organic compounds
[2,5-Bis(dipropylamino)-4-(hydroxymethyl)phenyl]methanol
aUniversity of Mainz, Institut for Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The centrosymmetric title compound, C22H36N2O2, was prepared in five steps from diethyl succinate. The dipropylamino groups are almost orthogonal to the central phenylenedimethanol ring [dihedral angle = 87.62 (9)°]. In the crystal, the molecules are connected by O—H⋯N hydrogen bonds, forming (101) layers separated by the propyl chains.
Keywords: crystal structure; phenylenediamine; alcohol; hydrogen bond.
CCDC reference: 2080018
Structure description
In a project focusing on acidochromic oligophenylenevinylenes (Detert et al., 2004; Detert & Sugiono, 2004, 2005), the title compound, C22H36N2O2, was prepared as an intermediate for fluorophores with a central p-aminoaniline unit (Detert & Schmitt, 2004, 2006; Schmitt et al., 2008).
The complete molecule is generated by a crystallographic centre of symmetry (Fig. 1) and two centrosymmetric molecules occupy the monoclinic The molecules are composed of an almost planar aromatic ring flanked by prolate dipropylamino groups. The mean planes of the ring and the dipropylamino unit enclose a dihedral angle of 87.62 (9)°. This orientation and torsion angles of −118.97 (11)° (C1—C2—N1—C4) and 0.8 (2)° (O1—C10—C1—C3_a) lead to an H-shape for the molecule.
In the extended structure, slightly bent O—H⋯N hydrogen bonds (Table 1, Fig. 2) connect each molecule with four neighbours, thus forming a slightly undulating network with an angle of 19.9° between the mean planes of the aromatic rings of adjacent molecules. This network lies parallel to (101) and the propyl groups act as spacers between the planes.
Synthesis and crystallization
The title compound was prepared from succinoyl succinate (Fehling, 1844) via condensation with propyl amine (Liebermann, 1914; Ulbricht et al., 1979), refluxing of the diamine with propionyl chloride for 3 h followed by aqueous work-up and recrystallization of the diamide from toluene solution with ca 10% ethyl acetate. The amide (14 g, 0.033 mol) was added slowly to a stirred and boiling suspension of lithium aluminium hydride (3.8 g, 0.1 mol) in 200 ml of ether. After refluxing for 3 h, excess hydride was destroyed by addition of first ethyl acetate, and then aqueous sodium hydroxide (40%) to the stirred solution until clotting occurred. Suction filtration and digesting of the filter cake with ether, and washing of the combined organic phases with brine gave, after concentration and crystallization, 2.4 g (22%) of the diamine. Recrystallization from acetonitrile solution resulted in 2.4 g (22%) of slightly yellowish cuboid crystals with m.p. = 400–401 K. 1H-NMR (400 MHz, CDCl3): 6.93 (s, 2 H ar); 4.75 (s, 4 H, benzylic), 2.83 (m, 8 H, N—CH2); 1.45 (m, 8 H), 0.85 (t, 12 H, CH3); 13C-NMR (100 MHz, CDCl3) 146.2 (C-2,5), 136.2 (C-1,4), 122.2 (C3,6), 64.8 (CH2OH), 57.0 (NCH2), 20.3 (CH2), 11.5 (CH3); FD—MS: m/z = 336.2 (100%, M+); IR (CDCl3, cm−1): 3370, 2960, 2940, 2870, 1630, 1500, 1455, 1410, 1285, 1255, 1140, 1055.
Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in difference Fourier maps and refined with isotropic displacement parameters.
details are summarized in Table 2Structural data
CCDC reference: 2080018
https://doi.org/10.1107/S2414314621004430/hb4382sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621004430/hb4382Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314621004430/hb4382Isup3.cml
Data collection: X-AREA WinXpose 2.0.22.0 (Stoe & Cie, 2019); cell
X-AREA Recipe 1.36.0.0 (Stoe & Cie, 2019); data reduction: X-AREA Integrate 1.77.0.0 (Stoe & Cie, 2019); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020).C20H36N2O2 | F(000) = 372 |
Mr = 336.51 | Dx = 1.149 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2294 (4) Å | Cell parameters from 7030 reflections |
b = 8.4573 (5) Å | θ = 2.4–28.4° |
c = 14.0115 (7) Å | µ = 0.07 mm−1 |
β = 93.974 (4)° | T = 120 K |
V = 972.83 (9) Å3 | Block, colourless |
Z = 2 | 0.25 × 0.20 × 0.16 mm |
STOE IPDS 2T diffractometer | 1995 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | Rint = 0.019 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.9°, θmin = 2.8° |
rotation method, ω scans | h = −9→10 |
5278 measured reflections | k = −11→11 |
2318 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | All H-atom parameters refined |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4938P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2318 reflections | Δρmax = 0.43 e Å−3 |
172 parameters | Δρmin = −0.16 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.65711 (12) | 0.27293 (10) | 0.20873 (7) | 0.0244 (2) | |
H1 | 0.717 (3) | 0.257 (2) | 0.2627 (16) | 0.046 (5)* | |
N1 | 0.65180 (12) | 0.75248 (11) | 0.10757 (7) | 0.0148 (2) | |
C1 | 0.57794 (13) | 0.47022 (13) | 0.09097 (8) | 0.0146 (2) | |
C2 | 0.57352 (13) | 0.62308 (13) | 0.05321 (8) | 0.0141 (2) | |
C3 | 0.49620 (14) | 0.65103 (13) | −0.03682 (8) | 0.0151 (2) | |
H3 | 0.4942 (17) | 0.7560 (16) | −0.0625 (10) | 0.014 (3)* | |
C4 | 0.53162 (15) | 0.87545 (14) | 0.12965 (8) | 0.0179 (2) | |
H4A | 0.4663 (18) | 0.9151 (18) | 0.0694 (10) | 0.018 (2)* | |
H4B | 0.5946 (18) | 0.9662 (18) | 0.1557 (10) | 0.018 (2)* | |
C5 | 0.41498 (18) | 0.81758 (17) | 0.20128 (10) | 0.0268 (3) | |
H5A | 0.478 (2) | 0.779 (2) | 0.2577 (13) | 0.033 (3)* | |
H5B | 0.354 (2) | 0.728 (2) | 0.1733 (13) | 0.033 (3)* | |
C6 | 0.3000 (2) | 0.9476 (2) | 0.23025 (12) | 0.0369 (4) | |
H6A | 0.227 (3) | 0.908 (3) | 0.2782 (15) | 0.053 (3)* | |
H6B | 0.231 (3) | 0.985 (2) | 0.1760 (16) | 0.053 (3)* | |
H6C | 0.365 (3) | 1.039 (3) | 0.2574 (15) | 0.053 (3)* | |
C7 | 0.78539 (15) | 0.82069 (14) | 0.05542 (8) | 0.0186 (3) | |
H7A | 0.8328 (19) | 0.9104 (19) | 0.0947 (10) | 0.020 (3)* | |
H7B | 0.7429 (18) | 0.8668 (17) | −0.0069 (11) | 0.020 (3)* | |
C8 | 0.91847 (17) | 0.70094 (17) | 0.03952 (11) | 0.0285 (3) | |
H8A | 0.870 (2) | 0.613 (2) | 0.0016 (13) | 0.042 (4)* | |
H8B | 0.959 (2) | 0.658 (2) | 0.1023 (14) | 0.042 (4)* | |
C9 | 1.05723 (19) | 0.77308 (19) | −0.01183 (12) | 0.0327 (3) | |
H9A | 1.142 (3) | 0.698 (2) | −0.0227 (14) | 0.045 (3)* | |
H9B | 1.106 (2) | 0.864 (2) | 0.0248 (14) | 0.045 (3)* | |
H9C | 1.013 (2) | 0.821 (2) | −0.0742 (15) | 0.045 (3)* | |
C10 | 0.66429 (16) | 0.43700 (14) | 0.18745 (8) | 0.0186 (3) | |
H10A | 0.777 (2) | 0.4729 (19) | 0.1861 (11) | 0.024 (3)* | |
H10B | 0.6141 (19) | 0.4995 (19) | 0.2383 (11) | 0.024 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0380 (5) | 0.0142 (4) | 0.0190 (4) | −0.0034 (4) | −0.0123 (4) | 0.0048 (3) |
N1 | 0.0182 (5) | 0.0116 (4) | 0.0141 (4) | −0.0019 (4) | −0.0016 (3) | −0.0011 (3) |
C1 | 0.0168 (5) | 0.0139 (5) | 0.0129 (5) | 0.0001 (4) | −0.0010 (4) | 0.0010 (4) |
C2 | 0.0160 (5) | 0.0127 (5) | 0.0134 (5) | −0.0011 (4) | −0.0008 (4) | −0.0015 (4) |
C3 | 0.0190 (5) | 0.0117 (5) | 0.0144 (5) | −0.0004 (4) | −0.0012 (4) | 0.0015 (4) |
C4 | 0.0229 (6) | 0.0135 (5) | 0.0170 (5) | 0.0012 (4) | −0.0019 (4) | −0.0015 (4) |
C5 | 0.0304 (7) | 0.0249 (7) | 0.0260 (6) | 0.0042 (5) | 0.0079 (5) | 0.0005 (5) |
C6 | 0.0368 (8) | 0.0409 (9) | 0.0340 (8) | 0.0107 (7) | 0.0087 (7) | −0.0052 (7) |
C7 | 0.0211 (6) | 0.0166 (5) | 0.0177 (5) | −0.0042 (4) | −0.0005 (4) | 0.0005 (4) |
C8 | 0.0241 (6) | 0.0219 (6) | 0.0401 (8) | −0.0012 (5) | 0.0062 (6) | 0.0024 (6) |
C9 | 0.0269 (7) | 0.0320 (8) | 0.0404 (8) | −0.0047 (6) | 0.0098 (6) | −0.0032 (6) |
C10 | 0.0269 (6) | 0.0126 (5) | 0.0152 (5) | −0.0020 (5) | −0.0062 (4) | 0.0016 (4) |
O1—C10 | 1.4214 (14) | C5—H5B | 0.977 (18) |
O1—H1 | 0.88 (2) | C6—H6A | 0.99 (2) |
N1—C2 | 1.4577 (13) | C6—H6B | 0.97 (2) |
N1—C7 | 1.4787 (15) | C6—H6C | 1.00 (2) |
N1—C4 | 1.4825 (15) | C7—C8 | 1.5194 (18) |
C1—C3i | 1.3912 (15) | C7—H7A | 1.001 (16) |
C1—C2 | 1.3964 (15) | C7—H7B | 0.997 (15) |
C1—C10 | 1.5094 (15) | C8—C9 | 1.5191 (19) |
C2—C3 | 1.3931 (15) | C8—H8A | 0.99 (2) |
C3—H3 | 0.958 (14) | C8—H8B | 0.99 (2) |
C4—C5 | 1.5171 (18) | C9—H9A | 0.97 (2) |
C4—H4A | 1.025 (15) | C9—H9B | 0.99 (2) |
C4—H4B | 0.982 (15) | C9—H9C | 1.01 (2) |
C5—C6 | 1.524 (2) | C10—H10A | 0.980 (16) |
C5—H5A | 0.970 (19) | C10—H10B | 0.999 (16) |
C10—O1—H1 | 107.6 (13) | C5—C6—H6C | 109.6 (12) |
C2—N1—C7 | 110.57 (9) | H6A—C6—H6C | 109.8 (17) |
C2—N1—C4 | 111.02 (9) | H6B—C6—H6C | 108.3 (17) |
C7—N1—C4 | 111.04 (9) | N1—C7—C8 | 112.37 (10) |
C3i—C1—C2 | 118.48 (10) | N1—C7—H7A | 107.4 (9) |
C3i—C1—C10 | 120.84 (10) | C8—C7—H7A | 109.2 (9) |
C2—C1—C10 | 120.66 (10) | N1—C7—H7B | 110.9 (9) |
C3—C2—C1 | 119.90 (10) | C8—C7—H7B | 110.2 (9) |
C3—C2—N1 | 120.22 (10) | H7A—C7—H7B | 106.6 (12) |
C1—C2—N1 | 119.88 (9) | C9—C8—C7 | 112.02 (12) |
C1i—C3—C2 | 121.62 (10) | C9—C8—H8A | 109.9 (11) |
C1i—C3—H3 | 118.9 (8) | C7—C8—H8A | 108.2 (11) |
C2—C3—H3 | 119.5 (8) | C9—C8—H8B | 110.7 (11) |
N1—C4—C5 | 111.94 (10) | C7—C8—H8B | 108.4 (11) |
N1—C4—H4A | 112.2 (8) | H8A—C8—H8B | 107.5 (15) |
C5—C4—H4A | 109.3 (8) | C8—C9—H9A | 112.8 (12) |
N1—C4—H4B | 106.4 (9) | C8—C9—H9B | 111.0 (11) |
C5—C4—H4B | 110.4 (9) | H9A—C9—H9B | 108.4 (16) |
H4A—C4—H4B | 106.4 (12) | C8—C9—H9C | 109.4 (11) |
C4—C5—C6 | 112.13 (12) | H9A—C9—H9C | 110.4 (16) |
C4—C5—H5A | 108.8 (10) | H9B—C9—H9C | 104.5 (16) |
C6—C5—H5A | 109.3 (10) | O1—C10—C1 | 110.23 (9) |
C4—C5—H5B | 108.5 (10) | O1—C10—H10A | 111.1 (9) |
C6—C5—H5B | 110.8 (10) | C1—C10—H10A | 108.3 (9) |
H5A—C5—H5B | 107.2 (15) | O1—C10—H10B | 110.0 (9) |
C5—C6—H6A | 110.6 (13) | C1—C10—H10B | 110.4 (9) |
C5—C6—H6B | 111.6 (12) | H10A—C10—H10B | 106.9 (13) |
H6A—C6—H6B | 106.9 (17) | ||
C3i—C1—C2—C3 | −0.09 (18) | N1—C2—C3—C1i | 179.23 (10) |
C10—C1—C2—C3 | 178.66 (11) | C2—N1—C4—C5 | 69.20 (12) |
C3i—C1—C2—N1 | −179.23 (10) | C7—N1—C4—C5 | −167.35 (10) |
C10—C1—C2—N1 | −0.48 (16) | N1—C4—C5—C6 | 175.43 (12) |
C7—N1—C2—C3 | −61.82 (13) | C2—N1—C7—C8 | −61.45 (13) |
C4—N1—C2—C3 | 61.89 (13) | C4—N1—C7—C8 | 174.85 (10) |
C7—N1—C2—C1 | 117.32 (11) | N1—C7—C8—C9 | −178.53 (11) |
C4—N1—C2—C1 | −118.97 (11) | C3i—C1—C10—O1 | 0.79 (16) |
C1—C2—C3—C1i | 0.09 (19) | C2—C1—C10—O1 | −177.92 (10) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1ii | 0.88 (2) | 2.05 (2) | 2.9269 (13) | 171.7 (18) |
Symmetry code: (ii) −x+3/2, y−1/2, −z+1/2. |
References
Detert, H., Sadovski, O. & Sugiono, E. (2004). J. Phys. Org. Chem. 17, 1046–1050. CrossRef CAS Google Scholar
Detert, H. & Schmitt, V. (2004). J. Phys. Org. Chem. 17, 1051–1056. CrossRef CAS Google Scholar
Detert, H. & Schmitt, V. (2006). J. Phys. Org. Chem. 19, 603–607. Web of Science CrossRef CAS Google Scholar
Detert, H. & Sugiono, E. (2004). Synth. Met. 147, 233–236. Web of Science CrossRef Google Scholar
Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372–376. Web of Science CrossRef CAS Google Scholar
Fehling, H. (1844). Liebigs Ann. Chem. 49, 154–212. CrossRef Google Scholar
Liebermann, H. (1914). Liebigs Ann. Chem. 404, 272–321. CrossRef CAS Google Scholar
Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1–7. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Ulbricht, H., Löber, G. & Kittler, L. (1979). J. Prakt. Chem. 321, 905–912. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.