metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Cobaltoceniumyl­amido)­pyridinium hexa­fluorido­phosphate

crossmark logo

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria
*Correspondence e-mail: benno.bildstein@uibk.ac.at

Edited by R. J. Butcher, Howard University, USA (Received 20 April 2021; accepted 30 April 2021; online 5 July 2021)

The title compound, [Co(C5H5)(C10H9N2)]PF6, was synthesized from deproton­ated 1-amino­pyridinium iodide, followed by microwave-assisted nucleophilic aromatic substitution of iodo-cobaltocenium iodide. After anion exchange with potassium hexa­fluorido­phosphate, the title compound crystallizes as orange prisms in the space group Pc. This very stable pyridine nitrene adduct is the first example of a cobaltocenium derivative, formally containing a nitrene nitro­gen species.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is the first example of a cationic cobaltocenium nitrene species, stabilized by a bonded pyridine. It is highly polar, stable in various solvents up to high temperatures (approx. 200°C). The unsubstituted cyclo­penta­dienyl ring and the pyridine moiety are structurally as expected, displaying carbon–cobalt bond lengths for C1—C9 of 2.005 (7)–2.047 (5) Å and carbon–carbon C1—C15 lengths of 1.354 (9)–1.462 (7) Å, respectively. The substituted cyclo­penta­dienyl ring is slightly twisted out of plane [11,4(6)°] as the carbon–cobalt bond to C10 [2.227 (5) Å] is elongated. The bond lengths N1—N2 [1.421 (6) Å], N1—C10 [1.327 (7) Å] and bond angle C10—N1—N2 [110.4 (4)°], N1—N2—C11 [118.2 (4)°] are comparable to a penta­fluoro­phenyl (instead of cobaltocenium­yl) analogue (Poe et al., 1992[Poe, R., Schnapp, K., Young, M. J. T., Grayzar, J. & Platz, M. S. (1992). J. Am. Chem. Soc. 114, 5054-5067.]). Due to resonance, the N1—N2 and N1—C10 bond lengths are shortened compared to N—N [1.46 Å] and N—C [1.47 Å] standard single bonds. Weak hydrogen bonds (Table 1[link]) are present between the anion and the pyridine substituent (Fig. 2[link]) and inter­molecularly between the nitrene nitro­gen N1 and the pyridine H15, forming chains along the c-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯F1 0.95 2.35 3.273 (8) 164
C12—H12⋯F6i 0.95 2.46 3.293 (7) 146
C14—H14⋯F4ii 0.95 2.61 3.388 (7) 139
C15—H15⋯N1iii 0.95 2.44 3.156 (6) 132
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [x, -y, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Hydrogen bond H⋯F is represented by a green dashed line.
[Figure 2]
Figure 2
The arrangement of the mol­ecular units of the title compound in the unit cell, with displacement ellipsoids drawn at the 50% probability level for non-H atoms along the b axis. Hydrogen bonds are represented by dashed lines (H⋯N blue, H⋯F green). Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. (Symmetry code: x, −y, z + [{1\over 2}]).
[Figure 3]
Figure 3
Formation of the hydrogen bonds of the title compound, with displacement ellipsoids drawn in at the 50% probability level for non-H atoms. Hydrogen bonds are represented by dashed lines (H⋯N blue, H⋯F green). Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Left view along the b axis, right view along the c axis.

