metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Aqua­(1,4,7,10-tetra­aza­cyclo­dodeca­ne)zinc(II) bis­­(perchlorate)

crossmark logo

aCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 4638521, Japan, bLaboratory of Organic Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Japan, cEnvironmental Safety Center, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto, 8608555, Japan, and dDepartment of Functional Molecular Science, Institute of Biochemical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
*Correspondence e-mail: kato-k@kinjo-u.ac.jp

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 4 March 2021; accepted 14 April 2021; online 20 April 2021)

The cationic ZnII part of aqua­(1,4,7,10-tetra­aza­cyclo­dodeca­ne)zinc(II) bis­(perchlorate), [Zn(C8H20N4)(H2O)](ClO4)2, exhibits a slightly distorted square-pyramidal coordination environment with a water mol­ecule in the apical position. In the crystal, the macrocyclic ring alternates between two conformations with equal occupancies. Two of the three perchlorate anions are situated about a twofold rotation axis, and one of them shows disorder of the O atoms with occupancies of 0.62 (7) and 0.38 (7). In the crystal, the complexes are connected by inter­molecular hydrogen bonding via the perchlorate anions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title complex, [Zn(C8H20N4)H2O](ClO4)2, comprises a cationic ZnII complex and three perchlorate anions, two of which are located about a twofold rotation axis with one of them disordered [occupancy ratio for the corresponding O atoms is 0.62 (7):0.38 (7)]. The macrocyclic ring is disordered, and two alternate conformations of each N–C–C–N bridge can be observed (conformation A and B) (Fig. 1[link]), in which four carbon atoms (C2, C4, C6, and C8) are shared. The central ZnII cation is ligated by four N atoms of 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) in the basal plane, with a ZnII-bound H2O mol­ecule occupying the apical position. Addison et al. (1984[Addison, W. A., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) proposed the geometry index [τ = (β − α)/60°] to determine if the five-coordinate atom has a square-pyramidal or trigonal–pyramidal coordination environment. The bond angles β and α are the largest and second-largest in the coordination sphere, respectively; an ideal square pyramid and an ideal trigonal bipyramid have τ = 0 and 1, respectively. In conformation A, the N—ZnII—N bond angles α and β are 138.2 (3)° and 138.7 (3)°, respectively; the corresponding bond angles in conformation B are 137.4 (4)° and138.7(4)°. The τ values are 0.008 and 0.022 for conformations A and B, respectively. Therefore, the coordination geometry around the central ZnII cation can be described as slightly distorted square-pyramidal. The occupancies for the non-hydrogen atoms of cyclen except for the four carbon atoms (C2, C4, C6, and C8) were set to 0.50. Atom Zn1 is 0.755 (5) and 0.763 (3) Å above the basal plane formed by four N atoms in conformations A and B, respectively. The Zn1—O1 bond length [1.9721 (4) Å] is within the typical range [1.94–2.03 Å] for similar five-coordinated Zn complexes (Bazzicalupi et al., 1995[Bazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Paoletti, P. & Valtancoli, B. (1995). J. Chem. Soc. Chem. Commun. pp. 1555-1556.]; Chen et al., 1994[Chen, X.-M., Deng, Q.-Y., Wang, G. & Xu, Y.-J. (1994). Polyhedron, 13, 3085-3089.]; Kato & Ito, 1985[Kato, M. & Ito, T. (1985). Inorg. Chem. 24, 509-514.]; Koike et al., 1994[Koike, T., Takamura, M. & Kimura, E. (1994). J. Am. Chem. Soc. 116, 8443-8449.]; Murthy & Karlin, 1993[Murthy, N. N. & Karlin, K. D. (1993). J. Chem. Soc. Chem. Commun. pp. 1236-1238.]; Schrodt et al.; 1997[Schrodt, A., Neubrand, A. & van Eldik, R. (1997). Inorg. Chem. 36, 4579-4584.]). In addition, the mean Zn1—N bond length (2.13 Å) in the title complex is similar to that in the crystal structure of [Zn(cyclen)EtOH](ClO4)2 (Schrodt et al., 1997[Schrodt, A., Neubrand, A. & van Eldik, R. (1997). Inorg. Chem. 36, 4579-4584.]).

[Figure 1]
Figure 1
The structures of the molecular entities within the title complex showing 50% displacement ellipsoids. [Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (ii) −x, y, −z + [{1\over 2}]].

The two perchlorate ions are involved in inter­molecular hydrogen bonds with the cationic ZnII complex (Table 1[link]). In the crystal, inter­molecular hydrogen-bonding inter­actions connect neighboring mol­ecules, forming a three-dimensional network (Fig. 2[link]). As far as we know, an aqua­(cyclen)copper(II) complex has already been reported (Pérez-Toro et al., 2015[Pérez-Toro, I., Domínguez-Martín, A., Choquesillo-Lazarte, D., Vílchez-Rodríguez, E., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2015). J. Inorg. Biochem. 148, 84-92.]), but the aqua­(cyclen)zinc(II) complex has not. The title aqua­(cyclen)zinc(II) complex has been well studied as ZnII-containing enzyme models, such as alkaline phosphatase, β-lactamase, and carbonic anhydrase, to elucidate the essential roles of ZnII (Kimura et al., 1995[Kimura, E., Kodama, Y., Koike, T. & Shiro, M. (1995). J. Am. Chem. Soc. 117, 8304-8311.]; Kitajima et al., 1993[Kitajima, N., Hikichi, S., Tanaka, M. & Morooka, Y. (1993). J. Am. Chem. Soc. 115, 5496-5508.]; Zhang et al., 1993[Zhang, X., van Eldik, R., Koike, T. & Kimura, E. (1993). Inorg. Chem. 32, 5749-5755.]; Zhang & van Eldik, 1995[Zhang, X. & van Eldik, R. (1995). Inorg. Chem. 34, 5606-5614.]). We succeeded in determining its crystal structure at this time.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O9A 0.86 2.48 3.12 (3) 132
O1—H1A⋯O9B 0.86 1.94 2.68 (4) 145
O1—H1B⋯O6 0.85 2.06 2.914 (9) 173
O1—H1B⋯O7 0.85 2.54 3.088 (7) 123
N2A—H2A⋯O7 0.98 2.37 3.144 (12) 135
N2B—H2B⋯O4i 0.98 2.49 3.086 (11) 119
N3A—H3A⋯O2ii 0.98 2.59 3.312 (10) 130
N3B—H3B⋯O2ii 0.98 2.47 3.170 (12) 128
N4A—H4A⋯O5iii 0.98 2.18 3.094 (9) 155
N4A—H4A⋯O8iii 0.98 2.49 3.103 (10) 120
N4B—H4B⋯O5iii 0.98 2.1 3.030 (11) 157
N1A—H1AA⋯O8 0.98 2.15 3.099 (10) 162
N1B—H1BA⋯O8 0.98 2.16 3.105 (13) 163
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
A view of the crystal packing of the title complex. Dashed lines denote the hydrogen bonds.

Synthesis and crystallization

The title complex was prepared as fine white solid according to a previously reported method (Koike et al., 1994[Koike, T., Takamura, M. & Kimura, E. (1994). J. Am. Chem. Soc. 116, 8443-8449.]) and then crystallized from aqueous ethanol.

Caution! Perchlorate salts of metal complexes with organic ligands are potentially explosive. Only small amounts of material should be prepared, and these should be handled with care.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the final cycles of refinement, 12 outliers were omitted.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C8H20N4)(H2O)](ClO4)2
Mr 454.56
Crystal system, space group Monoclinic, P2/c
Temperature (K) 93
a, b, c (Å) 12.3428 (6), 8.4603 (4), 16.0543 (6)
β (°) 92.881 (4)
V3) 1674.33 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.48
Crystal size (mm) 0.29 × 0.16 × 0.04
 
Data collection
Diffractometer Rigaku Synergy-i
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.535, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7740, 3025, 2670
Rint 0.057
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.186, 1.08
No. of reflections 3025
No. of parameters 301
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.15, −0.84
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Aqua(1,4,7,10-tetraazacyclododecane)zinc(II) bis(perchlorate) top
Crystal data top
[Zn(C8H20N4)(H2O)](ClO4)2F(000) = 936
Mr = 454.56Dx = 1.803 Mg m3
Monoclinic, P2/cCu Kα radiation, λ = 1.54184 Å
a = 12.3428 (6) ÅCell parameters from 3951 reflections
b = 8.4603 (4) Åθ = 5.5–68.1°
c = 16.0543 (6) ŵ = 5.48 mm1
β = 92.881 (4)°T = 93 K
V = 1674.33 (13) Å3Block, clear light colourless
Z = 40.29 × 0.16 × 0.04 mm
Data collection top
Rigaku_Synergy-i
diffractometer
3025 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2670 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10.0000 pixels mm-1θmax = 68.4°, θmin = 3.6°
ω scansh = 1414
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2020)
k = 109
Tmin = 0.535, Tmax = 1.000l = 198
7740 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0991P)2 + 7.9372P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3025 reflectionsΔρmax = 1.15 e Å3
301 parametersΔρmin = 0.84 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed on calculated positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for water molecule O1).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.26041 (6)0.65100 (8)0.40586 (4)0.0237 (3)
Cl10.77745 (10)0.74888 (14)0.44398 (7)0.0253 (3)
Cl30.5000000.3592 (2)0.2500000.0379 (5)
Cl20.0000000.4021 (3)0.2500000.0427 (5)
O20.8653 (4)0.6503 (5)0.4747 (3)0.0376 (10)
O10.2571 (4)0.4307 (5)0.3658 (3)0.0380 (10)
H1A0.2883420.4238970.3195390.057*
H1B0.1915320.4034070.3535400.057*
O50.6950 (4)0.6530 (4)0.4022 (2)0.0354 (10)
O40.8158 (4)0.8651 (5)0.3871 (3)0.0386 (10)
O30.7314 (4)0.8284 (5)0.5133 (3)0.0450 (11)
O80.5265 (5)0.4556 (6)0.3200 (3)0.0565 (14)
O70.0864 (5)0.4984 (7)0.2230 (3)0.0672 (17)
C60.1725 (5)0.7292 (7)0.5681 (3)0.0337 (13)
H6AA0.1667190.6288900.5967080.040*0.5
H6AB0.1300340.8069110.5965760.040*0.5
H6BC0.1331410.6340160.5812540.040*0.5
H6BD0.1822790.7914580.6186320.040*0.5
O9A0.430 (3)0.243 (3)0.2710 (8)0.066 (6)0.62 (7)
C80.4612 (5)0.7428 (8)0.5014 (4)0.0414 (15)
H8AA0.4878250.8031660.5494860.050*0.5
H8AB0.5124800.6581780.4927110.050*0.5
H8BC0.5241750.8102020.5107150.050*0.5
H8BD0.4797950.6369900.5205130.050*0.5
C40.0710 (5)0.8437 (8)0.3503 (4)0.0392 (14)
H4AA0.0185660.7609760.3370360.047*0.5
H4AB0.0436550.9414800.3256670.047*0.5
H4BC0.0312730.7836630.3073390.047*0.5
H4BD0.0239430.9270030.3689710.047*0.5
C20.3599 (6)0.8620 (7)0.2838 (4)0.0377 (14)
H2AA0.3514700.7976330.2338560.045*0.5
H2AB0.4125580.9442340.2740660.045*0.5
H2BC0.3992020.7918770.2481750.045*0.5
H2BD0.3520000.9632740.2558530.045*0.5
N4A0.3533 (8)0.6720 (10)0.5194 (5)0.0214 (17)0.5
H4A0.3622850.5691470.5469810.026*0.5
N2A0.1762 (9)0.8030 (13)0.3149 (5)0.0256 (18)0.5
H2A0.1635070.7460120.2621590.031*0.5
N1A0.3988 (8)0.7609 (10)0.3570 (6)0.0238 (18)0.5
H1AA0.4468530.6785140.3369430.029*0.5
N3A0.1304 (7)0.7131 (10)0.4792 (7)0.0243 (18)0.5
H3A0.0749480.6301790.4752500.029*0.5
C3A0.2519 (10)0.9354 (13)0.3034 (6)0.028 (2)0.5
H3AA0.2594650.9985370.3538210.034*0.5
H3AB0.2254471.0027710.2579170.034*0.5
C5A0.0848 (9)0.8626 (12)0.4440 (8)0.025 (2)0.5
H5AA0.1335080.9498440.4577470.030*0.5
H5AB0.0153470.8846470.4671870.030*0.5
C7A0.2892 (10)0.7804 (15)0.5691 (7)0.027 (2)0.5
H7AA0.2935540.8864580.5465670.033*0.5
H7AB0.3190460.7823560.6261110.033*0.5
C1A0.4564 (10)0.8461 (13)0.4278 (7)0.029 (2)0.5
H1AB0.5291790.8738930.4130200.034*0.5
H1AC0.4179000.9427580.4399990.034*0.5
N1B0.4265 (8)0.7403 (14)0.4110 (8)0.034 (2)0.5
H1BA0.4719760.6639120.3829600.041*0.5
C1B0.4205 (10)0.8823 (15)0.3617 (8)0.037 (3)0.5
H1BB0.3869280.9649960.3933250.045*0.5
H1BC0.4934630.9163930.3507150.045*0.5
N4B0.2823 (11)0.6851 (12)0.5371 (6)0.033 (2)0.5
H4B0.3080240.5869730.5638090.040*0.5
C7B0.3640 (11)0.8079 (15)0.5489 (7)0.037 (3)0.5
H7BA0.3838890.8228210.6076460.044*0.5
H7BB0.3384910.9075310.5254040.044*0.5
N3B0.1035 (9)0.7343 (14)0.4242 (7)0.039 (3)0.5
H3B0.0525150.6457340.4267590.047*0.5
C5B0.1084 (10)0.8221 (16)0.5035 (8)0.037 (3)0.5
H5BA0.0355860.8397540.5216840.044*0.5
H5BB0.1422780.9241750.4958500.044*0.5
N2B0.2492 (10)0.7937 (12)0.2972 (6)0.033 (2)0.5
H2B0.2240700.7306030.2487590.039*0.5
C3B0.1686 (14)0.914 (2)0.3155 (7)0.044 (3)0.5
H3BA0.1476840.9711060.2646770.053*0.5
H3BB0.2006300.9896860.3550620.053*0.5
O9B0.384 (3)0.296 (5)0.255 (3)0.066 (12)0.38 (7)
O60.0412 (6)0.3127 (13)0.3175 (6)0.138 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0349 (4)0.0181 (4)0.0184 (4)0.0015 (3)0.0045 (3)0.0025 (2)
Cl10.0352 (7)0.0198 (6)0.0207 (6)0.0012 (5)0.0004 (5)0.0014 (4)
Cl30.0561 (13)0.0208 (9)0.0381 (11)0.0000.0146 (9)0.000
Cl20.0591 (13)0.0369 (11)0.0334 (10)0.0000.0138 (9)0.000
O20.041 (2)0.033 (2)0.039 (2)0.0041 (18)0.0003 (18)0.0095 (17)
O10.052 (3)0.024 (2)0.040 (2)0.0067 (19)0.0189 (19)0.0098 (17)
O50.049 (3)0.023 (2)0.032 (2)0.0112 (17)0.0131 (18)0.0006 (15)
O40.058 (3)0.029 (2)0.029 (2)0.0082 (19)0.0013 (18)0.0091 (16)
O30.056 (3)0.041 (2)0.039 (2)0.003 (2)0.018 (2)0.0173 (19)
O80.071 (3)0.031 (2)0.064 (3)0.009 (2)0.020 (3)0.017 (2)
O70.089 (4)0.059 (3)0.057 (3)0.030 (3)0.036 (3)0.019 (3)
C60.054 (4)0.026 (3)0.023 (3)0.003 (3)0.016 (2)0.003 (2)
O9A0.089 (13)0.052 (8)0.053 (6)0.048 (8)0.021 (6)0.024 (6)
C80.042 (3)0.050 (4)0.032 (3)0.004 (3)0.003 (3)0.013 (3)
C40.042 (3)0.038 (3)0.036 (3)0.008 (3)0.008 (3)0.010 (3)
C20.056 (4)0.032 (3)0.027 (3)0.004 (3)0.014 (3)0.007 (2)
N4A0.026 (5)0.015 (4)0.024 (4)0.008 (4)0.003 (4)0.000 (3)
N2A0.039 (6)0.021 (6)0.017 (4)0.007 (5)0.003 (4)0.004 (4)
N1A0.030 (5)0.016 (5)0.026 (5)0.002 (4)0.003 (4)0.001 (4)
N3A0.030 (5)0.015 (5)0.028 (5)0.004 (4)0.000 (4)0.006 (4)
C3A0.042 (7)0.027 (6)0.016 (5)0.001 (5)0.003 (4)0.002 (4)
C5A0.023 (5)0.016 (5)0.036 (7)0.003 (4)0.000 (4)0.006 (4)
C7A0.036 (7)0.027 (6)0.019 (5)0.004 (5)0.000 (5)0.001 (5)
C1A0.039 (6)0.013 (5)0.035 (7)0.012 (5)0.009 (5)0.008 (4)
N1B0.022 (5)0.044 (8)0.037 (6)0.005 (5)0.002 (4)0.001 (5)
C1B0.040 (7)0.035 (7)0.038 (7)0.014 (5)0.018 (5)0.007 (5)
N4B0.068 (9)0.013 (5)0.019 (5)0.011 (5)0.000 (5)0.002 (4)
C7B0.046 (8)0.035 (7)0.028 (6)0.007 (6)0.009 (5)0.008 (5)
N3B0.035 (6)0.046 (7)0.037 (7)0.010 (5)0.010 (5)0.011 (5)
C5B0.037 (6)0.036 (7)0.038 (7)0.005 (5)0.013 (5)0.005 (6)
N2B0.052 (7)0.028 (5)0.018 (4)0.006 (5)0.002 (4)0.002 (4)
C3B0.072 (12)0.035 (9)0.024 (6)0.008 (7)0.014 (6)0.002 (5)
O9B0.071 (17)0.073 (17)0.056 (18)0.027 (15)0.028 (13)0.040 (13)
O60.074 (5)0.188 (10)0.156 (8)0.037 (6)0.033 (5)0.136 (8)
Geometric parameters (Å, º) top
Zn1—O11.971 (4)C6—C7A1.503 (14)
Zn1—N4A2.111 (9)C6—N4B1.513 (14)
Zn1—N2A2.171 (10)C6—C5B1.495 (15)
Zn1—N1A2.129 (9)C8—N4A1.501 (12)
Zn1—N3A2.104 (9)C8—C1A1.468 (13)
Zn1—N1B2.183 (10)C8—N1B1.492 (13)
Zn1—N4B2.130 (10)C8—C7B1.555 (15)
Zn1—N3B2.096 (11)C4—N2A1.484 (13)
Zn1—N2B2.121 (9)C4—C5A1.514 (13)
Cl1—O21.436 (4)C4—N3B1.542 (14)
Cl1—O51.440 (4)C4—C3B1.479 (19)
Cl1—O41.438 (4)C2—N1A1.512 (12)
Cl1—O31.442 (4)C2—C3A1.519 (14)
Cl3—O8i1.413 (5)C2—C1B1.435 (15)
Cl3—O81.413 (5)C2—N2B1.510 (14)
Cl3—O9A1.364 (14)N4A—C7A1.472 (14)
Cl3—O9Ai1.364 (14)N2A—C3A1.476 (15)
Cl3—O9B1.53 (3)N1A—C1A1.496 (15)
Cl3—O9Bi1.53 (3)N3A—C5A1.485 (14)
Cl2—O7ii1.427 (5)N1B—C1B1.439 (17)
Cl2—O71.427 (5)N4B—C7B1.454 (18)
Cl2—O6ii1.397 (7)N3B—C5B1.473 (16)
Cl2—O61.397 (7)N2B—C3B1.466 (18)
C6—N3A1.500 (12)
O1—Zn1—N4A111.3 (3)O6—Cl2—O7107.3 (5)
O1—Zn1—N2A109.8 (3)O6—Cl2—O6ii114.4 (11)
O1—Zn1—N1A107.2 (3)N3A—C6—C7A108.8 (6)
O1—Zn1—N3A114.5 (3)C5B—C6—N4B110.7 (7)
O1—Zn1—N1B110.1 (3)C1A—C8—N4A113.1 (7)
O1—Zn1—N4B116.8 (3)N1B—C8—C7B107.0 (7)
O1—Zn1—N3B111.1 (3)N2A—C4—C5A110.4 (7)
O1—Zn1—N2B105.7 (3)C3B—C4—N3B110.4 (7)
N4A—Zn1—N2A138.7 (3)N1A—C2—C3A108.5 (6)
N4A—Zn1—N1A82.6 (4)C1B—C2—N2B111.0 (7)
N1A—Zn1—N2A81.9 (4)C8—N4A—Zn1108.4 (5)
N3A—Zn1—N4A83.8 (4)C7A—N4A—Zn1103.7 (7)
N3A—Zn1—N2A82.9 (4)C7A—N4A—C8111.2 (8)
N3A—Zn1—N1A138.2 (3)C4—N2A—Zn1106.2 (5)
N4B—Zn1—N1B81.0 (5)C3A—N2A—Zn1104.4 (7)
N3B—Zn1—N1B138.7 (4)C3A—N2A—C4116.3 (10)
N3B—Zn1—N4B83.6 (5)C2—N1A—Zn1107.7 (6)
N3B—Zn1—N2B84.4 (5)C1A—N1A—Zn1106.8 (7)
N2B—Zn1—N1B81.8 (5)C1A—N1A—C2116.0 (8)
N2B—Zn1—N4B137.4 (4)C6—N3A—Zn1108.5 (5)
O2—Cl1—O5109.7 (3)C5A—N3A—Zn1106.5 (7)
O2—Cl1—O4110.4 (3)C5A—N3A—C6113.0 (8)
O2—Cl1—O3109.0 (3)N2A—C3A—C2106.4 (9)
O5—Cl1—O3109.0 (3)N3A—C5A—C4108.1 (8)
O4—Cl1—O5109.7 (2)N4A—C7A—C6110.8 (10)
O4—Cl1—O3109.1 (3)C8—C1A—N1A108.8 (9)
O8—Cl3—O8i109.5 (4)C8—N1B—Zn1105.3 (6)
O8i—Cl3—O9B94 (3)C1B—N1B—Zn1104.2 (8)
O8—Cl3—O9B109.6 (8)C1B—N1B—C8121.9 (10)
O8—Cl3—O9Bi94 (3)C2—C1B—N1B112.9 (10)
O8i—Cl3—O9Bi109.6 (8)C6—N4B—Zn1106.7 (6)
O9A—Cl3—O8110.2 (8)C7B—N4B—Zn1106.2 (8)
O9Ai—Cl3—O8119.3 (9)C7B—N4B—C6114.0 (10)
O9Ai—Cl3—O8i110.2 (8)N4B—C7B—C8103.3 (9)
O9A—Cl3—O8i119.3 (9)C4—N3B—Zn1107.4 (6)
O9Ai—Cl3—O9A88 (3)C5B—N3B—Zn1107.0 (8)
O9Ai—Cl3—O9Bi29.6 (13)C5B—N3B—C4111.1 (10)
O9A—Cl3—O9Bi112 (3)N3B—C5B—C6109.3 (11)
O7—Cl2—O7ii110.4 (5)C2—N2B—Zn1108.2 (6)
O6ii—Cl2—O7ii107.3 (5)C3B—N2B—Zn1104.4 (8)
O6ii—Cl2—O7108.8 (5)C3B—N2B—C2113.0 (10)
O6—Cl2—O7ii108.8 (5)N2B—C3B—C4111.6 (13)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9A0.862.483.12 (3)132
O1—H1A···O9B0.861.942.68 (4)145
O1—H1B···O60.852.062.914 (9)173
O1—H1B···O70.852.543.088 (7)123
N2A—H2A···O70.982.373.144 (12)135
N2B—H2B···O4i0.982.493.086 (11)119
N3A—H3A···O2iii0.982.593.312 (10)130
N3B—H3B···O2iii0.982.473.170 (12)128
N4A—H4A···O5iv0.982.183.094 (9)155
N4A—H4A···O8iv0.982.493.103 (10)120
N4B—H4B···O5iv0.982.13.030 (11)157
N1A—H1AA···O80.982.153.099 (10)162
N1B—H1BA···O80.982.163.105 (13)163
Symmetry codes: (i) x+1, y, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1.
 

Footnotes

These authors contributed equally to this work.

References

First citationAddison, W. A., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Google Scholar
First citationBazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Paoletti, P. & Valtancoli, B. (1995). J. Chem. Soc. Chem. Commun. pp. 1555–1556.  CrossRef Google Scholar
First citationChen, X.-M., Deng, Q.-Y., Wang, G. & Xu, Y.-J. (1994). Polyhedron, 13, 3085–3089.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKato, M. & Ito, T. (1985). Inorg. Chem. 24, 509–514.  CSD CrossRef CAS Google Scholar
First citationKimura, E., Kodama, Y., Koike, T. & Shiro, M. (1995). J. Am. Chem. Soc. 117, 8304–8311.  CSD CrossRef CAS Google Scholar
First citationKitajima, N., Hikichi, S., Tanaka, M. & Morooka, Y. (1993). J. Am. Chem. Soc. 115, 5496–5508.  CSD CrossRef CAS Google Scholar
First citationKoike, T., Takamura, M. & Kimura, E. (1994). J. Am. Chem. Soc. 116, 8443–8449.  CrossRef CAS Google Scholar
First citationMurthy, N. N. & Karlin, K. D. (1993). J. Chem. Soc. Chem. Commun. pp. 1236–1238.  CSD CrossRef Google Scholar
First citationPérez-Toro, I., Domínguez-Martín, A., Choquesillo-Lazarte, D., Vílchez-Rodríguez, E., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2015). J. Inorg. Biochem. 148, 84–92.  PubMed Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchrodt, A., Neubrand, A. & van Eldik, R. (1997). Inorg. Chem. 36, 4579–4584.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, X. & van Eldik, R. (1995). Inorg. Chem. 34, 5606–5614.  CrossRef CAS Google Scholar
First citationZhang, X., van Eldik, R., Koike, T. & Kimura, E. (1993). Inorg. Chem. 32, 5749–5755.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds