metal-organic compounds
catena-Poly[[bis(1H-indole-5-carboxylato-κ2O,O′)zinc(II)]-μ-4,4′-azobipyridine-κ2N1:N1′]
aCentre for Research and Development, PRIST Deemed to be University, Thanjavur, 613 403, Tamil Nadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, and cX-ray Crystallography Unit, School of Physics, University Sains Malaysia, 11800, USM, Penang, Malaysia
*Correspondence e-mail: nirmalramjs@gmail.com
The 9H6NO2)2(C10H8N4)]n, consists of one ZnII cation, one bidentate 1H-indole-5-carboxylate (I5C) anion and half of a 4,4′-azobipyridine (Abpy) neutral ligand. In the the ZnII ion adopts a distorted octahedral geometry. The coordination polymer is stabilized by a combination of N—H⋯O and C—H⋯π interactions, which leads to the formation of wave-like two-dimensional coordination polymeric layers.
of the title coordination polymer [Zn(CKeywords: crystal engineering; coordination polymer; metal-organic framework; structural chemistry; non-covalent interactions; crystal structure.
CCDC reference: 2083957
Structure description
The design of coordination polymers (CPs) and metal–organic frameworks (MOFs) is one of the most important fields in inorganic crystal engineering and material science because of their utility, functions and interesting architectures (Ying et al., 2015; Li et al., 2018). The self-assembly of metal–organic frameworks and coordination polymers is obtained by complexing metal ions with organic ligands (Li et al., 2018). In the field of storage and separation sciences, MOFs are a strong competitor for zeolites and carbon nanotubes (Naik et al., 2011; Cui et al., 2014). Several MOF structures with ZnII ions have recently been reported (Ying et al., 2015; Huang et al., 2015; Liu et al., 2017; Chen et al., 2020). In the present work, we report the of a ZnII-containing coordination polymer constructed using 4,4′-azopyridine and indole-5-carboxylic acid.
The II cation, one bidentate 1H-indole-5-carboxylate (I5C) anion and half of a 4,4′-azobipyridine (Abpy) neutral ligand. The other half of the Abpy ligand is generated by a centre of inversion (symmetry operation − − x, − y, −z) and it bridges the adjacent ZnII ion as shown in Fig. 1. Thus, one neutral Abpy ligand bridges two ZnII ions. Each of the ZnII centres has a six-coordinate N2O4 environment being bonded to the O atoms of two bidentate (I5C) anions and the N atoms of two (Abpy) ligands in a distorted octahedral geometry. The Zn—O1, Zn—O2 and Zn—N2 distances are 2.145 (3), 2.227 (3) and 2.098 (3) Å, respectively.
consists of one ZnThe six-coordinated monomeric ZnII unit extends as a zigzag chain in the [01] direction. Adjacent chains are linked through N—H⋯Oi [symmetry code: (i) x, −y, − + z] hydrogen bonds connecting the N atom of an indole moiety and an O atom of a symmetry-related indole moiety (Table 1, Fig. 2). Adjacent layers are held together by weak C—H⋯π interactions between the C—H group of an Abpy ligand and the aromatic ring of an I5C anion (Table 1).
Synthesis and crystallization
Zn(CH3COO)2(H2O)2 (50 mg), indole-5-carboxylic acid (35 mg), 4,4′-azopyridine (35 mg) and deionized water (2.5 ml) were loaded into a 25 ml Teflon-lined stainless steel autoclave to produce the title complex. After being heated at 90°C for 3 d, the autoclave was then cooled to room temperature. Orange–yellow needle-shaped crystals suitable for X-ray diffraction studies were obtained in 65% yield based on the initial Zn(CH3COO)2(H2O)2 input. The reaction scheme is shown in Fig. 3
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2083957
https://doi.org/10.1107/S2414314621005228/bt4113sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621005228/bt4113Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).[Zn(C9H6NO2)2(C10H8N4)] | F(000) = 1168 |
Mr = 569.89 | Dx = 1.388 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.982 (3) Å | Cell parameters from 3148 reflections |
b = 11.603 (3) Å | θ = 3.0–27.6° |
c = 14.237 (3) Å | µ = 0.95 mm−1 |
β = 119.545 (9)° | T = 293 K |
V = 2727.9 (10) Å3 | Needle, orange yellow |
Z = 4 | 0.45 × 0.40 × 0.30 mm |
Bruker APEXII CCD diffractometer | 2047 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.093 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 27.6°, θmin = 3.0° |
Tmin = 0.892, Tmax = 1.000 | h = −24→24 |
36639 measured reflections | k = −14→15 |
3148 independent reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0694P)2 + 3.0748P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3148 reflections | Δρmax = 0.80 e Å−3 |
181 parameters | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.93 and with Uiso(H) = 1.2 Ueq(C). The H atom bonded to N was freely refined. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.000000 | 0.32303 (5) | 0.250000 | 0.0404 (2) | |
O1 | −0.03670 (16) | 0.2799 (2) | 0.3661 (2) | 0.0602 (7) | |
O2 | −0.08988 (17) | 0.1830 (2) | 0.2149 (2) | 0.0575 (7) | |
N2 | 0.08542 (17) | 0.4456 (2) | 0.3501 (2) | 0.0434 (7) | |
N1 | −0.1652 (2) | −0.1717 (3) | 0.4864 (3) | 0.0613 (10) | |
C11 | 0.1396 (2) | 0.4866 (3) | 0.3247 (3) | 0.0526 (10) | |
H11 | 0.142954 | 0.452255 | 0.268083 | 0.063* | |
C15 | 0.0838 (2) | 0.4929 (3) | 0.4348 (3) | 0.0583 (10) | |
H15 | 0.047793 | 0.463582 | 0.455364 | 0.070* | |
C10 | −0.0757 (2) | 0.1944 (3) | 0.3109 (3) | 0.0469 (9) | |
C5 | −0.1028 (2) | 0.1024 (3) | 0.3604 (3) | 0.0425 (8) | |
C4 | −0.0774 (2) | 0.1069 (3) | 0.4716 (3) | 0.0482 (9) | |
H4 | −0.048102 | 0.170393 | 0.511737 | 0.058* | |
C3 | −0.0950 (2) | 0.0195 (3) | 0.5220 (3) | 0.0532 (10) | |
H3 | −0.078181 | 0.022609 | 0.595334 | 0.064* | |
C2 | −0.1391 (2) | −0.0739 (3) | 0.4587 (3) | 0.0469 (9) | |
C7 | −0.1657 (2) | −0.0803 (3) | 0.3476 (3) | 0.0452 (9) | |
C6 | −0.1464 (2) | 0.0091 (3) | 0.2991 (3) | 0.0452 (8) | |
H6 | −0.162844 | 0.006069 | 0.225859 | 0.054* | |
C8 | −0.2084 (3) | −0.1871 (3) | 0.3108 (3) | 0.0610 (11) | |
H8 | −0.232998 | −0.215508 | 0.240609 | 0.073* | |
C9 | −0.2062 (3) | −0.2386 (4) | 0.3965 (4) | 0.0673 (12) | |
H9 | −0.229238 | −0.309784 | 0.394937 | 0.081* | |
N3 | 0.23604 (19) | 0.7221 (3) | 0.5240 (2) | 0.0514 (8) | |
C13 | 0.1860 (2) | 0.6272 (3) | 0.4617 (3) | 0.0452 (8) | |
C12 | 0.1904 (2) | 0.5767 (3) | 0.3778 (3) | 0.0513 (9) | |
H12 | 0.227142 | 0.602936 | 0.357322 | 0.062* | |
C14 | 0.1330 (3) | 0.5827 (4) | 0.4924 (3) | 0.0622 (11) | |
H14 | 0.130747 | 0.613281 | 0.551185 | 0.075* | |
H1 | −0.151 (3) | −0.180 (3) | 0.552 (4) | 0.063 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.0440 (4) | 0.0333 (3) | 0.0460 (4) | 0.000 | 0.0237 (3) | 0.000 |
O1 | 0.0641 (18) | 0.0530 (16) | 0.0655 (18) | −0.0108 (14) | 0.0335 (15) | 0.0033 (14) |
O2 | 0.0726 (18) | 0.0563 (17) | 0.0555 (17) | 0.0030 (14) | 0.0406 (14) | 0.0111 (13) |
N2 | 0.0444 (17) | 0.0367 (16) | 0.0532 (18) | −0.0036 (13) | 0.0272 (15) | −0.0041 (13) |
N1 | 0.064 (2) | 0.068 (2) | 0.056 (2) | −0.0037 (18) | 0.0317 (19) | 0.020 (2) |
C11 | 0.059 (2) | 0.047 (2) | 0.059 (2) | −0.0088 (19) | 0.035 (2) | −0.0158 (19) |
C15 | 0.068 (3) | 0.056 (2) | 0.066 (3) | −0.019 (2) | 0.045 (2) | −0.015 (2) |
C10 | 0.0398 (19) | 0.045 (2) | 0.059 (2) | 0.0081 (17) | 0.0265 (18) | 0.0116 (19) |
C5 | 0.046 (2) | 0.046 (2) | 0.0423 (19) | 0.0089 (16) | 0.0267 (17) | 0.0100 (16) |
C4 | 0.050 (2) | 0.049 (2) | 0.046 (2) | −0.0010 (17) | 0.0241 (18) | −0.0024 (17) |
C3 | 0.055 (2) | 0.069 (3) | 0.039 (2) | 0.005 (2) | 0.0255 (18) | 0.0095 (19) |
C2 | 0.044 (2) | 0.051 (2) | 0.047 (2) | 0.0038 (17) | 0.0238 (17) | 0.0115 (18) |
C7 | 0.046 (2) | 0.047 (2) | 0.045 (2) | 0.0044 (17) | 0.0249 (17) | 0.0049 (17) |
C6 | 0.050 (2) | 0.051 (2) | 0.0383 (19) | 0.0025 (17) | 0.0242 (17) | 0.0044 (17) |
C8 | 0.066 (3) | 0.058 (3) | 0.055 (2) | −0.007 (2) | 0.027 (2) | 0.005 (2) |
C9 | 0.067 (3) | 0.058 (3) | 0.072 (3) | −0.008 (2) | 0.031 (2) | 0.008 (2) |
N3 | 0.0558 (19) | 0.0453 (18) | 0.0508 (19) | −0.0127 (15) | 0.0245 (15) | −0.0079 (15) |
C13 | 0.048 (2) | 0.0369 (19) | 0.048 (2) | −0.0060 (16) | 0.0219 (18) | −0.0058 (16) |
C12 | 0.052 (2) | 0.045 (2) | 0.066 (3) | −0.0098 (17) | 0.036 (2) | −0.0088 (19) |
C14 | 0.081 (3) | 0.061 (3) | 0.059 (2) | −0.023 (2) | 0.045 (2) | −0.020 (2) |
Zn—N2 | 2.098 (3) | C5—C6 | 1.381 (5) |
Zn—N2i | 2.098 (3) | C5—C4 | 1.410 (5) |
Zn—O1 | 2.145 (3) | C4—C3 | 1.375 (5) |
Zn—O1i | 2.145 (3) | C4—H4 | 0.9300 |
Zn—O2i | 2.227 (3) | C3—C2 | 1.394 (5) |
Zn—O2 | 2.227 (3) | C3—H3 | 0.9300 |
Zn—C10i | 2.505 (4) | C2—C7 | 1.405 (5) |
Zn—C10 | 2.505 (4) | C7—C6 | 1.392 (5) |
O1—C10 | 1.255 (4) | C7—C8 | 1.431 (5) |
O2—C10 | 1.263 (5) | C6—H6 | 0.9300 |
N2—C11 | 1.333 (4) | C8—C9 | 1.340 (6) |
N2—C15 | 1.340 (4) | C8—H8 | 0.9300 |
N1—C9 | 1.365 (6) | C9—H9 | 0.9300 |
N1—C2 | 1.373 (5) | N3—N3ii | 1.236 (6) |
N1—H1 | 0.84 (4) | N3—C13 | 1.438 (5) |
C11—C12 | 1.370 (5) | C13—C12 | 1.369 (5) |
C11—H11 | 0.9300 | C13—C14 | 1.379 (5) |
C15—C14 | 1.370 (5) | C12—H12 | 0.9300 |
C15—H15 | 0.9300 | C14—H14 | 0.9300 |
C10—C5 | 1.502 (5) | ||
N2—Zn—N2i | 94.68 (15) | C14—C15—H15 | 118.7 |
N2—Zn—O1 | 94.06 (11) | O1—C10—O2 | 120.3 (3) |
N2i—Zn—O1 | 104.19 (11) | O1—C10—C5 | 120.1 (3) |
N2—Zn—O1i | 104.19 (11) | O2—C10—C5 | 119.6 (3) |
N2i—Zn—O1i | 94.06 (11) | O1—C10—Zn | 58.88 (19) |
O1—Zn—O1i | 153.04 (16) | O2—C10—Zn | 62.61 (19) |
N2—Zn—O2i | 95.28 (10) | C5—C10—Zn | 166.6 (2) |
N2i—Zn—O2i | 153.72 (10) | C6—C5—C4 | 120.4 (3) |
O1—Zn—O2i | 99.28 (10) | C6—C5—C10 | 119.8 (3) |
O1i—Zn—O2i | 59.90 (10) | C4—C5—C10 | 119.6 (3) |
N2—Zn—O2 | 153.72 (10) | C3—C4—C5 | 121.4 (3) |
N2i—Zn—O2 | 95.28 (10) | C3—C4—H4 | 119.3 |
O1—Zn—O2 | 59.91 (10) | C5—C4—H4 | 119.3 |
O1i—Zn—O2 | 99.28 (10) | C4—C3—C2 | 117.3 (3) |
O2i—Zn—O2 | 86.31 (14) | C4—C3—H3 | 121.3 |
N2—Zn—C10i | 104.80 (11) | C2—C3—H3 | 121.3 |
N2i—Zn—C10i | 123.50 (12) | N1—C2—C3 | 130.1 (4) |
O1—Zn—C10i | 125.99 (13) | N1—C2—C7 | 107.4 (3) |
O1i—Zn—C10i | 30.07 (11) | C3—C2—C7 | 122.5 (3) |
O2i—Zn—C10i | 30.23 (11) | C6—C7—C2 | 118.8 (3) |
O2—Zn—C10i | 89.71 (10) | C6—C7—C8 | 134.7 (3) |
N2—Zn—C10 | 123.50 (12) | C2—C7—C8 | 106.5 (3) |
N2i—Zn—C10 | 104.80 (11) | C5—C6—C7 | 119.5 (3) |
O1—Zn—C10 | 30.07 (11) | C5—C6—H6 | 120.2 |
O1i—Zn—C10 | 125.99 (13) | C7—C6—H6 | 120.2 |
O2i—Zn—C10 | 89.71 (10) | C9—C8—C7 | 107.1 (4) |
O2—Zn—C10 | 30.23 (11) | C9—C8—H8 | 126.4 |
C10i—Zn—C10 | 106.87 (17) | C7—C8—H8 | 126.4 |
C10—O1—Zn | 91.0 (2) | C8—C9—N1 | 110.3 (4) |
C10—O2—Zn | 87.2 (2) | C8—C9—H9 | 124.8 |
C11—N2—C15 | 117.4 (3) | N1—C9—H9 | 124.8 |
C11—N2—Zn | 119.9 (2) | N3ii—N3—C13 | 113.1 (4) |
C15—N2—Zn | 122.4 (2) | C12—C13—C14 | 118.9 (3) |
C9—N1—C2 | 108.7 (4) | C12—C13—N3 | 124.1 (3) |
C9—N1—H1 | 134 (3) | C14—C13—N3 | 117.0 (3) |
C2—N1—H1 | 117 (3) | C13—C12—C11 | 118.6 (3) |
N2—C11—C12 | 123.4 (3) | C13—C12—H12 | 120.7 |
N2—C11—H11 | 118.3 | C11—C12—H12 | 120.7 |
C12—C11—H11 | 118.3 | C15—C14—C13 | 119.0 (4) |
N2—C15—C14 | 122.6 (4) | C15—C14—H14 | 120.5 |
N2—C15—H15 | 118.7 | C13—C14—H14 | 120.5 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, −y+3/2, −z+1. |
Cg is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2iii | 0.84 (4) | 2.02 (4) | 2.840 (5) | 165 (4) |
C12—H12···Cgiv | 0.93 | 2.79 | 3.454 (5) | 129 |
Symmetry codes: (iii) x, −y, z+1/2; (iv) x+1/2, y+1/2, z. |
References
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray. org Google Scholar
Chen, N.-N., Zhang, C. & Tao, J.-Q. (2020). Acta Cryst. C76, 850–855. CSD CrossRef IUCr Journals Google Scholar
Cui, G.-G., Yang, X.-X. & Yang, J.-P. (2014). Acta Cryst. C70, 498–501. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, Q.-Y., Yang, Y. & Meng, X.-R. (2015). Acta Cryst. C71, 701–705. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, X.-Y., Peng, Y.-Q., Li, J., Fu, W.-W., Liu, Y. & Li, Y.-M. (2018). Acta Cryst. E74, 28–33. CSD CrossRef IUCr Journals Google Scholar
Liu, F., Ding, Y., Li, Q. & Zhang, L. (2017). Acta Cryst. E73, 1402–1404. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Naik, A. D., Dîrtu, M. M., Railliet, A. P., Marchand-Brynaert, J. & Garcia, Y. (2011). Polymers, 3, 1750–1775. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ying, S.-M., Ru, J.-J. & Luo, W.-K. (2015). Acta Cryst. C71, 618–622. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.