Synthesis and crystallization

In a microwave-assisted one-pot synthesis, first 9.44 g of 1-amino­pyridinium iodide (4.2 mmol, 1.5 equiv.) was deprotonated with 0.67 g of potassium tert-butoxide (5.9 mmol, 2.1 equiv.) in 100 ml of EtOH solution. Subsequently, after heating for 25 min (250 W, ramp 10 min, hold for 15 min, 100°C), 1.17 g of iodo-cobaltocenium iodide (Vanicek et al., 2016[Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 12, 2101-2109.]) (2.8 mmol, 1 equiv.) were added and heating was continued for 40 min (250 W, ramp 10 min, hold for 30 min, 100°C). Workup: After cooling to room temperature, the mixture was transferred to a round-bottomed flask, 1.83 g of potassium hexa­fluorido­phosphate (9.9 mmol, 3.5 equiv.) were added and the mixture was stirred for 10 min. Neutral aluminium oxide (10 g) was added and the solvent was removed on a rotary evaporator. The product was purified, using a short neutral aluminium oxide column (h = 4 cm, d = 10 cm) with CH3CN as eluent. The solvent was removed on a rotary evaporator. The product was further dissolved in 200 ml CH2Cl2 and filtered. Toluene (20 ml) was added and the mixture was concentrated to 30 ml. Et2O (100 ml) was added and the product precipitated at −20°C over a period of 2 h. After filtration and washing with Et2O, 0.86 g of pure (cobaltoceniumyl­amido)­pyridinium hexa­fluorido­phosphate was obtained as an orange–red powder. Yield: 82% based on iodo­cobaltocenium iodide. M.p. 139–140 °C. HRMS (ESI+): m/z calc. 281.0484 (M+), found 281.0473 (M+). 1H NMR (400 MHz, CD3CN): δ 8.55 (d x q, J = 6.5, 1.3 Hz, 2H), 8.21 (t x t, J = 7.6, 1.3 Hz, 1H), 7.97-7.90 (m, 2H), 5.35 (t, J = 2.1 Hz, 2H), 5.26 (s, 5H), 4.63-4.56 (m, 2H). 13C NMR (75 MHz, CD2Cl2): δ 141.8, 139.0, 129.7, 105.1, 83.0, 77.6. Single crystals were obtained by vapor diffusion crystallization in acetone with Et2O at 4°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co(C5H5)(C10H9N2)]PF6
Mr 426.18
Crystal system, space group Monoclinic, Pc
Temperature (K) 183
a, b, c (Å) 9.9610 (8), 8.9243 (7), 9.7204 (7)
β (°) 106.943 (3)
V3) 826.59 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.20
Crystal size (mm) 0.18 × 0.14 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.817, 0.901
No. of measured, independent and observed [I > 2σ(I)] reflections 11210, 3329, 2999
Rint 0.035
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.05
No. of reflections 3329
No. of parameters 227
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.26
Absolute structure Flack x determined using 1289 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.007 (7)
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(Cobaltoceniumylamido)pyridinium hexafluoridophosphate top
Crystal data top
[Co(C5H5)(C10H9N2)]PF6F(000) = 428
Mr = 426.18Dx = 1.712 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 9.9610 (8) ÅCell parameters from 5116 reflections
b = 8.9243 (7) Åθ = 2.3–26.5°
c = 9.7204 (7) ŵ = 1.20 mm1
β = 106.943 (3)°T = 183 K
V = 826.59 (11) Å3Prism, orange
Z = 20.18 × 0.14 × 0.04 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
3329 independent reflections
Radiation source: Incoatec Microfocus2999 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.035
Detector resolution: 10.4 pixels mm-1θmax = 26.5°, θmin = 2.1°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1111
Tmin = 0.817, Tmax = 0.901l = 1112
11210 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.4385P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.05Δρmax = 1.01 e Å3
3329 reflectionsΔρmin = 0.26 e Å3
227 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.015 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1289 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.007 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-bound H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.95 Å for aromatic H atoms. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.82275 (6)0.26234 (6)0.59021 (6)0.0254 (2)
N10.5977 (5)0.0343 (4)0.6695 (4)0.0274 (9)
N20.5060 (4)0.1237 (4)0.7231 (4)0.0252 (9)
C10.8101 (10)0.4810 (7)0.5333 (7)0.063 (2)
H10.82310.56130.60000.075*
C20.9142 (8)0.4111 (9)0.4857 (9)0.068 (2)
H21.01080.43720.51040.081*
C30.8468 (10)0.2939 (9)0.3934 (8)0.060 (2)
H30.89180.22370.34810.072*
C40.7089 (10)0.2978 (9)0.3801 (8)0.059 (2)
H40.64050.23260.32150.070*
C50.6824 (8)0.4094 (9)0.4636 (8)0.058 (2)
H50.59300.43480.47320.070*
C60.7849 (6)0.2298 (6)0.7833 (6)0.0287 (12)
H60.73480.30210.82040.034*
C70.9298 (7)0.2339 (7)0.7978 (7)0.0396 (15)
H70.99540.30320.85440.048*
C80.9606 (6)0.1167 (6)0.7131 (7)0.0397 (13)
H81.05050.09340.70340.048*
C90.8336 (6)0.0404 (6)0.6455 (6)0.0319 (12)
H90.82230.03530.57440.038*
C100.7242 (6)0.0961 (5)0.7018 (5)0.0256 (10)
C110.4222 (6)0.2215 (6)0.6334 (6)0.0377 (13)
H110.42440.23000.53670.045*
C120.3324 (7)0.3100 (8)0.6834 (8)0.0501 (16)
H120.27480.38220.62180.060*
C130.3266 (7)0.2939 (7)0.8201 (7)0.0422 (14)
H130.26590.35520.85540.051*
C140.4102 (7)0.1871 (7)0.9076 (7)0.0420 (14)
H140.40510.17221.00280.050*
C150.4995 (6)0.1035 (6)0.8571 (6)0.0331 (13)
H150.55740.03050.91720.040*
P10.19726 (16)0.24876 (16)0.21938 (17)0.0344 (4)
F10.3620 (5)0.2643 (7)0.2863 (6)0.105 (2)
F20.0334 (4)0.2311 (4)0.1507 (5)0.0554 (11)
F30.1747 (7)0.3921 (5)0.3041 (6)0.095 (2)
F40.2192 (5)0.1044 (5)0.1347 (5)0.0743 (14)
F50.1885 (5)0.1453 (5)0.3502 (4)0.0668 (14)
F60.2058 (4)0.3523 (4)0.0880 (4)0.0452 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0257 (3)0.0225 (3)0.0292 (4)0.0010 (4)0.0101 (2)0.0013 (4)
N10.034 (2)0.025 (2)0.027 (2)0.0000 (17)0.0146 (19)0.0016 (16)
N20.026 (2)0.026 (2)0.025 (2)0.0014 (17)0.0092 (17)0.0012 (16)
C10.114 (7)0.023 (3)0.044 (4)0.004 (3)0.014 (4)0.003 (2)
C20.041 (4)0.074 (5)0.084 (6)0.018 (4)0.013 (4)0.041 (5)
C30.096 (7)0.055 (4)0.039 (4)0.027 (5)0.035 (4)0.007 (3)
C40.081 (6)0.045 (4)0.038 (4)0.023 (4)0.002 (4)0.011 (3)
C50.049 (4)0.059 (4)0.070 (5)0.019 (3)0.023 (4)0.038 (4)
C60.034 (3)0.031 (3)0.022 (3)0.004 (2)0.009 (2)0.001 (2)
C70.031 (3)0.044 (4)0.039 (4)0.004 (3)0.004 (3)0.002 (3)
C80.027 (3)0.039 (3)0.052 (4)0.007 (2)0.011 (3)0.006 (3)
C90.035 (3)0.025 (2)0.037 (3)0.004 (2)0.013 (3)0.0003 (19)
C100.033 (3)0.022 (2)0.024 (2)0.006 (2)0.012 (2)0.0046 (18)
C110.039 (3)0.047 (3)0.027 (3)0.012 (3)0.009 (2)0.012 (2)
C120.045 (4)0.058 (4)0.049 (4)0.026 (3)0.015 (3)0.021 (3)
C130.040 (3)0.045 (3)0.049 (4)0.009 (3)0.025 (3)0.005 (3)
C140.052 (4)0.044 (3)0.039 (4)0.009 (3)0.028 (3)0.010 (3)
C150.046 (3)0.031 (3)0.026 (3)0.008 (2)0.017 (3)0.009 (2)
P10.0312 (8)0.0438 (10)0.0295 (8)0.0074 (6)0.0108 (6)0.0027 (6)
F10.042 (3)0.183 (7)0.074 (4)0.042 (3)0.009 (2)0.055 (3)
F20.034 (2)0.064 (2)0.064 (3)0.0091 (17)0.0072 (18)0.0112 (19)
F30.162 (6)0.064 (3)0.096 (4)0.056 (3)0.096 (4)0.046 (3)
F40.104 (4)0.049 (2)0.094 (4)0.011 (2)0.067 (3)0.001 (2)
F50.072 (3)0.089 (3)0.037 (2)0.029 (3)0.012 (2)0.019 (2)
F60.050 (2)0.049 (2)0.0397 (19)0.0074 (16)0.0184 (17)0.0105 (16)
Geometric parameters (Å, º) top
Co1—C72.005 (7)C6—C71.408 (9)
Co1—C82.012 (6)C6—C101.462 (7)
Co1—C32.016 (7)C6—H60.9500
Co1—C12.022 (6)C7—C81.419 (9)
Co1—C62.040 (6)C7—H70.9500
Co1—C22.041 (7)C8—C91.418 (8)
Co1—C92.047 (5)C8—H80.9500
Co1—C52.047 (6)C9—C101.442 (7)
Co1—C42.051 (7)C9—H90.9500
Co1—C102.227 (5)C11—C121.383 (9)
N1—C101.327 (7)C11—H110.9500
N1—N21.421 (6)C12—C131.355 (9)
N2—C151.335 (6)C12—H120.9500
N2—C111.340 (7)C13—C141.383 (9)
C1—C21.399 (11)C13—H130.9500
C1—C51.408 (11)C14—C151.358 (8)
C1—H10.9500C14—H140.9500
C2—C31.414 (12)C15—H150.9500
C2—H20.9500P1—F31.572 (5)
C3—C41.342 (12)P1—F41.578 (4)
C3—H30.9500P1—F21.581 (4)
C4—C51.358 (12)P1—F11.585 (5)
C4—H40.9500P1—F51.595 (4)
C5—H50.9500P1—F61.599 (4)
C7—Co1—C841.4 (3)C3—C4—H4125.3
C7—Co1—C3142.9 (3)C5—C4—H4125.3
C8—Co1—C3113.8 (3)Co1—C4—H4126.5
C7—Co1—C1111.7 (3)C4—C5—C1108.3 (7)
C8—Co1—C1139.8 (3)C4—C5—Co170.8 (4)
C3—Co1—C167.7 (3)C1—C5—Co168.8 (4)
C7—Co1—C640.8 (3)C4—C5—H5125.8
C8—Co1—C668.8 (2)C1—C5—H5125.8
C3—Co1—C6176.3 (4)Co1—C5—H5126.1
C1—Co1—C6112.1 (3)C7—C6—C10109.0 (5)
C7—Co1—C2113.6 (3)C7—C6—Co168.3 (4)
C8—Co1—C2112.9 (3)C10—C6—Co177.1 (3)
C3—Co1—C240.8 (4)C7—C6—H6125.5
C1—Co1—C240.3 (3)C10—C6—H6125.5
C6—Co1—C2141.2 (3)Co1—C6—H6120.8
C7—Co1—C969.0 (2)C6—C7—C8108.1 (5)
C8—Co1—C940.9 (2)C6—C7—Co171.0 (3)
C3—Co1—C9111.9 (3)C8—C7—Co169.6 (4)
C1—Co1—C9179.3 (3)C6—C7—H7125.9
C6—Co1—C968.3 (2)C8—C7—H7125.9
C2—Co1—C9139.8 (3)Co1—C7—H7125.1
C7—Co1—C5139.1 (3)C9—C8—C7107.9 (5)
C8—Co1—C5179.5 (3)C9—C8—Co170.9 (3)
C3—Co1—C565.7 (3)C7—C8—Co169.0 (3)
C1—Co1—C540.5 (3)C9—C8—H8126.1
C6—Co1—C5111.6 (3)C7—C8—H8126.1
C2—Co1—C567.0 (3)Co1—C8—H8125.6
C9—Co1—C5138.8 (3)C8—C9—C10109.3 (5)
C7—Co1—C4177.8 (4)C8—C9—Co168.2 (3)
C8—Co1—C4140.8 (3)C10—C9—Co177.2 (3)
C3—Co1—C438.5 (4)C8—C9—H9125.4
C1—Co1—C466.8 (3)C10—C9—H9125.4
C6—Co1—C4137.8 (3)Co1—C9—H9120.8
C2—Co1—C466.5 (3)N1—C10—C9122.5 (4)
C9—Co1—C4112.5 (3)N1—C10—C6133.0 (5)
C5—Co1—C438.7 (3)C9—C10—C6104.3 (5)
C7—Co1—C1066.8 (2)N1—C10—Co1133.2 (3)
C8—Co1—C1066.5 (2)C9—C10—Co163.6 (3)
C3—Co1—C10138.3 (3)C6—C10—Co163.2 (3)
C1—Co1—C10140.8 (3)N2—C11—C12119.2 (5)
C6—Co1—C1039.8 (2)N2—C11—H11120.4
C2—Co1—C10178.8 (3)C12—C11—H11120.4
C9—Co1—C1039.14 (19)C13—C12—C11120.0 (6)
C5—Co1—C10113.5 (3)C13—C12—H12120.0
C4—Co1—C10113.2 (3)C11—C12—H12120.0
C10—N1—N2110.4 (4)C12—C13—C14119.1 (6)
C15—N2—C11121.6 (5)C12—C13—H13120.4
C15—N2—N1120.1 (4)C14—C13—H13120.4
C11—N2—N1118.2 (4)C15—C14—C13119.8 (6)
C2—C1—C5106.9 (6)C15—C14—H14120.1
C2—C1—Co170.6 (4)C13—C14—H14120.1
C5—C1—Co170.7 (4)N2—C15—C14120.1 (5)
C2—C1—H1126.5N2—C15—H15119.9
C5—C1—H1126.5C14—C15—H15119.9
Co1—C1—H1123.8F3—P1—F4179.7 (3)
C1—C2—C3106.2 (7)F3—P1—F290.8 (3)
C1—C2—Co169.1 (4)F4—P1—F288.9 (3)
C3—C2—Co168.7 (4)F3—P1—F190.1 (4)
C1—C2—H2126.9F4—P1—F190.1 (3)
C3—C2—H2126.9F2—P1—F1179.0 (3)
Co1—C2—H2126.8F3—P1—F590.2 (3)
C4—C3—C2109.0 (7)F4—P1—F589.5 (3)
C4—C3—Co172.1 (4)F2—P1—F589.4 (2)
C2—C3—Co170.5 (4)F1—P1—F590.8 (2)
C4—C3—H3125.5F3—P1—F689.8 (2)
C2—C3—H3125.5F4—P1—F690.4 (2)
Co1—C3—H3123.4F2—P1—F690.5 (2)
C3—C4—C5109.5 (7)F1—P1—F689.3 (2)
C3—C4—Co169.3 (4)F5—P1—F6179.9 (3)
C5—C4—Co170.5 (4)
C10—N1—N2—C1587.4 (5)Co1—C8—C9—C1066.9 (4)
C10—N1—N2—C1196.1 (5)C7—C8—C9—Co159.3 (4)
C5—C1—C2—C32.8 (7)N2—N1—C10—C9171.9 (4)
Co1—C1—C2—C358.9 (5)N2—N1—C10—C62.6 (7)
C5—C1—C2—Co161.7 (4)N2—N1—C10—Co189.0 (5)
C1—C2—C3—C43.1 (8)C8—C9—C10—N1172.7 (4)
Co1—C2—C3—C462.3 (5)Co1—C9—C10—N1126.1 (4)
C1—C2—C3—Co159.2 (5)C8—C9—C10—C611.4 (5)
C2—C3—C4—C52.1 (9)Co1—C9—C10—C649.7 (3)
Co1—C3—C4—C559.2 (5)C8—C9—C10—Co161.2 (4)
C2—C3—C4—Co161.3 (5)C7—C6—C10—N1173.5 (5)
C3—C4—C5—C10.3 (8)Co1—C6—C10—N1125.2 (5)
Co1—C4—C5—C158.8 (5)C7—C6—C10—C911.3 (6)
C3—C4—C5—Co158.5 (5)Co1—C6—C10—C950.0 (3)
C2—C1—C5—C41.7 (7)C7—C6—C10—Co161.3 (4)
Co1—C1—C5—C460.0 (5)C15—N2—C11—C123.8 (9)
C2—C1—C5—Co161.7 (5)N1—N2—C11—C12179.8 (6)
C10—C6—C7—C87.0 (7)N2—C11—C12—C132.1 (11)
Co1—C6—C7—C859.9 (4)C11—C12—C13—C140.7 (11)
C10—C6—C7—Co166.9 (4)C12—C13—C14—C152.0 (11)
C6—C7—C8—C90.3 (7)C11—N2—C15—C142.6 (9)
Co1—C7—C8—C960.5 (4)N1—N2—C15—C14178.9 (5)
C6—C7—C8—Co160.8 (4)C13—C14—C15—N20.4 (10)
C7—C8—C9—C107.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···F10.952.353.273 (8)164
C12—H12···F6i0.952.463.293 (7)146
C14—H14···F4ii0.952.613.388 (7)139
C15—H15···N1iii0.952.443.156 (6)132
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1; (iii) x, y, z+1/2.
 

Acknowledgements

We thank Dr Thomas Müller (Institute of Organic Chemistry) and Dr Holger Kopacka (Institut of General, Inorganic and Theoretical Chemistry) for the measurement of HRMS and NMR spectra.

Funding information

Funding for this research was provided by: Austrian Science Fund FWF (grant No. P33858).

References

First citationBruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPoe, R., Schnapp, K., Young, M. J. T., Grayzar, J. & Platz, M. S. (1992). J. Am. Chem. Soc. 114, 5054–5067.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 12, 2101–2109.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds