organic compounds
2-(2,4-Dichlorophenoxy)-N′-[2-(2,4-dichlorophenoxy)acetyl]acetohydrazide
aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bApplied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, cDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and dSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa
The complete molecule of the title compound, C16H12Cl4N2O4, is generated by a crystallographic centre of symmetry. In the crystal, N—H⋯O hydrogen bonds link the molecules into [010] chains featuring R22(10) loops. The chains are cross-linked by short Cl⋯N contacts [3.224 (2) Å].
Keywords: crystal structure; acylhydrazine; biological activity.
CCDC reference: 2073258
Structure description
Diacylhydrazines have insecticidal activities (Wang et al., 2017) and can also be used to recover metal ions from solution (Chekanova et al., 2004; Radushev et al., 2007). In addition, they are precursors in the synthesis of biologically active heterocycles (Zarei 2017; Stabile et al., 2010). As part of our studies in this area, we now describe the synthesis and structure of the title compound, C16H12Cl4N2O4 (I). The consists of half a molecule, which is completed by inversion symmetry centred in the middle of the central N—N bond (Fig. 1).
The twist angle between the 2,4-dichlorophenoxy ring system and the N′-acetylacetohydrazide group in (I) is 77.8 (1)°; the latter has a crystallographically imposed trans conformation, in a manner similar to 2-[5-methyl-2-(propan-2-yl)phenoxy]-N′-{2-[5-methyl-2-(propan-2-yl)phenoxy]acetyl}acetohydrazide (Fun et al., 2011). The C—N—N—C torsion angles in the structures of 2-(4-chlorophenoxy)-N′-[2-(4-chlorophenoxy)acetyl]acetohydrazide monohydrate (Chen & Tan, 2010) and N,N′-bis[2-(quinolin-8-yloxy)acetoyl]hydrazine dihydrate (Zheng et al., 2007) are 72.7 and 117.6°, respectively, compared to 180.0° in (I).
In the crystal, each molecule is involved in four N—H⋯O hydrogen-bonding contacts, donating two and accepting two bonds, leading to the formation of ribbons propagating parallel to [010] (Table 1, Fig. 2). The ribbons are linked by short Cl⋯N contacts perpendicular to the plane of the ribbons and roughly in the c-axis direction. The contact involves the para Cl atom of the 2,4-dichlorophenoxy group and the nitrogen atom of the N′-acetylacetohydrazide group, with a Cl2⋯N1 distance of 3.224 (2) Å (sum of van der Waals' radii = 3.30 Å).
Synthesis and crystallization
A mixture of 2-(naphthalen-2-yloxy)acetohydrazide (0.47 g, 2.0 mmol) and ethyl 2-cyano-3-ethoxyacrylate (0.34 g, 2.0 mmol) in anhydrous ethanol (10 ml) was heated under reflux for 2 h. The solid obtained on cooling was collected by filtration, washed with ethanol, dried, and recrystallized from dimethylformamide solution to give colourless plates of (I) in 67% yield; m.p. 249–250°C (lit. m.p. 250°C; Abdel-Wahab et al., 2017).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2073258
https://doi.org/10.1107/S2414314621003187/hb4380sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621003187/hb4380Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314621003187/hb4380Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2016).C16H12Cl4N2O4 | F(000) = 444 |
Mr = 438.08 | Dx = 1.619 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 9.7398 (4) Å | Cell parameters from 2218 reflections |
b = 4.6540 (2) Å | θ = 4.6–73.9° |
c = 20.1866 (9) Å | µ = 6.22 mm−1 |
β = 100.842 (4)° | T = 293 K |
V = 898.71 (7) Å3 | Plate, colourless |
Z = 2 | 0.16 × 0.10 × 0.01 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas diffractometer | 1504 reflections with I > 2σ(I) |
ω scans | Rint = 0.040 |
Absorption correction: gaussian (CrysalisPro; Rigaku OD, 2015) | θmax = 74.2°, θmin = 4.5° |
Tmin = 0.869, Tmax = 1.000 | h = −11→8 |
5415 measured reflections | k = −5→5 |
1797 independent reflections | l = −24→24 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.153 | w = 1/[σ2(Fo2) + (0.0898P)2 + 0.4345P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1797 reflections | Δρmax = 0.51 e Å−3 |
118 parameters | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The H atoms were positioned geometrically (N—H = 0.86, C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8216 (2) | 0.7834 (5) | 0.36947 (12) | 0.0365 (5) | |
C2 | 0.8980 (3) | 0.5906 (6) | 0.33765 (14) | 0.0412 (6) | |
C3 | 0.8527 (3) | 0.5101 (7) | 0.27100 (16) | 0.0526 (7) | |
H3 | 0.903880 | 0.379893 | 0.250485 | 0.063* | |
C4 | 0.7314 (3) | 0.6258 (8) | 0.23597 (15) | 0.0557 (7) | |
C5 | 0.6554 (3) | 0.8206 (8) | 0.26484 (16) | 0.0571 (8) | |
H5 | 0.574178 | 0.899439 | 0.239873 | 0.069* | |
C6 | 0.7006 (3) | 0.8997 (7) | 0.33185 (15) | 0.0479 (6) | |
H6 | 0.649162 | 1.032065 | 0.351606 | 0.057* | |
C7 | 0.7949 (3) | 1.0250 (5) | 0.47047 (14) | 0.0381 (6) | |
H7A | 0.771884 | 1.200592 | 0.444919 | 0.046* | |
H7B | 0.850851 | 1.075711 | 0.513877 | 0.046* | |
C8 | 0.6610 (2) | 0.8789 (5) | 0.48107 (12) | 0.0333 (5) | |
N1 | 0.5616 (2) | 1.0565 (4) | 0.49304 (10) | 0.0322 (4) | |
H1 | 0.573575 | 1.239427 | 0.492170 | 0.039* | |
O1 | 0.87343 (17) | 0.8420 (4) | 0.43541 (9) | 0.0396 (4) | |
O2 | 0.6471 (2) | 0.6192 (4) | 0.48048 (13) | 0.0548 (6) | |
Cl1 | 1.05074 (8) | 0.44859 (19) | 0.38265 (4) | 0.0618 (3) | |
Cl2 | 0.67176 (10) | 0.5161 (3) | 0.15306 (4) | 0.0858 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0307 (11) | 0.0369 (12) | 0.0445 (12) | −0.0022 (9) | 0.0135 (9) | 0.0014 (10) |
C2 | 0.0338 (12) | 0.0442 (13) | 0.0488 (14) | 0.0016 (10) | 0.0161 (10) | −0.0001 (11) |
C3 | 0.0470 (16) | 0.0622 (17) | 0.0533 (17) | −0.0043 (13) | 0.0219 (13) | −0.0117 (13) |
C4 | 0.0448 (15) | 0.077 (2) | 0.0469 (14) | −0.0155 (14) | 0.0116 (12) | −0.0015 (14) |
C5 | 0.0383 (14) | 0.074 (2) | 0.0575 (17) | −0.0014 (14) | 0.0044 (12) | 0.0117 (15) |
C6 | 0.0338 (13) | 0.0547 (15) | 0.0561 (16) | 0.0079 (11) | 0.0109 (11) | 0.0034 (13) |
C7 | 0.0318 (11) | 0.0326 (11) | 0.0535 (14) | −0.0028 (9) | 0.0172 (10) | −0.0078 (10) |
C8 | 0.0323 (11) | 0.0279 (10) | 0.0419 (12) | 0.0012 (9) | 0.0124 (9) | −0.0020 (9) |
N1 | 0.0296 (9) | 0.0240 (8) | 0.0459 (11) | −0.0006 (7) | 0.0142 (8) | −0.0006 (7) |
O1 | 0.0296 (8) | 0.0439 (9) | 0.0474 (9) | 0.0059 (7) | 0.0125 (7) | −0.0047 (8) |
O2 | 0.0464 (11) | 0.0265 (9) | 0.1008 (17) | 0.0003 (7) | 0.0374 (11) | −0.0041 (9) |
Cl1 | 0.0481 (4) | 0.0707 (5) | 0.0672 (5) | 0.0257 (3) | 0.0128 (3) | −0.0051 (4) |
Cl2 | 0.0647 (6) | 0.1438 (10) | 0.0484 (5) | −0.0318 (6) | 0.0094 (4) | −0.0157 (5) |
C1—O1 | 1.359 (3) | C5—H5 | 0.9300 |
C1—C6 | 1.386 (4) | C6—H6 | 0.9300 |
C1—C2 | 1.397 (3) | C7—O1 | 1.419 (3) |
C2—C3 | 1.386 (4) | C7—C8 | 1.521 (3) |
C2—Cl1 | 1.723 (3) | C7—H7A | 0.9700 |
C3—C4 | 1.368 (5) | C7—H7B | 0.9700 |
C3—H3 | 0.9300 | C8—O2 | 1.216 (3) |
C4—C5 | 1.368 (5) | C8—N1 | 1.329 (3) |
C4—Cl2 | 1.742 (3) | N1—N1i | 1.386 (4) |
C5—C6 | 1.391 (4) | N1—H1 | 0.8600 |
O1—C1—C6 | 125.4 (2) | C1—C6—H6 | 119.7 |
O1—C1—C2 | 116.6 (2) | C5—C6—H6 | 119.7 |
C6—C1—C2 | 118.0 (2) | O1—C7—C8 | 111.03 (19) |
C3—C2—C1 | 121.4 (3) | O1—C7—H7A | 109.4 |
C3—C2—Cl1 | 119.6 (2) | C8—C7—H7A | 109.4 |
C1—C2—Cl1 | 119.1 (2) | O1—C7—H7B | 109.4 |
C4—C3—C2 | 118.8 (3) | C8—C7—H7B | 109.4 |
C4—C3—H3 | 120.6 | H7A—C7—H7B | 108.0 |
C2—C3—H3 | 120.6 | O2—C8—N1 | 122.4 (2) |
C3—C4—C5 | 121.6 (3) | O2—C8—C7 | 122.6 (2) |
C3—C4—Cl2 | 118.8 (3) | N1—C8—C7 | 114.89 (19) |
C5—C4—Cl2 | 119.6 (3) | C8—N1—N1i | 119.3 (2) |
C4—C5—C6 | 119.5 (3) | C8—N1—H1 | 120.4 |
C4—C5—H5 | 120.3 | N1i—N1—H1 | 120.4 |
C6—C5—H5 | 120.3 | C1—O1—C7 | 118.22 (19) |
C1—C6—C5 | 120.7 (3) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2ii | 0.86 | 1.94 | 2.774 (3) | 164 |
Symmetry code: (ii) x, y+1, z. |
Funding information
The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through the Vice Deanship of Scientific Research Chairs.
References
Abdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591–596. CAS Google Scholar
Cambridge Soft (2016). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA. Google Scholar
Chekanova, L. G., Radushev, A. V., El'chishcheva, Y. B. & Kazakova, Y. V. (2004). Russ. J. Appl. Chem. 77, 1074–1078. Web of Science CrossRef CAS Google Scholar
Chen, T. & Tan, X. (2010). Acta Cryst. E66, o2829. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o2414. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Radushev, A. V., Chekanova, L. G., El'chishcheva, Y. B. & Ershova, A. V. (2007). Russ. J. Appl. Chem. 80, 368–371. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stabile, P., Lamonica, A., Ribecai, A., Castoldi, D., Guercio, G. & Curcuruto, O. (2010). Tetrahedron Lett. 51, 4801–4805. Web of Science CrossRef CAS Google Scholar
Wang, Y., Xu, F., Yu, G., Shi, J., Li, C., Dai, A., Liu, Z., Xu, J., Wang, F. & Wu, J. (2017). Chem. Cent. J. 11, 50. Web of Science CrossRef PubMed Google Scholar
Zarei, M. (2017). Tetrahedron, 73, 1867–1872. Web of Science CrossRef CAS Google Scholar
Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2007). Acta Cryst. E63, o4658. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.