aqueous catalysts.

The Mo complex reported here (2, Fig. 1[link]) is chemically identical to that reported by Cao et al. (2014[Cao, J.-P., Zhao, J.-X., Lu, H.-X. & Zhan, S.-Z. (2014). Transition Met. Chem. 39, 933-937.], KOWXIF). The lower collection temperature (150 K versus room temperature in KOWXIF) and larger 2θ range for data collection (5.8–66.6° versus 6–54.96° in the previous report) led to a structure solution with lower R1 and ωR2 values (0.019 and 0.049 versus 0.0310 and 0.0566 in KOWXIF). Slight differences in the bond lengths for the compound in these structures warrant further comment and may be of inter­est from a mechanistic perspective. For example, it is generally accepted that an Mo=O bond in the cis-[MoO2]2+ core of DMSO reductase model compounds is formally strengthened (consistent with Mo≡O) during oxygen atom transfer (Enemark, et al., 2004[Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175-1200.]).

[Figure 1]
Figure 1
Mol­ecular structure of 2 with 50% displacement ellipsoids and the numbering scheme for non-H atoms.

Both structures have P[\overline{1}] space-group symmetry, though a, c, β, and γ were different by ±3 s.u. While the Mo—O(phenolate) and Mo—N bonds in this structure are nearly identical to those reported by Cao et al., the Mo=O bond lengths reported here are notably longer than those in KOWXIF and are in line with expectations for related MoVI–oxo species (Enemark, et al., 2004[Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175-1200.]). However, these differences in bond length are within the accuracy limits for light atoms imposed by the spherical atom scattering factor approximation (e.g. Dawson, 1964[Dawson, B. (1964). Acta Cryst. 17, 990-996.]). Relevant lengths and angles for both are summarized in Table 1[link]. Differences in the metrical parameters for these structures suggest that the model presented here gives a better representation of the bonding for 2, when compared with other MoVI oxo species.

Table 1
Comparison of lengths and angles between this work and previous report

  This work (CLB-1–87) KOWXIF (Cao et al., 2014[Cao, J.-P., Zhao, J.-X., Lu, H.-X. & Zhan, S.-Z. (2014). Transition Met. Chem. 39, 933-937.])  
Mo—O1 1.9788 (8) 1.976 (3)  
Mo—O2 1.9287 (8) 1.919 (3)  
Mo—O3 1.7062 (8) 1.693 (2) difference greater than ±3 s.u.
Mo—O4 1.7123 (7) 1.700 (3) difference greater than ±3 s.u.
Mo—N1 2.4008 (8) 2.395 (3)  
Mo—N2 2.4117 (9) 2.412 (3)  
       
O1—Mo1—O3 98.19 (4) 98.6 (1)  
O1—Mo1—O4 93.41 (4) 93.4 (1)  
O1—Mo1—N1 79.79 (3) 79.7 (1)  
O1—Mo1—N2 84.59 (3) 84.5 (1)  
O2—Mo1—O3 99.96 (4) 99.9 (1)  
O2—Mo1—O4 95.43 (4) 95.8 (1)  
O2—Mo1—N1 77.83 (3) 77.5 (1)  
O2—Mo1—N2 81.21 (3) 81.0 (1)  
O3—Mo1—O4 108.54 (4) 108.2 (1)  
N1—Mo1—N2 73.84 (3) 73.8 (1)  
       
N1—C1—C2—N2 −55.84 (11) 56.4 (4)  

No hydrogen bonding was observed, though short contacts exist between inversion-related mol­ecules contained in the unit cell. The orientation of one phenolate ring brings the ortho carbons C16 and C18i [symmetry code: (i) 1 − x, 1 − y, 1 − z] in close proximity [3.2807 (15) Å, i.e. ∼0.12 Å closer than the sum of the vdW radii]. Close contact is noted for the para F3 and proximal meta C16ii [symmetry code: (ii) 2 − x, 2 − y, 1 − z] of an adjacent inversion-related mol­ecule [3.1622 (14) Å, i.e. ∼0.01 Å closer than the sum of the vdW radii]. This marginally short contact is consistent with ππ stacking between the phenolate rings related by the inversion center; this inter­action is shown in Fig. 2[link]. A similar, though much more pronounced contact is noted between ortho F2 and the amine methyl group, C3iii [symmetry code: (iii) −x, −y, −z] [2.9229 (13) Å, ∼0.247 Å closer than the sum of the vdW radii]. Each MoVI=O moiety lies above planes defined by the amine bis­(phenolate) ligand and the other oxo [0.3037 (4) Å above the plane defined by O1, O2, O4, and N2; 0.2696 (4) Å above the plane defined by O1, O2, O3, and N1]. This distortion from an ideal octa­hedral geometry is consistent with related MoVI oxo species, and is evident in the large O3—Mo1—O4 bond angle [108.54 (4)°]. The dihedral between aromatic rings was found to be 60.06 (4)°. The torsion angle along the di­amine N1—C1—C2—N2 [−55.84 (11)°] is consistent with the syn conformation of amine donors within the unstrained five-membered ring formed upon chelation.

[Figure 2]
Figure 2
Packing plot (viewed along b) showing ππ stacking of fluorinated (F3, F4) phenolate rings related by inversion. Orange dots represent centers of inversion.

Synthesis and crystallization

The ligand H2ONNOF (1) was prepared by the method reported previously (Graziano et al., 2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]). The Mo complex (2) was prepared using a modified version of the method reported by Lehtonen & Sillanpää (2005[Lehtonen, A. & Sillanpää, R. (2005). Polyhedron, 24, 257-265.]). The reaction scheme is shown in Fig. 3[link]. MoO2(acac)2 (0.330 g, 1.01 mmol) and the ligand H2ONNOF (1; 0.373 g, 1.00 mmol) were combined in a 20 ml scintillation vial with a PTFE-coated stir bar and suspended in 10 ml of anhydrous methanol. The reaction mixture was left to stir for 4 h at 295 K, at which time solvent and other volatiles were removed in vacuo to yield a yellow solid (0.500 g, 1.00 mmol, >99%). The product was purified by column chromatography on silica using an increasing linear gradient of di­chloro­methane in acetone as the eluent. After removing the solvent and other volatiles, single crystals suitable for diffraction studies were obtained by slow evaporation from a concentrated solution of acetone. Characterization data for this compound match those previously reported by Cao et al. (2014[Cao, J.-P., Zhao, J.-X., Lu, H.-X. & Zhan, S.-Z. (2014). Transition Met. Chem. 39, 933-937.]). M.p. = 463–467 K.

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. No disorder or solvent were present.

Table 2
Experimental details

Crystal data
Chemical formula [Mo(C18H18F4N2O2)O2]
Mr 498.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.3179 (4), 8.0093 (4), 17.5057 (9)
α, β, γ (°) 91.8513 (18), 92.9102 (18), 116.6842 (16)
V3) 913.82 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.26 × 0.24 × 0.15
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.702, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 47859, 7013, 6541
Rint 0.027
(sin θ/λ)max−1) 0.772
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.12
No. of reflections 7013
No. of parameters 266
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.92, −0.48
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020).

[2,2'-({[2-(Dimethylamino)ethyl]azanediyl}bis(methylene))bis(4,6-difluorophenolato)]dioxidomolybdenum(VI)), top
Crystal data top
[Mo(C18H18F4N2O2)O2]Z = 2
Mr = 498.28F(000) = 500
Triclinic, P1Dx = 1.811 Mg m3
a = 7.3179 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0093 (4) ÅCell parameters from 9173 reflections
c = 17.5057 (9) Åθ = 2.3–33.2°
α = 91.8513 (18)°µ = 0.79 mm1
β = 92.9102 (18)°T = 150 K
γ = 116.6842 (16)°Block, orange
V = 913.82 (8) Å30.26 × 0.24 × 0.15 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
7013 independent reflections
Radiation source: fine focus sealed tube X-ray source6541 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 33.3°, θmin = 2.9°
ω and phi scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.702, Tmax = 0.747l = 2625
47859 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.4598P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
7013 reflectionsΔρmax = 0.92 e Å3
266 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0171 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.35403 (2)0.27852 (2)0.23176 (2)0.01088 (3)
F10.30483 (14)0.85179 (12)0.04843 (5)0.03105 (18)
F20.23146 (13)0.24459 (11)0.02051 (4)0.02510 (15)
F30.77983 (14)0.98402 (12)0.50141 (5)0.0357 (2)
F40.74459 (12)0.40003 (12)0.42642 (5)0.02571 (15)
O20.24235 (12)0.28426 (11)0.13025 (4)0.01475 (13)
O10.37637 (12)0.30006 (11)0.34515 (4)0.01499 (13)
O30.39279 (13)0.08489 (11)0.21952 (5)0.01831 (15)
O40.58252 (12)0.47327 (11)0.22506 (5)0.01743 (14)
N10.18199 (13)0.46786 (12)0.25408 (5)0.01204 (14)
N20.00004 (13)0.06353 (12)0.24545 (5)0.01375 (15)
C10.03936 (15)0.35240 (15)0.22876 (6)0.01565 (18)
H1A0.0554880.3336060.1721830.019*
H1B0.1184290.4190860.2444870.019*
C20.12266 (16)0.16343 (15)0.26393 (7)0.01739 (18)
H2A0.1197640.1819570.3202490.021*
H2B0.2670360.0860950.2442510.021*
C30.08879 (17)0.05342 (15)0.17262 (6)0.01864 (19)
H3A0.0998010.0247820.1324880.028*
H3B0.2253120.1535900.1802730.028*
H3C0.0002940.1084300.1571660.028*
C40.01342 (18)0.06387 (16)0.30686 (7)0.0197 (2)
H4A0.1573190.1528670.3112240.029*
H4B0.0437680.0095000.3556470.029*
H4C0.0644050.1324580.2942890.029*
C50.27534 (17)0.63562 (14)0.20820 (6)0.01565 (18)
H5A0.4191810.7120210.2286920.019*
H5B0.2016030.7117730.2161190.019*
C60.27467 (16)0.59822 (14)0.12285 (6)0.01432 (17)
C70.29093 (17)0.74157 (16)0.07532 (6)0.01792 (19)
H70.3034920.8569950.0968260.021*
C80.28844 (18)0.71284 (17)0.00284 (7)0.0202 (2)
C90.26776 (18)0.54719 (17)0.03773 (6)0.0203 (2)
H90.2650230.5299750.0917990.024*
C100.25135 (17)0.40861 (16)0.01002 (6)0.01692 (18)
C110.25771 (15)0.43022 (14)0.08992 (6)0.01363 (16)
C120.19506 (17)0.53698 (15)0.33577 (6)0.01572 (18)
H12A0.1590660.6422840.3367010.019*
H12B0.0917040.4352170.3634500.019*
C130.40118 (16)0.60117 (15)0.37784 (6)0.01528 (17)
C140.50261 (19)0.77546 (16)0.41804 (6)0.0204 (2)
H140.4499010.8642170.4156390.024*
C150.6818 (2)0.81511 (17)0.46142 (7)0.0238 (2)
C160.76763 (18)0.69352 (18)0.46549 (7)0.0229 (2)
H160.8921750.7255650.4953420.028*
C170.66479 (17)0.52275 (16)0.42429 (6)0.01820 (19)
C180.47924 (16)0.47139 (14)0.38146 (6)0.01454 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01022 (4)0.01143 (4)0.01228 (4)0.00609 (3)0.00069 (3)0.00012 (3)
F10.0408 (5)0.0298 (4)0.0230 (4)0.0155 (4)0.0016 (3)0.0148 (3)
F20.0352 (4)0.0255 (4)0.0153 (3)0.0151 (3)0.0014 (3)0.0060 (3)
F30.0359 (5)0.0233 (4)0.0305 (4)0.0005 (3)0.0042 (3)0.0120 (3)
F40.0204 (3)0.0338 (4)0.0257 (4)0.0149 (3)0.0020 (3)0.0034 (3)
O20.0190 (3)0.0142 (3)0.0122 (3)0.0086 (3)0.0002 (3)0.0003 (2)
O10.0168 (3)0.0141 (3)0.0131 (3)0.0064 (3)0.0015 (3)0.0004 (2)
O30.0197 (4)0.0168 (3)0.0226 (4)0.0121 (3)0.0000 (3)0.0005 (3)
O40.0132 (3)0.0168 (3)0.0207 (4)0.0052 (3)0.0030 (3)0.0011 (3)
N10.0128 (3)0.0130 (3)0.0117 (3)0.0070 (3)0.0008 (3)0.0003 (3)
N20.0130 (4)0.0134 (4)0.0146 (4)0.0056 (3)0.0011 (3)0.0011 (3)
C10.0116 (4)0.0176 (4)0.0199 (5)0.0088 (3)0.0005 (3)0.0006 (3)
C20.0114 (4)0.0181 (4)0.0228 (5)0.0066 (3)0.0032 (3)0.0013 (4)
C30.0171 (4)0.0155 (4)0.0183 (5)0.0035 (4)0.0019 (4)0.0024 (4)
C40.0220 (5)0.0165 (4)0.0196 (5)0.0073 (4)0.0040 (4)0.0067 (4)
C50.0218 (5)0.0123 (4)0.0142 (4)0.0088 (4)0.0018 (3)0.0012 (3)
C60.0147 (4)0.0148 (4)0.0136 (4)0.0067 (3)0.0007 (3)0.0019 (3)
C70.0195 (5)0.0169 (4)0.0180 (5)0.0086 (4)0.0009 (4)0.0047 (4)
C80.0194 (5)0.0226 (5)0.0178 (5)0.0084 (4)0.0009 (4)0.0086 (4)
C90.0187 (5)0.0276 (5)0.0132 (4)0.0092 (4)0.0004 (4)0.0041 (4)
C100.0165 (4)0.0203 (5)0.0133 (4)0.0080 (4)0.0004 (3)0.0012 (3)
C110.0130 (4)0.0159 (4)0.0119 (4)0.0065 (3)0.0002 (3)0.0009 (3)
C120.0183 (4)0.0188 (4)0.0129 (4)0.0108 (4)0.0025 (3)0.0004 (3)
C130.0177 (4)0.0154 (4)0.0111 (4)0.0060 (3)0.0020 (3)0.0001 (3)
C140.0250 (5)0.0170 (5)0.0155 (5)0.0062 (4)0.0032 (4)0.0019 (4)
C150.0247 (5)0.0192 (5)0.0152 (5)0.0006 (4)0.0014 (4)0.0041 (4)
C160.0177 (5)0.0267 (5)0.0138 (5)0.0008 (4)0.0008 (4)0.0007 (4)
C170.0149 (4)0.0230 (5)0.0137 (4)0.0059 (4)0.0006 (3)0.0030 (4)
C180.0146 (4)0.0158 (4)0.0107 (4)0.0046 (3)0.0007 (3)0.0011 (3)
Geometric parameters (Å, º) top
Mo1—O31.7062 (8)C4—H4A0.9800
Mo1—O41.7123 (8)C4—H4B0.9800
Mo1—O21.9287 (8)C4—H4C0.9800
Mo1—O11.9788 (8)C5—C61.5137 (15)
Mo1—N12.4008 (8)C5—H5A0.9900
Mo1—N22.4117 (9)C5—H5B0.9900
F1—C81.3554 (13)C6—C111.3968 (14)
F2—C101.3444 (13)C6—C71.4048 (15)
F3—C151.3605 (14)C7—C81.3779 (16)
F4—C171.3506 (14)C7—H70.9500
O2—C111.3494 (12)C8—C91.3835 (18)
O1—C181.3494 (12)C9—C101.3767 (16)
N1—C51.4894 (13)C9—H90.9500
N1—C11.4936 (13)C10—C111.3997 (14)
N1—C121.4994 (13)C12—C131.4993 (15)
N2—C41.4825 (14)C12—H12A0.9900
N2—C21.4863 (14)C12—H12B0.9900
N2—C31.4890 (14)C13—C181.3945 (15)
C1—C21.5202 (15)C13—C141.3956 (15)
C1—H1A0.9900C14—C151.3809 (18)
C1—H1B0.9900C14—H140.9500
C2—H2A0.9900C15—C161.377 (2)
C2—H2B0.9900C16—C171.3835 (16)
C3—H3A0.9800C16—H160.9500
C3—H3B0.9800C17—C181.3965 (15)
C3—H3C0.9800
O3—Mo1—O4108.54 (4)H4A—C4—H4C109.5
O3—Mo1—O299.96 (4)H4B—C4—H4C109.5
O4—Mo1—O295.43 (4)N1—C5—C6116.27 (8)
O3—Mo1—O198.19 (4)N1—C5—H5A108.2
O4—Mo1—O193.41 (4)C6—C5—H5A108.2
O2—Mo1—O1156.09 (3)N1—C5—H5B108.2
O3—Mo1—N1160.10 (4)C6—C5—H5B108.2
O4—Mo1—N191.35 (3)H5A—C5—H5B107.4
O2—Mo1—N177.83 (3)C11—C6—C7119.31 (10)
O1—Mo1—N179.79 (3)C11—C6—C5123.44 (9)
O3—Mo1—N286.27 (4)C7—C6—C5117.24 (9)
O4—Mo1—N2165.19 (3)C8—C7—C6119.25 (10)
O2—Mo1—N281.21 (3)C8—C7—H7120.4
O1—Mo1—N284.59 (3)C6—C7—H7120.4
N1—Mo1—N273.84 (3)F1—C8—C7119.02 (11)
C11—O2—Mo1130.56 (7)F1—C8—C9117.80 (11)
C18—O1—Mo1118.88 (6)C7—C8—C9123.17 (10)
C5—N1—C1110.73 (8)C10—C9—C8116.50 (10)
C5—N1—C12107.20 (8)C10—C9—H9121.7
C1—N1—C12107.89 (8)C8—C9—H9121.7
C5—N1—Mo1108.18 (6)F2—C10—C9119.27 (10)
C1—N1—Mo1107.55 (6)F2—C10—C11117.50 (10)
C12—N1—Mo1115.29 (6)C9—C10—C11123.23 (10)
C4—N2—C2109.15 (9)O2—C11—C6124.11 (9)
C4—N2—C3107.68 (9)O2—C11—C10117.37 (9)
C2—N2—C3109.18 (8)C6—C11—C10118.50 (9)
C4—N2—Mo1109.89 (6)C13—C12—N1114.57 (8)
C2—N2—Mo1111.74 (6)C13—C12—H12A108.6
C3—N2—Mo1109.11 (6)N1—C12—H12A108.6
N1—C1—C2110.46 (8)C13—C12—H12B108.6
N1—C1—H1A109.6N1—C12—H12B108.6
C2—C1—H1A109.6H12A—C12—H12B107.6
N1—C1—H1B109.6C18—C13—C14120.78 (10)
C2—C1—H1B109.6C18—C13—C12116.82 (9)
H1A—C1—H1B108.1C14—C13—C12122.11 (10)
N2—C2—C1111.22 (9)C15—C14—C13118.05 (11)
N2—C2—H2A109.4C15—C14—H14121.0
C1—C2—H2A109.4C13—C14—H14121.0
N2—C2—H2B109.4F3—C15—C16118.40 (11)
C1—C2—H2B109.4F3—C15—C14118.20 (12)
H2A—C2—H2B108.0C16—C15—C14123.39 (11)
N2—C3—H3A109.5C15—C16—C17117.20 (11)
N2—C3—H3B109.5C15—C16—H16121.4
H3A—C3—H3B109.5C17—C16—H16121.4
N2—C3—H3C109.5F4—C17—C16119.01 (10)
H3A—C3—H3C109.5F4—C17—C18118.73 (10)
H3B—C3—H3C109.5C16—C17—C18122.26 (11)
N2—C4—H4A109.5O1—C18—C13120.64 (9)
N2—C4—H4B109.5O1—C18—C17121.10 (10)
H4A—C4—H4B109.5C13—C18—C17118.26 (10)
N2—C4—H4C109.5
C5—N1—C1—C2168.55 (8)C9—C10—C11—O2179.23 (10)
C12—N1—C1—C274.42 (10)F2—C10—C11—C6178.89 (9)
Mo1—N1—C1—C250.54 (9)C9—C10—C11—C62.21 (16)
C4—N2—C2—C1152.57 (9)C5—N1—C12—C1379.49 (11)
C3—N2—C2—C189.97 (10)C1—N1—C12—C13161.21 (9)
Mo1—N2—C2—C130.82 (10)Mo1—N1—C12—C1341.02 (11)
N1—C1—C2—N255.84 (11)N1—C12—C13—C1857.38 (13)
C1—N1—C5—C661.33 (11)N1—C12—C13—C14128.74 (11)
C12—N1—C5—C6178.78 (9)C18—C13—C14—C150.08 (16)
Mo1—N1—C5—C656.29 (10)C12—C13—C14—C15173.57 (10)
N1—C5—C6—C1121.87 (15)C13—C14—C15—F3179.23 (10)
N1—C5—C6—C7157.75 (9)C13—C14—C15—C161.60 (18)
C11—C6—C7—C80.42 (16)F3—C15—C16—C17179.98 (11)
C5—C6—C7—C8179.21 (10)C14—C15—C16—C170.85 (18)
C6—C7—C8—F1179.79 (10)C15—C16—C17—F4179.60 (10)
C6—C7—C8—C90.90 (18)C15—C16—C17—C181.46 (17)
F1—C8—C9—C10179.97 (10)Mo1—O1—C18—C1368.58 (11)
C7—C8—C9—C100.66 (17)Mo1—O1—C18—C17112.20 (9)
C8—C9—C10—F2179.82 (10)C14—C13—C18—O1177.19 (10)
C8—C9—C10—C110.93 (17)C12—C13—C18—O13.22 (14)
Mo1—O2—C11—C631.59 (15)C14—C13—C18—C172.06 (16)
Mo1—O2—C11—C10149.93 (8)C12—C13—C18—C17176.03 (9)
C7—C6—C11—O2179.65 (10)F4—C17—C18—O12.58 (15)
C5—C6—C11—O20.74 (16)C16—C17—C18—O1176.36 (10)
C7—C6—C11—C101.89 (15)F4—C17—C18—C13178.18 (9)
C5—C6—C11—C10177.72 (10)C16—C17—C18—C132.88 (16)
F2—C10—C11—O20.32 (14)
Comparison of lengths and angles between this work and previous report top
This work (CLB-1-87)KOWXIF (Cao et al., 2014)
Mo—O11.9788 (8)1.976 (3)
Mo—O21.9287 (8)1.919 (3)
Mo—O31.7062 (8)1.693 (2)difference greater than ±3 s.u.
Mo—O41.7123 (7)1.700 (3)difference greater than ±3 s.u.
Mo—N12.4008 (8)2.395 (3)
Mo—N22.4117 (9)2.412 (3)
O1—Mo1—O398.19 (4)98.6 (1)
O1—Mo1—O493.41 (4)93.4 (1)
O1—Mo1—N179.79 (3)79.7 (1)
O1—Mo1—N284.59 (3)84.5 (1)
O2—Mo1—O399.96 (4)99.9 (1)
O2—Mo1—O495.43 (4)95.8 (1)
O2—Mo1—N177.83 (3)77.5 (1)
O2—Mo1—N281.21 (3)81.0 (1)
O3—Mo1—O4108.54 (4)108.2 (1)
N1—Mo1—N273.84 (3)73.8 (1)
N1—C1—C2—N2-55.84 (11)56.4 (4)
 

Acknowledgements

Data collection and refinement were conducted by Matthias Zeller (Purdue University). The authors wish to thank Brendan Graziano for helpful discussions.

Funding information

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). Acknowledgment is made to the donors of The American Chemical Society Petroleum Research Fund for support of this research (grant No. 56549-UR3). Partial funding for this project was provided by the Getty College of Arts and Sciences at Ohio Northern University.

References

First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCao, J.-P., Zhao, J.-X., Lu, H.-X. & Zhan, S.-Z. (2014). Transition Met. Chem. 39, 933–937.  CSD CrossRef CAS Google Scholar
First citationDawson, B. (1964). Acta Cryst. 17, 990–996.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEnemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGraziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarunadasa, H. I., Chang, C. J. & Long, J. R. (2010). Nature, 464, 1329–1333.  CSD CrossRef CAS PubMed Google Scholar
First citationKisker, C., Schindelin, H. & Rees, D. C. (1997). Annu. Rev. Biochem. 66, 233–267.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLehtonen, A. & Sillanpää, R. (2005). Polyhedron, 24, 257–265.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaurya, M. R., Uprety, B. & Avecilla, F. (2016). Eur. J. Inorg. Chem. pp. 4802–4813.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds