organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2,4-Di­chloro­phen­­oxy)-N′-[2-(2,4-di­chloro­phen­­oxy)acet­yl]acetohydrazide

crossmark logo

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bApplied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, cDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and dSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 March 2021; accepted 25 March 2021; online 9 April 2021)

The complete mol­ecule of the title compound, C16H12Cl4N2O4, is generated by a crystallographic centre of symmetry. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into [010] chains featuring R22(10) loops. The chains are cross-linked by short Cl⋯N contacts [3.224 (2) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­acyl­hydrazines have insecticidal activities (Wang et al., 2017[Wang, Y., Xu, F., Yu, G., Shi, J., Li, C., Dai, A., Liu, Z., Xu, J., Wang, F. & Wu, J. (2017). Chem. Cent. J. 11, 50.]) and can also be used to recover metal ions from solution (Chekanova et al., 2004[Chekanova, L. G., Radushev, A. V., El'chishcheva, Y. B. & Kazakova, Y. V. (2004). Russ. J. Appl. Chem. 77, 1074-1078.]; Radushev et al., 2007[Radushev, A. V., Chekanova, L. G., El'chishcheva, Y. B. & Ershova, A. V. (2007). Russ. J. Appl. Chem. 80, 368-371.]). In addition, they are precursors in the synthesis of biologically active heterocycles (Zarei 2017[Zarei, M. (2017). Tetrahedron, 73, 1867-1872.]; Stabile et al., 2010[Stabile, P., Lamonica, A., Ribecai, A., Castoldi, D., Guercio, G. & Curcuruto, O. (2010). Tetrahedron Lett. 51, 4801-4805.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound, C16H12Cl4N2O4 (I). The asymmetric unit consists of half a mol­ecule, which is completed by inversion symmetry centred in the middle of the central N—N bond (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I) showing 50% displacement ellipsoids. Symmetry code: (i) 1 − x, 2 − y, 1 − z.

The twist angle between the 2,4-di­chloro­phen­oxy ring system and the N′-acetyl­acetohydrazide group in (I) is 77.8 (1)°; the latter has a crystallographically imposed trans conformation, in a manner similar to 2-[5-methyl-2-(propan-2-yl)phen­oxy]-N′-{2-[5-methyl-2-(propan-2-yl)phen­oxy]acet­yl}acetohydrazide (Fun et al., 2011[Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o2414.]). The C—N—N—C torsion angles in the structures of 2-(4-chloro­phen­oxy)-N′-[2-(4-chloro­phen­oxy)acet­yl]acetohydrazide monohydrate (Chen & Tan, 2010[Chen, T. & Tan, X. (2010). Acta Cryst. E66, o2829.]) and N,N′-bis[2-(quinolin-8-yl­oxy)aceto­yl]hydrazine dihydrate (Zheng et al., 2007[Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2007). Acta Cryst. E63, o4658.]) are 72.7 and 117.6°, respectively, compared to 180.0° in (I).

In the crystal, each mol­ecule is involved in four N—H⋯O hydrogen-bonding contacts, donating two and accepting two bonds, leading to the formation of ribbons propagating parallel to [010] (Table 1[link], Fig. 2[link]). The ribbons are linked by short Cl⋯N contacts perpendicular to the plane of the ribbons and roughly in the c-axis direction. The contact involves the para Cl atom of the 2,4-di­chloro­phen­oxy group and the nitro­gen atom of the N′-acetyl­acetohydrazide group, with a Cl2⋯N1 distance of 3.224 (2) Å (sum of van der Waals' radii = 3.30 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.94 2.774 (3) 164
Symmetry code: (i) x, y+1, z.
[Figure 2]
Figure 2
The crystal structure viewed down [010] showing N—H⋯O hydrogen bonds (green dotted lines) and short Cl⋯N inter­actions (red dotted lines).

Synthesis and crystallization

A mixture of 2-(naphthalen-2-yl­oxy)acetohydrazide (0.47 g, 2.0 mmol) and ethyl 2-cyano-3-eth­oxy­acrylate (0.34 g, 2.0 mmol) in anhydrous ethanol (10 ml) was heated under reflux for 2 h. The solid obtained on cooling was collected by filtration, washed with ethanol, dried, and recrystallized from di­methyl­formamide solution to give colourless plates of (I) in 67% yield; m.p. 249–250°C (lit. m.p. 250°C; Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591-596.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H12Cl4N2O4
Mr 438.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.7398 (4), 4.6540 (2), 20.1866 (9)
β (°) 100.842 (4)
V3) 898.71 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 6.22
Crystal size (mm) 0.16 × 0.10 × 0.01
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.869, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5415, 1797, 1504
Rint 0.040
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.03
No. of reflections 1797
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.42
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and CHEMDRAW Ultra (Cambridge Soft, 2016[Cambridge Soft (2016). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2016).

2-(2,4-Dichlorophenoxy)-N'-[2-(2,4-dichlorophenoxy)acetyl]acetohydrazide top
Crystal data top
C16H12Cl4N2O4F(000) = 444
Mr = 438.08Dx = 1.619 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.7398 (4) ÅCell parameters from 2218 reflections
b = 4.6540 (2) Åθ = 4.6–73.9°
c = 20.1866 (9) ŵ = 6.22 mm1
β = 100.842 (4)°T = 293 K
V = 898.71 (7) Å3Plate, colourless
Z = 20.16 × 0.10 × 0.01 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
diffractometer
1504 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: gaussian
(CrysalisPro; Rigaku OD, 2015)
θmax = 74.2°, θmin = 4.5°
Tmin = 0.869, Tmax = 1.000h = 118
5415 measured reflectionsk = 55
1797 independent reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0898P)2 + 0.4345P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1797 reflectionsΔρmax = 0.51 e Å3
118 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were positioned geometrically (N—H = 0.86, C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C,N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8216 (2)0.7834 (5)0.36947 (12)0.0365 (5)
C20.8980 (3)0.5906 (6)0.33765 (14)0.0412 (6)
C30.8527 (3)0.5101 (7)0.27100 (16)0.0526 (7)
H30.9038800.3798930.2504850.063*
C40.7314 (3)0.6258 (8)0.23597 (15)0.0557 (7)
C50.6554 (3)0.8206 (8)0.26484 (16)0.0571 (8)
H50.5741780.8994390.2398730.069*
C60.7006 (3)0.8997 (7)0.33185 (15)0.0479 (6)
H60.6491621.0320650.3516060.057*
C70.7949 (3)1.0250 (5)0.47047 (14)0.0381 (6)
H7A0.7718841.2005920.4449190.046*
H7B0.8508511.0757110.5138770.046*
C80.6610 (2)0.8789 (5)0.48107 (12)0.0333 (5)
N10.5616 (2)1.0565 (4)0.49304 (10)0.0322 (4)
H10.5735751.2394270.4921700.039*
O10.87343 (17)0.8420 (4)0.43541 (9)0.0396 (4)
O20.6471 (2)0.6192 (4)0.48048 (13)0.0548 (6)
Cl11.05074 (8)0.44859 (19)0.38265 (4)0.0618 (3)
Cl20.67176 (10)0.5161 (3)0.15306 (4)0.0858 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0307 (11)0.0369 (12)0.0445 (12)0.0022 (9)0.0135 (9)0.0014 (10)
C20.0338 (12)0.0442 (13)0.0488 (14)0.0016 (10)0.0161 (10)0.0001 (11)
C30.0470 (16)0.0622 (17)0.0533 (17)0.0043 (13)0.0219 (13)0.0117 (13)
C40.0448 (15)0.077 (2)0.0469 (14)0.0155 (14)0.0116 (12)0.0015 (14)
C50.0383 (14)0.074 (2)0.0575 (17)0.0014 (14)0.0044 (12)0.0117 (15)
C60.0338 (13)0.0547 (15)0.0561 (16)0.0079 (11)0.0109 (11)0.0034 (13)
C70.0318 (11)0.0326 (11)0.0535 (14)0.0028 (9)0.0172 (10)0.0078 (10)
C80.0323 (11)0.0279 (10)0.0419 (12)0.0012 (9)0.0124 (9)0.0020 (9)
N10.0296 (9)0.0240 (8)0.0459 (11)0.0006 (7)0.0142 (8)0.0006 (7)
O10.0296 (8)0.0439 (9)0.0474 (9)0.0059 (7)0.0125 (7)0.0047 (8)
O20.0464 (11)0.0265 (9)0.1008 (17)0.0003 (7)0.0374 (11)0.0041 (9)
Cl10.0481 (4)0.0707 (5)0.0672 (5)0.0257 (3)0.0128 (3)0.0051 (4)
Cl20.0647 (6)0.1438 (10)0.0484 (5)0.0318 (6)0.0094 (4)0.0157 (5)
Geometric parameters (Å, º) top
C1—O11.359 (3)C5—H50.9300
C1—C61.386 (4)C6—H60.9300
C1—C21.397 (3)C7—O11.419 (3)
C2—C31.386 (4)C7—C81.521 (3)
C2—Cl11.723 (3)C7—H7A0.9700
C3—C41.368 (5)C7—H7B0.9700
C3—H30.9300C8—O21.216 (3)
C4—C51.368 (5)C8—N11.329 (3)
C4—Cl21.742 (3)N1—N1i1.386 (4)
C5—C61.391 (4)N1—H10.8600
O1—C1—C6125.4 (2)C1—C6—H6119.7
O1—C1—C2116.6 (2)C5—C6—H6119.7
C6—C1—C2118.0 (2)O1—C7—C8111.03 (19)
C3—C2—C1121.4 (3)O1—C7—H7A109.4
C3—C2—Cl1119.6 (2)C8—C7—H7A109.4
C1—C2—Cl1119.1 (2)O1—C7—H7B109.4
C4—C3—C2118.8 (3)C8—C7—H7B109.4
C4—C3—H3120.6H7A—C7—H7B108.0
C2—C3—H3120.6O2—C8—N1122.4 (2)
C3—C4—C5121.6 (3)O2—C8—C7122.6 (2)
C3—C4—Cl2118.8 (3)N1—C8—C7114.89 (19)
C5—C4—Cl2119.6 (3)C8—N1—N1i119.3 (2)
C4—C5—C6119.5 (3)C8—N1—H1120.4
C4—C5—H5120.3N1i—N1—H1120.4
C6—C5—H5120.3C1—O1—C7118.22 (19)
C1—C6—C5120.7 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.861.942.774 (3)164
Symmetry code: (ii) x, y+1, z.
 

Funding information

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through the Vice Deanship of Scientific Research Chairs.

References

First citationAbdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591–596.  CAS Google Scholar
First citationCambridge Soft (2016). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChekanova, L. G., Radushev, A. V., El'chishcheva, Y. B. & Kazakova, Y. V. (2004). Russ. J. Appl. Chem. 77, 1074–1078.  Web of Science CrossRef CAS Google Scholar
First citationChen, T. & Tan, X. (2010). Acta Cryst. E66, o2829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o2414.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRadushev, A. V., Chekanova, L. G., El'chishcheva, Y. B. & Ershova, A. V. (2007). Russ. J. Appl. Chem. 80, 368–371.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStabile, P., Lamonica, A., Ribecai, A., Castoldi, D., Guercio, G. & Curcuruto, O. (2010). Tetrahedron Lett. 51, 4801–4805.  Web of Science CrossRef CAS Google Scholar
First citationWang, Y., Xu, F., Yu, G., Shi, J., Li, C., Dai, A., Liu, Z., Xu, J., Wang, F. & Wu, J. (2017). Chem. Cent. J. 11, 50.  Web of Science CrossRef PubMed Google Scholar
First citationZarei, M. (2017). Tetrahedron, 73, 1867–1872.  Web of Science CrossRef CAS Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2007). Acta Cryst. E63, o4658.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds