metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[bis­­(1H-indole-5-carboxyl­ato-κ2O,O′)zinc(II)]-μ-4,4′-azobi­pyridine-κ2N1:N1′]

crossmark logo

aCentre for Research and Development, PRIST Deemed to be University, Thanjavur, 613 403, Tamil Nadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, and cX-ray Crystallography Unit, School of Physics, University Sains Malaysia, 11800, USM, Penang, Malaysia
*Correspondence e-mail: nirmalramjs@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 12 May 2021; accepted 15 May 2021; online 21 May 2021)

The asymmetric unit of the title coordination polymer [Zn(C9H6NO2)2(C10H8N4)]n, consists of one ZnII cation, one bidentate 1H-indole-5-carboxyl­ate (I5C) anion and half of a 4,4′-azobi­pyridine (Abpy) neutral ligand. In the coordination polyhedron, the ZnII ion adopts a distorted octa­hedral geometry. The coordination polymer is stabilized by a combination of N—H⋯O and C—H⋯π inter­actions, which leads to the formation of wave-like two-dimensional coordination polymeric layers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The design of coordination polymers (CPs) and metal–organic frameworks (MOFs) is one of the most important fields in inorganic crystal engineering and material science because of their utility, functions and inter­esting architectures (Ying et al., 2015[Ying, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618-622.]; Li et al., 2018[Li, X.-Y., Peng, Y.-Q., Li, J., Fu, W.-W., Liu, Y. & Li, Y.-M. (2018). Acta Cryst. E74, 28-33.]). The self-assembly of metal–organic frameworks and coordination polymers is obtained by complexing metal ions with organic ligands (Li et al., 2018[Li, X.-Y., Peng, Y.-Q., Li, J., Fu, W.-W., Liu, Y. & Li, Y.-M. (2018). Acta Cryst. E74, 28-33.]). In the field of storage and separation sciences, MOFs are a strong competitor for zeolites and carbon nanotubes (Naik et al., 2011[Naik, A. D., Dîrtu, M. M., Railliet, A. P., Marchand-Brynaert, J. & Garcia, Y. (2011). Polymers, 3, 1750-1775.]; Cui et al., 2014[Cui, G.-G., Yang, X.-X. & Yang, J.-P. (2014). Acta Cryst. C70, 498-501.]). Several MOF structures with ZnII ions have recently been reported (Ying et al., 2015[Ying, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618-622.]; Huang et al., 2015[Huang, Q.-Y., Yang, Y. & Meng, X.-R. (2015). Acta Cryst. C71, 701-705.]; Liu et al., 2017[Liu, F., Ding, Y., Li, Q. & Zhang, L. (2017). Acta Cryst. E73, 1402-1404.]; Chen et al., 2020[Chen, N.-N., Zhang, C. & Tao, J.-Q. (2020). Acta Cryst. C76, 850-855.]). In the present work, we report the crystal structure of a ZnII-containing coordin­ation polymer constructed using 4,4′-azo­pyridine and indole-5-carb­oxy­lic acid.

The asymmetric unit consists of one ZnII cation, one bidentate 1H-indole-5-carboxyl­ate (I5C) anion and half of a 4,4′-azobi­pyridine (Abpy) neutral ligand. The other half of the Abpy ligand is generated by a centre of inversion (symmetry operation −[{1\over 2}] − x, [{3\over 2}] − y, −z) and it bridges the adjacent ZnII ion as shown in Fig. 1[link]. Thus, one neutral Abpy ligand bridges two ZnII ions. Each of the ZnII centres has a six-coordinate N2O4 environment being bonded to the O atoms of two bidentate (I5C) anions and the N atoms of two (Abpy) ligands in a distorted octa­hedral geometry. The Zn—O1, Zn—O2 and Zn—N2 distances are 2.145 (3), 2.227 (3) and 2.098 (3) Å, respectively.

[Figure 1]
Figure 1
The title complex showing the local coordination around the ZnII metal. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) −x, y, [{1\over 2}] − z; (ii) [{1\over 2}] − x, [{3\over 2}] − y, 1 − z.

The six-coordinated monomeric ZnII unit extends as a zigzag chain in the [[\overline{1}]01] direction. Adjacent chains are linked through N—H⋯Oi [symmetry code: (i) x, −y, −[{1\over 2}] + z] hydrogen bonds connecting the N atom of an indole moiety and an O atom of a symmetry-related indole moiety (Table 1[link], Fig. 2[link]). Adjacent layers are held together by weak C—H⋯π inter­actions between the C—H group of an Abpy ligand and the aromatic ring of an I5C anion (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.84 (4) 2.02 (4) 2.840 (5) 165 (4)
C12—H12⋯Cgii 0.93 2.79 3.454 (5) 129
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Polyhedral representation of the one-dimensional coordination polymer linked together by N—H⋯O (blue dotted lines).

Synthesis and crystallization

Zn(CH3COO)2(H2O)2 (50 mg), indole-5-carb­oxy­lic acid (35 mg), 4,4′-azo­pyridine (35 mg) and deionized water (2.5 ml) were loaded into a 25 ml Teflon-lined stainless steel autoclave to produce the title complex. After being heated at 90°C for 3 d, the autoclave was then cooled to room temperature. Orange–yellow needle-shaped crystals suitable for X-ray diffraction studies were obtained in 65% yield based on the initial Zn(CH3COO)2(H2O)2 input. The reaction scheme is shown in Fig. 3[link]

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C9H6NO2)2(C10H8N4)]
Mr 569.89
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 18.982 (3), 11.603 (3), 14.237 (3)
β (°) 119.545 (9)
V3) 2727.9 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.95
Crystal size (mm) 0.45 × 0.40 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.892, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36639, 3148, 2047
Rint 0.093
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.147, 1.07
No. of reflections 3148
No. of parameters 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray. org]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

catena-Poly[[bis(1H-indole-5-carboxylato-κ2O,O')zinc(II)]-µ-4,4'-azobipyridine-κ2N1:N1'] top
Crystal data top
[Zn(C9H6NO2)2(C10H8N4)]F(000) = 1168
Mr = 569.89Dx = 1.388 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.982 (3) ÅCell parameters from 3148 reflections
b = 11.603 (3) Åθ = 3.0–27.6°
c = 14.237 (3) ŵ = 0.95 mm1
β = 119.545 (9)°T = 293 K
V = 2727.9 (10) Å3Needle, orange yellow
Z = 40.45 × 0.40 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2047 reflections with I > 2σ(I)
φ and ω scansRint = 0.093
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.6°, θmin = 3.0°
Tmin = 0.892, Tmax = 1.000h = 2424
36639 measured reflectionsk = 1415
3148 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0694P)2 + 3.0748P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3148 reflectionsΔρmax = 0.80 e Å3
181 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.93 and with Uiso(H) = 1.2 Ueq(C). The H atom bonded to N was freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.0000000.32303 (5)0.2500000.0404 (2)
O10.03670 (16)0.2799 (2)0.3661 (2)0.0602 (7)
O20.08988 (17)0.1830 (2)0.2149 (2)0.0575 (7)
N20.08542 (17)0.4456 (2)0.3501 (2)0.0434 (7)
N10.1652 (2)0.1717 (3)0.4864 (3)0.0613 (10)
C110.1396 (2)0.4866 (3)0.3247 (3)0.0526 (10)
H110.1429540.4522550.2680830.063*
C150.0838 (2)0.4929 (3)0.4348 (3)0.0583 (10)
H150.0477930.4635820.4553640.070*
C100.0757 (2)0.1944 (3)0.3109 (3)0.0469 (9)
C50.1028 (2)0.1024 (3)0.3604 (3)0.0425 (8)
C40.0774 (2)0.1069 (3)0.4716 (3)0.0482 (9)
H40.0481020.1703930.5117370.058*
C30.0950 (2)0.0195 (3)0.5220 (3)0.0532 (10)
H30.0781810.0226090.5953340.064*
C20.1391 (2)0.0739 (3)0.4587 (3)0.0469 (9)
C70.1657 (2)0.0803 (3)0.3476 (3)0.0452 (9)
C60.1464 (2)0.0091 (3)0.2991 (3)0.0452 (8)
H60.1628440.0060690.2258590.054*
C80.2084 (3)0.1871 (3)0.3108 (3)0.0610 (11)
H80.2329980.2155080.2406090.073*
C90.2062 (3)0.2386 (4)0.3965 (4)0.0673 (12)
H90.2292380.3097840.3949370.081*
N30.23604 (19)0.7221 (3)0.5240 (2)0.0514 (8)
C130.1860 (2)0.6272 (3)0.4617 (3)0.0452 (8)
C120.1904 (2)0.5767 (3)0.3778 (3)0.0513 (9)
H120.2271420.6029360.3573220.062*
C140.1330 (3)0.5827 (4)0.4924 (3)0.0622 (11)
H140.1307470.6132810.5511850.075*
H10.151 (3)0.180 (3)0.552 (4)0.063 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0440 (4)0.0333 (3)0.0460 (4)0.0000.0237 (3)0.000
O10.0641 (18)0.0530 (16)0.0655 (18)0.0108 (14)0.0335 (15)0.0033 (14)
O20.0726 (18)0.0563 (17)0.0555 (17)0.0030 (14)0.0406 (14)0.0111 (13)
N20.0444 (17)0.0367 (16)0.0532 (18)0.0036 (13)0.0272 (15)0.0041 (13)
N10.064 (2)0.068 (2)0.056 (2)0.0037 (18)0.0317 (19)0.020 (2)
C110.059 (2)0.047 (2)0.059 (2)0.0088 (19)0.035 (2)0.0158 (19)
C150.068 (3)0.056 (2)0.066 (3)0.019 (2)0.045 (2)0.015 (2)
C100.0398 (19)0.045 (2)0.059 (2)0.0081 (17)0.0265 (18)0.0116 (19)
C50.046 (2)0.046 (2)0.0423 (19)0.0089 (16)0.0267 (17)0.0100 (16)
C40.050 (2)0.049 (2)0.046 (2)0.0010 (17)0.0241 (18)0.0024 (17)
C30.055 (2)0.069 (3)0.039 (2)0.005 (2)0.0255 (18)0.0095 (19)
C20.044 (2)0.051 (2)0.047 (2)0.0038 (17)0.0238 (17)0.0115 (18)
C70.046 (2)0.047 (2)0.045 (2)0.0044 (17)0.0249 (17)0.0049 (17)
C60.050 (2)0.051 (2)0.0383 (19)0.0025 (17)0.0242 (17)0.0044 (17)
C80.066 (3)0.058 (3)0.055 (2)0.007 (2)0.027 (2)0.005 (2)
C90.067 (3)0.058 (3)0.072 (3)0.008 (2)0.031 (2)0.008 (2)
N30.0558 (19)0.0453 (18)0.0508 (19)0.0127 (15)0.0245 (15)0.0079 (15)
C130.048 (2)0.0369 (19)0.048 (2)0.0060 (16)0.0219 (18)0.0058 (16)
C120.052 (2)0.045 (2)0.066 (3)0.0098 (17)0.036 (2)0.0088 (19)
C140.081 (3)0.061 (3)0.059 (2)0.023 (2)0.045 (2)0.020 (2)
Geometric parameters (Å, º) top
Zn—N22.098 (3)C5—C61.381 (5)
Zn—N2i2.098 (3)C5—C41.410 (5)
Zn—O12.145 (3)C4—C31.375 (5)
Zn—O1i2.145 (3)C4—H40.9300
Zn—O2i2.227 (3)C3—C21.394 (5)
Zn—O22.227 (3)C3—H30.9300
Zn—C10i2.505 (4)C2—C71.405 (5)
Zn—C102.505 (4)C7—C61.392 (5)
O1—C101.255 (4)C7—C81.431 (5)
O2—C101.263 (5)C6—H60.9300
N2—C111.333 (4)C8—C91.340 (6)
N2—C151.340 (4)C8—H80.9300
N1—C91.365 (6)C9—H90.9300
N1—C21.373 (5)N3—N3ii1.236 (6)
N1—H10.84 (4)N3—C131.438 (5)
C11—C121.370 (5)C13—C121.369 (5)
C11—H110.9300C13—C141.379 (5)
C15—C141.370 (5)C12—H120.9300
C15—H150.9300C14—H140.9300
C10—C51.502 (5)
N2—Zn—N2i94.68 (15)C14—C15—H15118.7
N2—Zn—O194.06 (11)O1—C10—O2120.3 (3)
N2i—Zn—O1104.19 (11)O1—C10—C5120.1 (3)
N2—Zn—O1i104.19 (11)O2—C10—C5119.6 (3)
N2i—Zn—O1i94.06 (11)O1—C10—Zn58.88 (19)
O1—Zn—O1i153.04 (16)O2—C10—Zn62.61 (19)
N2—Zn—O2i95.28 (10)C5—C10—Zn166.6 (2)
N2i—Zn—O2i153.72 (10)C6—C5—C4120.4 (3)
O1—Zn—O2i99.28 (10)C6—C5—C10119.8 (3)
O1i—Zn—O2i59.90 (10)C4—C5—C10119.6 (3)
N2—Zn—O2153.72 (10)C3—C4—C5121.4 (3)
N2i—Zn—O295.28 (10)C3—C4—H4119.3
O1—Zn—O259.91 (10)C5—C4—H4119.3
O1i—Zn—O299.28 (10)C4—C3—C2117.3 (3)
O2i—Zn—O286.31 (14)C4—C3—H3121.3
N2—Zn—C10i104.80 (11)C2—C3—H3121.3
N2i—Zn—C10i123.50 (12)N1—C2—C3130.1 (4)
O1—Zn—C10i125.99 (13)N1—C2—C7107.4 (3)
O1i—Zn—C10i30.07 (11)C3—C2—C7122.5 (3)
O2i—Zn—C10i30.23 (11)C6—C7—C2118.8 (3)
O2—Zn—C10i89.71 (10)C6—C7—C8134.7 (3)
N2—Zn—C10123.50 (12)C2—C7—C8106.5 (3)
N2i—Zn—C10104.80 (11)C5—C6—C7119.5 (3)
O1—Zn—C1030.07 (11)C5—C6—H6120.2
O1i—Zn—C10125.99 (13)C7—C6—H6120.2
O2i—Zn—C1089.71 (10)C9—C8—C7107.1 (4)
O2—Zn—C1030.23 (11)C9—C8—H8126.4
C10i—Zn—C10106.87 (17)C7—C8—H8126.4
C10—O1—Zn91.0 (2)C8—C9—N1110.3 (4)
C10—O2—Zn87.2 (2)C8—C9—H9124.8
C11—N2—C15117.4 (3)N1—C9—H9124.8
C11—N2—Zn119.9 (2)N3ii—N3—C13113.1 (4)
C15—N2—Zn122.4 (2)C12—C13—C14118.9 (3)
C9—N1—C2108.7 (4)C12—C13—N3124.1 (3)
C9—N1—H1134 (3)C14—C13—N3117.0 (3)
C2—N1—H1117 (3)C13—C12—C11118.6 (3)
N2—C11—C12123.4 (3)C13—C12—H12120.7
N2—C11—H11118.3C11—C12—H12120.7
C12—C11—H11118.3C15—C14—C13119.0 (4)
N2—C15—C14122.6 (4)C15—C14—H14120.5
N2—C15—H15118.7C13—C14—H14120.5
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2iii0.84 (4)2.02 (4)2.840 (5)165 (4)
C12—H12···Cgiv0.932.793.454 (5)129
Symmetry codes: (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z.
 

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray. org  Google Scholar
First citationChen, N.-N., Zhang, C. & Tao, J.-Q. (2020). Acta Cryst. C76, 850–855.  CSD CrossRef IUCr Journals Google Scholar
First citationCui, G.-G., Yang, X.-X. & Yang, J.-P. (2014). Acta Cryst. C70, 498–501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, Q.-Y., Yang, Y. & Meng, X.-R. (2015). Acta Cryst. C71, 701–705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-Y., Peng, Y.-Q., Li, J., Fu, W.-W., Liu, Y. & Li, Y.-M. (2018). Acta Cryst. E74, 28–33.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F., Ding, Y., Li, Q. & Zhang, L. (2017). Acta Cryst. E73, 1402–1404.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaik, A. D., Dîrtu, M. M., Railliet, A. P., Marchand-Brynaert, J. & Garcia, Y. (2011). Polymers, 3, 1750–1775.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYing, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618–622.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds