organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[2,5-Bis(di­propyl­amino)-4-(hy­dr­oxy­meth­yl)phen­yl]methanol

crossmark logo

aUniversity of Mainz, Institut for Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 April 2021; accepted 26 April 2021; online 30 April 2021)

The centrosymmetric title compound, C22H36N2O2, was prepared in five steps from diethyl succinate. The di­propyl­amino groups are almost orthogonal to the central phenyl­enedi­methanol ring [dihedral angle = 87.62 (9)°]. In the crystal, the mol­ecules are connected by O—H⋯N hydrogen bonds, forming (101) layers separated by the propyl chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a project focusing on acidochromic oligo­phenyl­ene­vinyl­enes (Detert et al., 2004[Detert, H., Sadovski, O. & Sugiono, E. (2004). J. Phys. Org. Chem. 17, 1046-1050.]; Detert & Sugiono, 2004[Detert, H. & Sugiono, E. (2004). Synth. Met. 147, 233-236.], 2005[Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372-376.]), the title compound, C22H36N2O2, was prepared as an inter­mediate for fluoro­phores with a central p-amino­aniline unit (Detert & Schmitt, 2004[Detert, H. & Schmitt, V. (2004). J. Phys. Org. Chem. 17, 1051-1056.], 2006[Detert, H. & Schmitt, V. (2006). J. Phys. Org. Chem. 19, 603-607.]; Schmitt et al., 2008[Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1-7.]).

The complete mol­ecule is generated by a crystallographic centre of symmetry (Fig. 1[link]) and two centrosymmetric mol­ecules occupy the monoclinic unit cell. The mol­ecules are composed of an almost planar aromatic ring flanked by prolate di­propyl­amino groups. The mean planes of the ring and the di­propyl­amino unit enclose a dihedral angle of 87.62 (9)°. This orientation and torsion angles of −118.97 (11)° (C1—C2—N1—C4) and 0.8 (2)° (O1—C10—C1—C3_a) lead to an H-shape for the mol­ecule.

[Figure 1]
Figure 1
The mol­ecular structure with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (a) 1 − x, 1 − y, −z.

In the extended structure, slightly bent O—H⋯N hydrogen bonds (Table 1[link], Fig. 2[link]) connect each mol­ecule with four neighbours, thus forming a slightly undulating network with an angle of 19.9° between the mean planes of the aromatic rings of adjacent mol­ecules. This network lies parallel to (101) and the propyl groups act as spacers between the planes.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.88 (2) 2.05 (2) 2.9269 (13) 171.7 (18)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial packing diagram viewed along the b-axis direction. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

The title compound was prepared from succinoyl succinate (Fehling, 1844[Fehling, H. (1844). Liebigs Ann. Chem. 49, 154-212.]) via condensation with propyl amine (Liebermann, 1914[Liebermann, H. (1914). Liebigs Ann. Chem. 404, 272-321.]; Ulbricht et al., 1979[Ulbricht, H., Löber, G. & Kittler, L. (1979). J. Prakt. Chem. 321, 905-912.]), refluxing of the di­amine with propionyl chloride for 3 h followed by aqueous work-up and recrystallization of the di­amide from toluene solution with ca 10% ethyl acetate. The amide (14 g, 0.033 mol) was added slowly to a stirred and boiling suspension of lithium aluminium hydride (3.8 g, 0.1 mol) in 200 ml of ether. After refluxing for 3 h, excess hydride was destroyed by addition of first ethyl acetate, and then aqueous sodium hydroxide (40%) to the stirred solution until clotting occurred. Suction filtration and digesting of the filter cake with ether, and washing of the combined organic phases with brine gave, after concentration and crystallization, 2.4 g (22%) of the di­amine. Recrystallization from aceto­nitrile solution resulted in 2.4 g (22%) of slightly yellowish cuboid crystals with m.p. = 400–401 K. 1H-NMR (400 MHz, CDCl3): 6.93 (s, 2 H ar); 4.75 (s, 4 H, benzylic), 2.83 (m, 8 H, N—CH2); 1.45 (m, 8 H), 0.85 (t, 12 H, CH3); 13C-NMR (100 MHz, CDCl3) 146.2 (C-2,5), 136.2 (C-1,4), 122.2 (C3,6), 64.8 (CH2OH), 57.0 (NCH2), 20.3 (CH2), 11.5 (CH3); FD—MS: m/z = 336.2 (100%, M+); IR (CDCl3, cm−1): 3370, 2960, 2940, 2870, 1630, 1500, 1455, 1410, 1285, 1255, 1140, 1055.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located in difference Fourier maps and refined with isotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula C20H36N2O2
Mr 336.51
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 8.2294 (4), 8.4573 (5), 14.0115 (7)
β (°) 93.974 (4)
V3) 972.83 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.25 × 0.20 × 0.16
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 5278, 2318, 1995
Rint 0.019
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.05
No. of reflections 2318
No. of parameters 172
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.43, −0.16
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-AREA WinXpose 2.0.22.0 (Stoe & Cie, 2019); cell refinement: X-AREA Recipe 1.36.0.0 (Stoe & Cie, 2019); data reduction: X-AREA Integrate 1.77.0.0 (Stoe & Cie, 2019); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020).

[2,5-Bis(dipropylamino)-4-(hydroxymethyl)phenyl]methanol top
Crystal data top
C20H36N2O2F(000) = 372
Mr = 336.51Dx = 1.149 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2294 (4) ÅCell parameters from 7030 reflections
b = 8.4573 (5) Åθ = 2.4–28.4°
c = 14.0115 (7) ŵ = 0.07 mm1
β = 93.974 (4)°T = 120 K
V = 972.83 (9) Å3Block, colourless
Z = 20.25 × 0.20 × 0.16 mm
Data collection top
STOE IPDS 2T
diffractometer
1995 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.019
Detector resolution: 6.67 pixels mm-1θmax = 27.9°, θmin = 2.8°
rotation method, ω scansh = 910
5278 measured reflectionsk = 1111
2318 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4938P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2318 reflectionsΔρmax = 0.43 e Å3
172 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65711 (12)0.27293 (10)0.20873 (7)0.0244 (2)
H10.717 (3)0.257 (2)0.2627 (16)0.046 (5)*
N10.65180 (12)0.75248 (11)0.10757 (7)0.0148 (2)
C10.57794 (13)0.47022 (13)0.09097 (8)0.0146 (2)
C20.57352 (13)0.62308 (13)0.05321 (8)0.0141 (2)
C30.49620 (14)0.65103 (13)0.03682 (8)0.0151 (2)
H30.4942 (17)0.7560 (16)0.0625 (10)0.014 (3)*
C40.53162 (15)0.87545 (14)0.12965 (8)0.0179 (2)
H4A0.4663 (18)0.9151 (18)0.0694 (10)0.018 (2)*
H4B0.5946 (18)0.9662 (18)0.1557 (10)0.018 (2)*
C50.41498 (18)0.81758 (17)0.20128 (10)0.0268 (3)
H5A0.478 (2)0.779 (2)0.2577 (13)0.033 (3)*
H5B0.354 (2)0.728 (2)0.1733 (13)0.033 (3)*
C60.3000 (2)0.9476 (2)0.23025 (12)0.0369 (4)
H6A0.227 (3)0.908 (3)0.2782 (15)0.053 (3)*
H6B0.231 (3)0.985 (2)0.1760 (16)0.053 (3)*
H6C0.365 (3)1.039 (3)0.2574 (15)0.053 (3)*
C70.78539 (15)0.82069 (14)0.05542 (8)0.0186 (3)
H7A0.8328 (19)0.9104 (19)0.0947 (10)0.020 (3)*
H7B0.7429 (18)0.8668 (17)0.0069 (11)0.020 (3)*
C80.91847 (17)0.70094 (17)0.03952 (11)0.0285 (3)
H8A0.870 (2)0.613 (2)0.0016 (13)0.042 (4)*
H8B0.959 (2)0.658 (2)0.1023 (14)0.042 (4)*
C91.05723 (19)0.77308 (19)0.01183 (12)0.0327 (3)
H9A1.142 (3)0.698 (2)0.0227 (14)0.045 (3)*
H9B1.106 (2)0.864 (2)0.0248 (14)0.045 (3)*
H9C1.013 (2)0.821 (2)0.0742 (15)0.045 (3)*
C100.66429 (16)0.43700 (14)0.18745 (8)0.0186 (3)
H10A0.777 (2)0.4729 (19)0.1861 (11)0.024 (3)*
H10B0.6141 (19)0.4995 (19)0.2383 (11)0.024 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0380 (5)0.0142 (4)0.0190 (4)0.0034 (4)0.0123 (4)0.0048 (3)
N10.0182 (5)0.0116 (4)0.0141 (4)0.0019 (4)0.0016 (3)0.0011 (3)
C10.0168 (5)0.0139 (5)0.0129 (5)0.0001 (4)0.0010 (4)0.0010 (4)
C20.0160 (5)0.0127 (5)0.0134 (5)0.0011 (4)0.0008 (4)0.0015 (4)
C30.0190 (5)0.0117 (5)0.0144 (5)0.0004 (4)0.0012 (4)0.0015 (4)
C40.0229 (6)0.0135 (5)0.0170 (5)0.0012 (4)0.0019 (4)0.0015 (4)
C50.0304 (7)0.0249 (7)0.0260 (6)0.0042 (5)0.0079 (5)0.0005 (5)
C60.0368 (8)0.0409 (9)0.0340 (8)0.0107 (7)0.0087 (7)0.0052 (7)
C70.0211 (6)0.0166 (5)0.0177 (5)0.0042 (4)0.0005 (4)0.0005 (4)
C80.0241 (6)0.0219 (6)0.0401 (8)0.0012 (5)0.0062 (6)0.0024 (6)
C90.0269 (7)0.0320 (8)0.0404 (8)0.0047 (6)0.0098 (6)0.0032 (6)
C100.0269 (6)0.0126 (5)0.0152 (5)0.0020 (5)0.0062 (4)0.0016 (4)
Geometric parameters (Å, º) top
O1—C101.4214 (14)C5—H5B0.977 (18)
O1—H10.88 (2)C6—H6A0.99 (2)
N1—C21.4577 (13)C6—H6B0.97 (2)
N1—C71.4787 (15)C6—H6C1.00 (2)
N1—C41.4825 (15)C7—C81.5194 (18)
C1—C3i1.3912 (15)C7—H7A1.001 (16)
C1—C21.3964 (15)C7—H7B0.997 (15)
C1—C101.5094 (15)C8—C91.5191 (19)
C2—C31.3931 (15)C8—H8A0.99 (2)
C3—H30.958 (14)C8—H8B0.99 (2)
C4—C51.5171 (18)C9—H9A0.97 (2)
C4—H4A1.025 (15)C9—H9B0.99 (2)
C4—H4B0.982 (15)C9—H9C1.01 (2)
C5—C61.524 (2)C10—H10A0.980 (16)
C5—H5A0.970 (19)C10—H10B0.999 (16)
C10—O1—H1107.6 (13)C5—C6—H6C109.6 (12)
C2—N1—C7110.57 (9)H6A—C6—H6C109.8 (17)
C2—N1—C4111.02 (9)H6B—C6—H6C108.3 (17)
C7—N1—C4111.04 (9)N1—C7—C8112.37 (10)
C3i—C1—C2118.48 (10)N1—C7—H7A107.4 (9)
C3i—C1—C10120.84 (10)C8—C7—H7A109.2 (9)
C2—C1—C10120.66 (10)N1—C7—H7B110.9 (9)
C3—C2—C1119.90 (10)C8—C7—H7B110.2 (9)
C3—C2—N1120.22 (10)H7A—C7—H7B106.6 (12)
C1—C2—N1119.88 (9)C9—C8—C7112.02 (12)
C1i—C3—C2121.62 (10)C9—C8—H8A109.9 (11)
C1i—C3—H3118.9 (8)C7—C8—H8A108.2 (11)
C2—C3—H3119.5 (8)C9—C8—H8B110.7 (11)
N1—C4—C5111.94 (10)C7—C8—H8B108.4 (11)
N1—C4—H4A112.2 (8)H8A—C8—H8B107.5 (15)
C5—C4—H4A109.3 (8)C8—C9—H9A112.8 (12)
N1—C4—H4B106.4 (9)C8—C9—H9B111.0 (11)
C5—C4—H4B110.4 (9)H9A—C9—H9B108.4 (16)
H4A—C4—H4B106.4 (12)C8—C9—H9C109.4 (11)
C4—C5—C6112.13 (12)H9A—C9—H9C110.4 (16)
C4—C5—H5A108.8 (10)H9B—C9—H9C104.5 (16)
C6—C5—H5A109.3 (10)O1—C10—C1110.23 (9)
C4—C5—H5B108.5 (10)O1—C10—H10A111.1 (9)
C6—C5—H5B110.8 (10)C1—C10—H10A108.3 (9)
H5A—C5—H5B107.2 (15)O1—C10—H10B110.0 (9)
C5—C6—H6A110.6 (13)C1—C10—H10B110.4 (9)
C5—C6—H6B111.6 (12)H10A—C10—H10B106.9 (13)
H6A—C6—H6B106.9 (17)
C3i—C1—C2—C30.09 (18)N1—C2—C3—C1i179.23 (10)
C10—C1—C2—C3178.66 (11)C2—N1—C4—C569.20 (12)
C3i—C1—C2—N1179.23 (10)C7—N1—C4—C5167.35 (10)
C10—C1—C2—N10.48 (16)N1—C4—C5—C6175.43 (12)
C7—N1—C2—C361.82 (13)C2—N1—C7—C861.45 (13)
C4—N1—C2—C361.89 (13)C4—N1—C7—C8174.85 (10)
C7—N1—C2—C1117.32 (11)N1—C7—C8—C9178.53 (11)
C4—N1—C2—C1118.97 (11)C3i—C1—C10—O10.79 (16)
C1—C2—C3—C1i0.09 (19)C2—C1—C10—O1177.92 (10)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.88 (2)2.05 (2)2.9269 (13)171.7 (18)
Symmetry code: (ii) x+3/2, y1/2, z+1/2.
 

References

First citationDetert, H., Sadovski, O. & Sugiono, E. (2004). J. Phys. Org. Chem. 17, 1046–1050.  CrossRef CAS Google Scholar
First citationDetert, H. & Schmitt, V. (2004). J. Phys. Org. Chem. 17, 1051–1056.  CrossRef CAS Google Scholar
First citationDetert, H. & Schmitt, V. (2006). J. Phys. Org. Chem. 19, 603–607.  Web of Science CrossRef CAS Google Scholar
First citationDetert, H. & Sugiono, E. (2004). Synth. Met. 147, 233–236.  Web of Science CrossRef Google Scholar
First citationDetert, H. & Sugiono, E. (2005). J. Lumin. 112, 372–376.  Web of Science CrossRef CAS Google Scholar
First citationFehling, H. (1844). Liebigs Ann. Chem. 49, 154–212.  CrossRef Google Scholar
First citationLiebermann, H. (1914). Liebigs Ann. Chem. 404, 272–321.  CrossRef CAS Google Scholar
First citationSchmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1–7.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUlbricht, H., Löber, G. & Kittler, L. (1979). J. Prakt. Chem. 321, 905–912.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds