organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-cyano-2-{(Z)-2-[2,2-di­cyano-1-(4-methyl­phen­yl)eth­yl]cyclo­hexyl­­idene}acetate

crossmark logo

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profmani.au@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 29 March 2021; accepted 11 May 2021; online 14 May 2021)

In the title compound, C22H23N3O2, the cyclo­hexane ring adopts a chair conformation. The methyl­phenyl ring is oriented at an angle of 36.2 (1)° with respect to the best plane of cyclo­hexane moiety. In the crystal, mol­ecules associate via C—H⋯N hydrogen bonds, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclo­hexyl­idene derivatives possess a wide range of biological activities including anti­bacterial (Gupta & Narayana, 1997[Gupta, R. P. & Narayana, N. L. (1997). Pharm. Acta Helv. 72, 43-45.]), anti­viral (Ulusoy Guzeldemirci et al., 2016[Ulusoy Guzeldemirci, N., Pehlivan, E., Halamoglu, Z. & Kocabalkanli, A. (2016). Pharm. J. 20, 207-215.]), anti­tuberculatic and anti-inflammatory (Kabir et al., 2008[Kabir, A. K. M. S., Kawsar, S. M. A., Bhuiyan, M. M. R., Safiqur Rahman, M. D. & Banu, B. (2008). Chittagong Univ. J. Biol. Sci. 3, 53-64.]). As part of our studies in this area, we have undertaken a single-crystal X-ray diffraction study for the title compound, and the results are presented here.

The methyl­phenyl ring is oriented at an angle of 36.2 (1)° with respect to the best plane of cyclo­hexane moiety. The cyclo­hexane ring adopts a chair conformation, the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are: q2 = 0.001 (1) Å, q3 = −0.562 (2) Å, QT = 0.562 (2) Å and θ = 179.0 (1)°. Atoms C1 and C4 deviate by 0.681 (1) and −0.652 (1) Å, respectively, from the least-squares plane through the remaining four atoms. An intra­molecular C—H⋯O hydrogen bond is observed (Table 1[link]), which generates an S(6) ring (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.98 2.23 3.001 (2) 135
C5—H5A⋯N1i 0.97 2.57 3.536 (3) 172
C8—H8⋯N3ii 0.98 2.27 3.221 (2) 163
Symmetry codes: (i) [-x, -y+2, -z+1]; (ii) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular C—H⋯O hydrogen bond is shown as a dashed line.

In the crystal, mol­ecules associate via pairwise C5—H5A⋯N1i hydrogen bonds into inversion dimers with an R22(16) loop motif. In addition, C8—H8⋯N3ii hydrogen bonds form a R22(16) graph-set motif (Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound viewed down the a axis. The C—H⋯N hydrogen bonds (see Table 1[link]) are shown as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.

The two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the mol­ecule, created using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayathilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) for the contacts contributing to the Hirshfeld surface are shown in Figs. 3[link]–5[link][link]. The analysis reveals that H⋯H contacts (45.7%) and N⋯H/H⋯N contacts (29.8%) are the main contributors to the crystal packing, followed by C⋯H/H⋯C (14%) and O⋯H/H⋯O (7.8%) contacts.

[Figure 3]
Figure 3
The two-dimensional fingerprint plot for the title compound depicting the overall contribution by the various contacts.
[Figure 4]
Figure 4
The two-dimensional fingerprint plot for the title compound depicting the contribution of the N⋯H contacts.
[Figure 5]
Figure 5
The two-dimensional fingerprint plot for the title compound depicting the contribution of the C⋯H contacts.

Synthesis and crystallization

A mixture of 2-amino-4-(p-tol­yl)octa­hydro­naphthalene-1,3,3(2H)-tricarbo­nitrile (0.01 mol), formic acid (5 mL) and a catalytic amount of concentrated HCl was refluxed for 16 h and the reaction mixture was allowed to cool. The reaction mixture was poured onto crushed ice and the solid that separated was filtered, dried and recrystallized using ethanol and water as mixed solvents.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H23N3O2
Mr 361.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.4465 (3), 10.2960 (4), 12.1699 (4)
α, β, γ (°) 91.240 (1), 95.072 (1), 92.102 (1)
V3) 1053.17 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.24 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker SMART APEX CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 28133, 6098, 4212
Rint 0.033
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.211, 0.97
No. of reflections 6098
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.31
Computer programs: SMART and, SAINT (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2008[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) and PLATON (Spek, 2020).

Ethyl 2-cyano-2-{(Z)-2-[2,2-dicyano-1-(4-methylphenyl)ethyl]cyclohexylidene}acetate top
Crystal data top
C22H23N3O2Z = 2
Mr = 361.43F(000) = 384
Triclinic, P1Dx = 1.140 Mg m3
a = 8.4465 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2960 (4) ÅCell parameters from 18428 reflections
c = 12.1699 (4) Åθ = 2.8–28.2°
α = 91.240 (1)°µ = 0.07 mm1
β = 95.072 (1)°T = 296 K
γ = 92.102 (1)°Block, colourless
V = 1053.17 (7) Å30.24 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.6°
ω and φ scansh = 1111
28133 measured reflectionsk = 1414
6098 independent reflectionsl = 1617
4212 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.1037P)2 + 0.3202P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
6098 reflectionsΔρmax = 0.38 e Å3
244 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2013 (2)0.55320 (15)0.86132 (11)0.0772 (4)
O20.0185 (2)0.42057 (16)0.77154 (13)0.0819 (5)
N10.1230 (3)1.0587 (2)0.60489 (18)0.0857 (6)
N20.0870 (3)0.7604 (3)0.8407 (2)0.1067 (8)
N30.11934 (19)0.34667 (15)0.52121 (14)0.0616 (4)
C10.30484 (18)0.75924 (14)0.70937 (13)0.0443 (3)
H10.2854410.7348450.7845440.053*
C20.4861 (2)0.78324 (19)0.70392 (18)0.0628 (5)
H2A0.5211710.8593850.7491720.075*
H2B0.5413260.7094550.7345620.075*
C30.5315 (2)0.8033 (2)0.5874 (2)0.0732 (6)
H3A0.4861240.8824520.5592290.088*
H3B0.6463160.8131270.5885070.088*
C40.4726 (2)0.6896 (2)0.5118 (2)0.0700 (5)
H4A0.5287150.6126690.5343170.084*
H4B0.4954220.7081720.4369020.084*
C50.2929 (2)0.66303 (15)0.51486 (13)0.0489 (4)
H5A0.2355730.7350330.4828580.059*
H5B0.2601030.5850060.4714240.059*
C60.25320 (16)0.64621 (13)0.63136 (12)0.0411 (3)
C70.21454 (17)0.88396 (13)0.68062 (12)0.0417 (3)
H70.2444340.9107520.6082480.050*
C80.03147 (19)0.85589 (15)0.66844 (14)0.0488 (4)
H80.0092400.7898980.6093010.059*
C90.0339 (2)0.8042 (2)0.76680 (19)0.0646 (5)
C100.0551 (2)0.97122 (18)0.63408 (15)0.0576 (4)
C110.26493 (18)0.99501 (14)0.76145 (12)0.0440 (3)
C120.2656 (3)0.98255 (17)0.87475 (14)0.0602 (5)
H120.2316160.9042050.9031380.072*
C130.3163 (3)1.08555 (19)0.94631 (15)0.0662 (5)
H130.3153641.0748561.0219400.079*
C140.3677 (2)1.20274 (18)0.90808 (16)0.0602 (5)
C150.3642 (3)1.21591 (18)0.79527 (17)0.0660 (5)
H150.3970021.2947980.7672390.079*
C160.3129 (2)1.11375 (16)0.72261 (15)0.0563 (4)
H160.3108421.1256030.6469650.068*
C170.4252 (3)1.3131 (2)0.9871 (2)0.0852 (7)
H17A0.4562921.3870090.9461410.128*
H17B0.3411861.3359861.0312290.128*
H17C0.5147781.2864421.0342400.128*
C180.18375 (18)0.53484 (14)0.66384 (12)0.0437 (3)
C190.14525 (18)0.43040 (14)0.58413 (13)0.0461 (3)
C200.1382 (2)0.50714 (16)0.77718 (15)0.0548 (4)
C210.0385 (4)0.3775 (3)0.8773 (3)0.1121 (11)
H21A0.0511640.3537620.9271490.135*
H21B0.0906090.4482190.9116490.135*
C220.1466 (7)0.2695 (6)0.8578 (4)0.230 (4)
H22A0.1829810.2422010.9265230.345*
H22B0.2358190.2936290.8091410.345*
H22C0.0943680.1993860.8246060.345*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1095 (12)0.0724 (9)0.0462 (7)0.0169 (8)0.0038 (7)0.0028 (6)
O20.0936 (11)0.0866 (10)0.0649 (9)0.0352 (9)0.0220 (8)0.0082 (7)
N10.0845 (13)0.0805 (12)0.0916 (14)0.0291 (10)0.0066 (10)0.0086 (10)
N20.0828 (14)0.1213 (19)0.122 (2)0.0053 (13)0.0354 (14)0.0376 (16)
N30.0638 (9)0.0504 (8)0.0681 (10)0.0032 (6)0.0017 (7)0.0148 (7)
C10.0461 (7)0.0394 (7)0.0454 (7)0.0001 (5)0.0041 (6)0.0053 (6)
C20.0452 (8)0.0555 (9)0.0841 (13)0.0001 (7)0.0095 (8)0.0148 (9)
C30.0482 (9)0.0661 (11)0.1056 (17)0.0106 (8)0.0168 (10)0.0112 (11)
C40.0612 (11)0.0656 (11)0.0858 (14)0.0039 (9)0.0272 (10)0.0125 (10)
C50.0544 (9)0.0440 (7)0.0484 (8)0.0004 (6)0.0087 (6)0.0049 (6)
C60.0386 (7)0.0381 (6)0.0454 (7)0.0034 (5)0.0021 (5)0.0044 (5)
C70.0458 (7)0.0383 (7)0.0396 (7)0.0001 (5)0.0014 (5)0.0057 (5)
C80.0475 (8)0.0433 (7)0.0537 (9)0.0030 (6)0.0040 (6)0.0112 (6)
C90.0506 (9)0.0612 (10)0.0824 (13)0.0027 (8)0.0066 (9)0.0061 (10)
C100.0557 (9)0.0585 (10)0.0568 (10)0.0076 (8)0.0053 (7)0.0078 (8)
C110.0475 (8)0.0391 (7)0.0439 (7)0.0001 (6)0.0020 (6)0.0071 (6)
C120.0866 (13)0.0476 (8)0.0446 (8)0.0081 (8)0.0010 (8)0.0054 (7)
C130.0893 (14)0.0608 (10)0.0457 (9)0.0025 (9)0.0044 (9)0.0133 (8)
C140.0635 (10)0.0509 (9)0.0621 (10)0.0011 (7)0.0111 (8)0.0184 (8)
C150.0853 (13)0.0431 (8)0.0664 (11)0.0135 (8)0.0021 (10)0.0064 (8)
C160.0739 (11)0.0453 (8)0.0480 (8)0.0082 (7)0.0008 (8)0.0031 (7)
C170.1015 (17)0.0665 (12)0.0806 (15)0.0079 (12)0.0192 (12)0.0301 (11)
C180.0449 (7)0.0394 (7)0.0454 (7)0.0007 (5)0.0015 (6)0.0044 (6)
C190.0447 (7)0.0409 (7)0.0515 (8)0.0009 (6)0.0005 (6)0.0028 (6)
C200.0654 (10)0.0459 (8)0.0528 (9)0.0025 (7)0.0055 (8)0.0002 (7)
C210.133 (3)0.122 (2)0.0823 (18)0.037 (2)0.0367 (17)0.0020 (16)
C220.243 (6)0.294 (8)0.152 (4)0.161 (6)0.090 (4)0.004 (4)
Geometric parameters (Å, º) top
O1—C201.192 (2)C8—C101.466 (2)
O2—C201.320 (2)C8—C91.465 (3)
O2—C211.484 (3)C8—H80.9800
N1—C101.132 (2)C11—C161.380 (2)
N2—C91.135 (3)C11—C121.387 (2)
N3—C191.143 (2)C12—C131.388 (2)
C1—C61.5125 (19)C12—H120.9300
C1—C71.548 (2)C13—C141.372 (3)
C1—C21.550 (2)C13—H130.9300
C1—H10.9800C14—C151.380 (3)
C2—C31.518 (3)C14—C171.511 (2)
C2—H2A0.9700C15—C161.391 (2)
C2—H2B0.9700C15—H150.9300
C3—C41.514 (3)C16—H160.9300
C3—H3A0.9700C17—H17A0.9600
C3—H3B0.9700C17—H17B0.9600
C4—C51.537 (3)C17—H17C0.9600
C4—H4A0.9700C18—C191.441 (2)
C4—H4B0.9700C18—C201.495 (2)
C5—C61.498 (2)C21—C221.415 (5)
C5—H5A0.9700C21—H21A0.9700
C5—H5B0.9700C21—H21B0.9700
C6—C181.351 (2)C22—H22A0.9600
C7—C111.5158 (18)C22—H22B0.9600
C7—C81.556 (2)C22—H22C0.9600
C7—H70.9800
C20—O2—C21117.29 (18)N2—C9—C8177.5 (3)
C6—C1—C7112.65 (11)N1—C10—C8178.2 (2)
C6—C1—C2107.22 (13)C16—C11—C12117.76 (14)
C7—C1—C2110.65 (13)C16—C11—C7119.73 (14)
C6—C1—H1108.7C12—C11—C7122.51 (14)
C7—C1—H1108.7C11—C12—C13120.84 (17)
C2—C1—H1108.7C11—C12—H12119.6
C3—C2—C1113.00 (15)C13—C12—H12119.6
C3—C2—H2A109.0C14—C13—C12121.55 (18)
C1—C2—H2A109.0C14—C13—H13119.2
C3—C2—H2B109.0C12—C13—H13119.2
C1—C2—H2B109.0C13—C14—C15117.60 (15)
H2A—C2—H2B107.8C13—C14—C17120.90 (19)
C4—C3—C2111.15 (17)C15—C14—C17121.50 (19)
C4—C3—H3A109.4C14—C15—C16121.44 (17)
C2—C3—H3A109.4C14—C15—H15119.3
C4—C3—H3B109.4C16—C15—H15119.3
C2—C3—H3B109.4C11—C16—C15120.78 (16)
H3A—C3—H3B108.0C11—C16—H16119.6
C3—C4—C5111.29 (15)C15—C16—H16119.6
C3—C4—H4A109.4C14—C17—H17A109.5
C5—C4—H4A109.4C14—C17—H17B109.5
C3—C4—H4B109.4H17A—C17—H17B109.5
C5—C4—H4B109.4C14—C17—H17C109.5
H4A—C4—H4B108.0H17A—C17—H17C109.5
C6—C5—C4110.22 (15)H17B—C17—H17C109.5
C6—C5—H5A109.6C6—C18—C19119.19 (14)
C4—C5—H5A109.6C6—C18—C20126.34 (13)
C6—C5—H5B109.6C19—C18—C20114.46 (13)
C4—C5—H5B109.6N3—C19—C18177.98 (17)
H5A—C5—H5B108.1O1—C20—O2124.07 (18)
C18—C6—C5121.57 (13)O1—C20—C18125.98 (17)
C18—C6—C1123.37 (14)O2—C20—C18109.94 (15)
C5—C6—C1114.98 (12)C22—C21—O2109.9 (3)
C11—C7—C1111.82 (11)C22—C21—H21A109.7
C11—C7—C8112.83 (12)O2—C21—H21A109.7
C1—C7—C8111.14 (12)C22—C21—H21B109.7
C11—C7—H7106.9O2—C21—H21B109.7
C1—C7—H7106.9H21A—C21—H21B108.2
C8—C7—H7106.9C21—C22—H22A109.5
C10—C8—C9108.96 (15)C21—C22—H22B109.5
C10—C8—C7111.69 (14)H22A—C22—H22B109.5
C9—C8—C7114.82 (14)C21—C22—H22C109.5
C10—C8—H8107.0H22A—C22—H22C109.5
C9—C8—H8107.0H22B—C22—H22C109.5
C7—C8—H8107.0
C6—C1—C2—C354.57 (19)C8—C7—C11—C1274.0 (2)
C7—C1—C2—C368.63 (18)C16—C11—C12—C131.4 (3)
C1—C2—C3—C456.0 (2)C7—C11—C12—C13178.39 (17)
C2—C3—C4—C554.3 (2)C11—C12—C13—C140.1 (3)
C3—C4—C5—C653.9 (2)C12—C13—C14—C151.3 (3)
C4—C5—C6—C18120.06 (16)C12—C13—C14—C17178.9 (2)
C4—C5—C6—C156.71 (17)C13—C14—C15—C160.9 (3)
C7—C1—C6—C18117.15 (16)C17—C14—C15—C16179.3 (2)
C2—C1—C6—C18120.89 (16)C12—C11—C16—C151.8 (3)
C7—C1—C6—C566.15 (17)C7—C11—C16—C15178.03 (16)
C2—C1—C6—C555.82 (17)C14—C15—C16—C110.6 (3)
C6—C1—C7—C11178.52 (12)C5—C6—C18—C190.8 (2)
C2—C1—C7—C1161.47 (17)C1—C6—C18—C19177.25 (13)
C6—C1—C7—C851.44 (17)C5—C6—C18—C20179.74 (15)
C2—C1—C7—C8171.45 (13)C1—C6—C18—C203.8 (2)
C11—C7—C8—C1057.22 (18)C21—O2—C20—O10.9 (3)
C1—C7—C8—C10176.25 (13)C21—O2—C20—C18177.7 (2)
C11—C7—C8—C967.48 (17)C6—C18—C20—O128.4 (3)
C1—C7—C8—C959.05 (17)C19—C18—C20—O1152.57 (19)
C1—C7—C11—C16127.58 (17)C6—C18—C20—O2153.07 (17)
C8—C7—C11—C16106.25 (18)C19—C18—C20—O226.0 (2)
C1—C7—C11—C1252.2 (2)C20—O2—C21—C22169.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.982.233.001 (2)135
C5—H5A···N1i0.972.573.536 (3)172
C8—H8···N3ii0.982.273.221 (2)163
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.
 

References

First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGupta, R. P. & Narayana, N. L. (1997). Pharm. Acta Helv. 72, 43–45.  CrossRef CAS PubMed Google Scholar
First citationKabir, A. K. M. S., Kawsar, S. M. A., Bhuiyan, M. M. R., Safiqur Rahman, M. D. & Banu, B. (2008). Chittagong Univ. J. Biol. Sci. 3, 53–64.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayathilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationUlusoy Guzeldemirci, N., Pehlivan, E., Halamoglu, Z. & Kocabalkanli, A. (2016). Pharm. J. 20, 207–215.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds