organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(2,3-Di­chloro­phen­yl)piperazin-1-ium picrate

crossmark logo

aCentre for Research and Development, PRIST Deemed to be University, Thanjavur, 613 403, Tamil Nadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, cX-ray Crystallography Unit, School of Physics, University Sains Malaysia, 11800, USM, Penang, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
*Correspondence e-mail: nirmalramjs@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 19 March 2021; accepted 8 April 2021; online 13 April 2021)

The title compound, C6H2N3O7·C10H13Cl2N2+, crystallizes with one 1-(2,3-di­chloro-phen­yl)piperazine (DP) cation and one picrate (PA) anion in the asymmetric unit. In the crystal structure, the DP cation and PA anion are inter­connected via several N—H⋯O and C—H⋯O hydrogen bonds. The DP cation and PA anion are further connected through C—Cl⋯π [3.8201 (4), 3.7785 (4) Å] and N—O⋯π [3.7814 (4) Å] inter­actions. The DP cations are further inter­connected via a weak inter­molecular Cl⋯Cl [3.2613 (4) Å] halogen–halogen inter­action. The combination of these supra­molecular inter­actions leads to a herringbone like supra­molecular architecture.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1-(2,3-Di­chloro­phen­yl)piperazine (DP), a precursor in the synthesis of potent drugs such as aripiperazole (AP) (Oshiro et al., 1998[Oshiro, Y., Sato, S., Kurahashi, N., Tanaka, T., Kikuchi, T., Tottori, K., Uwahodo, Y. & Nishi, T. (1998). J. Med. Chem. 41, 658-667.]), is used as an anti­psychotic drug for the treatment of schizophrenia (Braun et al., 2009[Braun, D. E., Gelbrich, T., Kahlenberg, V., Tessadri, R., Wieser, J. & Griesser, U. J. (2009). J. Pharm. Sci. 98, 2010-2026.]; Frank et al., 2007[Frank, H. M., GuoJun, Z. & QiPeng, Y. (2007). Journal of Beijing University of Chemical Technology, 34, 425-427.]). A survey of the Cambridge Structural Database (CSD version 5.40, updates of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that there are no reports of salt and co-crystal forms of this compound. We herein report the crystal structure of a new solid form of DP, 1-(2,3-di­chloro-phen­yl)-piperazinium picrate (1).

The title salt, 1, crystallizes in the monoclinic P21/n space group. The asymmetric unit contains one (DP) cation and one picrate (PA) anion as shown in Fig. 1[link]. In 1, the pyrazine ring of the cation mol­ecule adopts a chair conformation with N—H and C—H bonds in axial–axial and equatorial–equatorial positions (Singh et al., 2015[Singh, K., Siddiqui, H. H., Shakya, P., Bagga, P., Kumar, A., Khalid, M., Arif, M. & Alok, S. (2015). IJPSR. 6, 4145-4158.]; Maia et al., 2012[Maia, R. C., Tesch, R. & Fraga, C. A. M. (2012). Expert Opin. Ther. Pat. 22, 1169-1178.]).

[Figure 1]
Figure 1
The title compound shown with 50% probability ellipsoids. The hydrogen bond is shown as a dashed line.

The protonated DP cation inter­acts with the neighbouring deprotonated PA anions via N1—H1A⋯O4i, N1—H1B⋯O2ii and N1—H1B⋯O7ii hydrogen bonds and C2—H2B⋯O3, C5—H5A⋯O7ii, C10—H10⋯O5iii and C17—H17⋯O1iv hydrogen bonds (Table 1[link]). The crystal packing is shown in Fig. 2[link]. Each DP cation is surrounded by four PA anions. The combination of N1—H1B⋯O7, N1—H1B⋯O2 and C5—H5A⋯O7 inter­actions between the ions leads to the formation of six-membered rings with graph-set notation R12(6) and R21(6) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Motherwell et al., 2000[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857-871.]). Atom H1B of the amino group (N1) acts as a bifurcated donor to the O atoms of the deprotonated O1 carbonyl and O2 nitro groups of the PA anion. Inversion-related cation–anion pairs are also linked through N1—H1A⋯O4, N1—H1B⋯O2 and C17—H17⋯O1 hydrogen bonds, forming an R23(11) ring motif. Adjacent DP cations and PA anions are further connected through C8—Cl1⋯π (phenyl ring of PA anion), C9—H9⋯ π (phenyl ring of DP cation) and N5—O2⋯π (phenyl ring of DP cation) inter­actions [C—Cl⋯Cg1, C—Cl⋯Cg3v and N—O⋯Cg3; symmetry codes: (v) 1 − x, 2 − y, 1 − z] with C⋯π distances of 3.8201 (4) and 3.7785 (4) Å, and N⋯π = 3.782 (2) Å, with C—Cl⋯π angles of 74.15 (7) and 76.91 (7)° and an N—O⋯π angle of 68.80 (12)°. The combination of N—H⋯O and C—H⋯O hydrogen bonds and C—Cl⋯π and N—O⋯π inter­actions leads to the formation of a three-dimensional supra­molecular herringbone architecture, which propagates along the a- and c-axis directions (Fig. 3[link]). Additionally, the DP cations are also connected through weak inter­molecular halogen–halogen Cl1⋯Cl1(7 − x, 2 − y, -z) inter­actions [3.2613 (4) Å] (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 2.25 3.134 (2) 171
N1—H1B⋯O2ii 0.89 2.28 2.828 (3) 119
N1—H1B⋯O7ii 0.89 1.84 2.695 (2) 159
C2—H2B⋯O3 0.97 2.59 3.444 (3) 148
C5—H5A⋯O7ii 0.97 2.59 3.287 (2) 129
C10—H10⋯O5iii 0.93 2.56 3.399 (3) 151
C17—H17⋯O1iv 0.93 2.50 3.348 (2) 152
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-1, y, z]; (iv) x+1, y, z.
[Figure 2]
Figure 2
A view of the N—H⋯O and C—H⋯O hydrogen-bonded packing pattern of the title salt.
[Figure 3]
Figure 3
The three dimensional herring bone supra­molecular architecture viewed along the a and c axis.
[Figure 4]
Figure 4
A view of the C—Cl⋯ π and N—O⋯π inter­actions involving the phenyl rings of the cation and anion (at symmetry positions x, y, z and 1 − x, −y, 1 − z) and the weak inter­molecular Cl⋯Cl halogen–halogen bond.

Synthesis and crystallization

1-(2,3-Di­chloro­phen­yl)piperazine (DP) (0.0577 mg, 0.25 mmol) and picric acid (PA) (0.05727 mg, 0.25 mmol) were dissolved independently in water and ethanol. The reactants were then mixed together in a 100 ml beaker and heated over a water bath at 90°C for 1 h (Fig. 5[link]). The clear reaction mixture was then left aside for crystallization at room temperature. After a few days, yellow-coloured plate-like crystals formed were separated out form the mother solution.

[Figure 5]
Figure 5
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H13Cl2N2+·C6H2N3O7
Mr 460.23
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.9855 (9), 13.5742 (15), 17.6103 (19)
β (°) 91.463 (4)
V3) 1908.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.40 × 0.35 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 72319, 5581, 3798
Rint 0.060
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.01
No. of reflections 5581
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray. org.]) and publCIF (Westrip,2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020), POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip,2010).

4-(2,3-Dichlorophenyl)piperazin-1-ium 2,4,6-trinitrophenolate top
Crystal data top
C10H13Cl2N2+·C6H2N3O7F(000) = 944
Mr = 460.23Dx = 1.602 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9855 (9) ÅCell parameters from 5581 reflections
b = 13.5742 (15) Åθ = 1.9–30.0°
c = 17.6103 (19) ŵ = 0.39 mm1
β = 91.463 (4)°T = 293 K
V = 1908.3 (4) Å3Plate, yellow
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3798 reflections with I > 2σ(I)
φ and ω scansRint = 0.060
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 30.0°, θmin = 1.9°
h = 1111
72319 measured reflectionsk = 1919
5581 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.6029P]
where P = (Fo2 + 2Fc2)/3
5581 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86754 (7)0.90877 (4)0.49364 (3)0.05570 (16)
Cl20.55596 (9)0.87130 (5)0.38716 (3)0.06593 (19)
O10.42341 (18)0.61036 (13)0.47240 (9)0.0596 (4)
O31.1299 (3)0.66281 (15)0.68775 (11)0.0815 (6)
O41.1043 (2)0.50943 (13)0.66777 (11)0.0737 (5)
O60.8856 (2)0.70824 (13)0.33400 (8)0.0620 (4)
O70.73482 (19)0.56905 (14)0.66344 (8)0.0607 (4)
N11.0258 (2)0.97533 (15)0.77447 (10)0.0557 (5)
H1A1.1291020.9792760.7944580.067*
H1B0.9580931.0093670.8040700.067*
N40.8056 (2)0.90163 (12)0.65808 (9)0.0448 (4)
N50.5018 (2)0.60547 (13)0.53316 (10)0.0464 (4)
N61.0712 (2)0.59397 (13)0.65270 (9)0.0449 (4)
N70.9808 (2)0.70084 (14)0.38929 (9)0.0491 (4)
C20.9720 (3)0.8704 (2)0.77267 (13)0.0631 (6)
H2A0.9687670.8449800.8240940.076*
H2B1.0523530.8316800.7449790.076*
C30.8019 (3)0.86087 (18)0.73514 (12)0.0565 (5)
H3A0.7694830.7920390.7329310.068*
H3B0.7199740.8960370.7645310.068*
C50.8499 (3)1.00694 (15)0.66127 (11)0.0462 (4)
H5A0.7686111.0422180.6909190.055*
H5B0.8475241.0342170.6103460.055*
C61.0229 (3)1.01986 (18)0.69695 (12)0.0534 (5)
H6A1.1054610.9878960.6658580.064*
H6B1.0503191.0893720.7002910.064*
C70.6619 (3)0.88178 (14)0.61170 (11)0.0428 (4)
C80.6754 (2)0.88572 (14)0.53246 (11)0.0421 (4)
C90.5373 (3)0.86809 (15)0.48480 (12)0.0482 (5)
C100.3843 (3)0.84451 (17)0.51519 (15)0.0582 (6)
H100.2912380.8334300.4835120.070*
C110.3714 (3)0.83768 (19)0.59227 (16)0.0627 (6)
H110.2691940.8203310.6126010.075*
C120.5069 (3)0.85596 (18)0.64071 (14)0.0574 (6)
H120.4946410.8510300.6929520.069*
C130.7830 (2)0.59718 (14)0.59988 (11)0.0408 (4)
C140.6823 (2)0.61733 (14)0.53291 (11)0.0393 (4)
C150.7479 (2)0.64827 (14)0.46521 (11)0.0399 (4)
H150.6773600.6590330.4232060.048*
C160.9173 (2)0.66320 (14)0.45975 (10)0.0406 (4)
C171.0258 (2)0.64607 (15)0.52161 (11)0.0425 (4)
H171.1405310.6562620.5180040.051*
C180.9590 (2)0.61409 (14)0.58717 (11)0.0398 (4)
O20.43209 (19)0.59195 (15)0.59333 (10)0.0695 (5)
O51.1286 (2)0.72559 (16)0.38803 (9)0.0718 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0499 (3)0.0718 (4)0.0456 (3)0.0124 (2)0.0050 (2)0.0060 (2)
Cl20.0769 (4)0.0705 (4)0.0493 (3)0.0001 (3)0.0201 (3)0.0011 (3)
O10.0332 (7)0.0855 (12)0.0594 (9)0.0006 (7)0.0084 (7)0.0115 (8)
O30.0942 (14)0.0746 (12)0.0738 (12)0.0009 (10)0.0364 (11)0.0154 (10)
O40.0748 (12)0.0611 (11)0.0835 (12)0.0018 (9)0.0331 (10)0.0162 (9)
O60.0556 (9)0.0880 (12)0.0424 (8)0.0026 (8)0.0011 (7)0.0138 (8)
O70.0418 (8)0.0957 (12)0.0445 (8)0.0086 (8)0.0000 (6)0.0179 (8)
N10.0409 (9)0.0817 (13)0.0441 (9)0.0083 (9)0.0063 (7)0.0172 (9)
N40.0456 (9)0.0503 (9)0.0384 (8)0.0041 (7)0.0035 (7)0.0005 (7)
N50.0334 (8)0.0518 (10)0.0538 (10)0.0049 (7)0.0004 (7)0.0101 (7)
N60.0357 (8)0.0566 (11)0.0423 (8)0.0009 (7)0.0037 (6)0.0030 (7)
N70.0441 (9)0.0610 (11)0.0424 (9)0.0009 (8)0.0037 (7)0.0038 (7)
C20.0720 (16)0.0737 (16)0.0431 (11)0.0137 (12)0.0103 (10)0.0005 (10)
C30.0684 (14)0.0595 (13)0.0415 (10)0.0043 (11)0.0035 (10)0.0036 (9)
C50.0433 (10)0.0526 (11)0.0424 (10)0.0050 (8)0.0037 (8)0.0040 (8)
C60.0433 (11)0.0678 (14)0.0492 (11)0.0053 (10)0.0006 (9)0.0087 (10)
C70.0431 (10)0.0421 (10)0.0432 (10)0.0052 (8)0.0017 (8)0.0038 (8)
C80.0396 (10)0.0408 (10)0.0458 (10)0.0052 (7)0.0017 (8)0.0028 (8)
C90.0514 (12)0.0402 (10)0.0523 (11)0.0003 (8)0.0124 (9)0.0028 (8)
C100.0422 (11)0.0549 (13)0.0769 (15)0.0048 (9)0.0135 (10)0.0065 (11)
C110.0454 (12)0.0611 (14)0.0819 (17)0.0134 (10)0.0058 (11)0.0061 (12)
C120.0545 (13)0.0630 (14)0.0551 (12)0.0126 (10)0.0082 (10)0.0050 (10)
C130.0337 (9)0.0480 (10)0.0408 (9)0.0015 (7)0.0012 (7)0.0036 (8)
C140.0278 (8)0.0473 (10)0.0428 (9)0.0024 (7)0.0005 (7)0.0038 (8)
C150.0348 (9)0.0449 (10)0.0397 (9)0.0026 (7)0.0044 (7)0.0028 (7)
C160.0356 (9)0.0483 (10)0.0380 (9)0.0005 (7)0.0019 (7)0.0035 (7)
C170.0300 (9)0.0522 (11)0.0453 (10)0.0007 (7)0.0002 (7)0.0016 (8)
C180.0311 (9)0.0497 (10)0.0383 (9)0.0009 (7)0.0052 (7)0.0021 (7)
O20.0348 (7)0.1106 (15)0.0634 (10)0.0098 (8)0.0102 (7)0.0282 (9)
O50.0486 (9)0.1141 (15)0.0533 (9)0.0199 (9)0.0101 (7)0.0089 (9)
Geometric parameters (Å, º) top
Cl1—C81.724 (2)C3—H3B0.9700
Cl2—C91.730 (2)C5—C61.513 (3)
O1—N51.227 (2)C5—H5A0.9700
O3—N61.208 (2)C5—H5B0.9700
O4—N61.206 (2)C6—H6A0.9700
O6—N71.224 (2)C6—H6B0.9700
O7—C131.252 (2)C7—C121.396 (3)
N1—C21.488 (3)C7—C81.403 (3)
N1—C61.493 (3)C8—C91.389 (3)
N1—H1A0.8900C9—C101.384 (3)
N1—H1B0.8900C10—C111.367 (4)
N4—C71.417 (3)C10—H100.9300
N4—C31.467 (3)C11—C121.383 (3)
N4—C51.474 (3)C11—H110.9300
N5—O21.223 (2)C12—H120.9300
N5—C141.451 (2)C13—C141.436 (3)
N6—C181.468 (2)C13—C181.447 (3)
N7—O51.228 (2)C14—C151.380 (3)
N7—C161.445 (2)C15—C161.373 (3)
C2—C31.501 (3)C15—H150.9300
C2—H2A0.9700C16—C171.394 (3)
C2—H2B0.9700C17—C181.356 (3)
C3—H3A0.9700C17—H170.9300
C2—N1—C6111.74 (17)N1—C6—H6B109.9
C2—N1—H1A109.3C5—C6—H6B109.9
C6—N1—H1A109.3H6A—C6—H6B108.3
C2—N1—H1B109.3C12—C7—C8117.72 (19)
C6—N1—H1B109.3C12—C7—N4123.32 (19)
H1A—N1—H1B107.9C8—C7—N4118.95 (17)
C7—N4—C3115.25 (17)C9—C8—C7120.93 (19)
C7—N4—C5113.38 (16)C9—C8—Cl1119.49 (16)
C3—N4—C5109.94 (16)C7—C8—Cl1119.54 (15)
O2—N5—O1122.01 (17)C10—C9—C8120.1 (2)
O2—N5—C14119.57 (17)C10—C9—Cl2119.29 (17)
O1—N5—C14118.42 (17)C8—C9—Cl2120.59 (17)
O4—N6—O3122.95 (19)C11—C10—C9119.3 (2)
O4—N6—C18118.42 (17)C11—C10—H10120.4
O3—N6—C18118.60 (18)C9—C10—H10120.4
O6—N7—O5122.73 (17)C10—C11—C12121.5 (2)
O6—N7—C16119.20 (17)C10—C11—H11119.2
O5—N7—C16118.06 (17)C12—C11—H11119.2
N1—C2—C3110.43 (19)C11—C12—C7120.4 (2)
N1—C2—H2A109.6C11—C12—H12119.8
C3—C2—H2A109.6C7—C12—H12119.8
N1—C2—H2B109.6O7—C13—C14127.87 (17)
C3—C2—H2B109.6O7—C13—C18120.54 (17)
H2A—C2—H2B108.1C14—C13—C18111.60 (16)
N4—C3—C2109.6 (2)C15—C14—C13123.41 (16)
N4—C3—H3A109.7C15—C14—N5115.83 (16)
C2—C3—H3A109.7C13—C14—N5120.76 (16)
N4—C3—H3B109.7C16—C15—C14120.11 (17)
C2—C3—H3B109.7C16—C15—H15119.9
H3A—C3—H3B108.2C14—C15—H15119.9
N4—C5—C6110.14 (17)C15—C16—C17120.96 (16)
N4—C5—H5A109.6C15—C16—N7118.66 (17)
C6—C5—H5A109.6C17—C16—N7120.34 (17)
N4—C5—H5B109.6C18—C17—C16117.94 (17)
C6—C5—H5B109.6C18—C17—H17121.0
H5A—C5—H5B108.1C16—C17—H17121.0
N1—C6—C5109.00 (18)C17—C18—C13125.98 (17)
N1—C6—H6A109.9C17—C18—N6118.89 (16)
C5—C6—H6A109.9C13—C18—N6115.13 (16)
C6—N1—C2—C355.7 (2)C18—C13—C14—C150.4 (3)
C7—N4—C3—C2169.33 (18)O7—C13—C14—N50.3 (3)
C5—N4—C3—C261.0 (2)C18—C13—C14—N5179.80 (17)
N1—C2—C3—N457.7 (2)O2—N5—C14—C15169.69 (19)
C7—N4—C5—C6167.66 (17)O1—N5—C14—C159.6 (3)
C3—N4—C5—C661.7 (2)O2—N5—C14—C1310.5 (3)
C2—N1—C6—C555.3 (2)O1—N5—C14—C13170.20 (18)
N4—C5—C6—N157.9 (2)C13—C14—C15—C161.3 (3)
C3—N4—C7—C1220.8 (3)N5—C14—C15—C16178.92 (18)
C5—N4—C7—C12107.2 (2)C14—C15—C16—C171.0 (3)
C3—N4—C7—C8157.64 (19)C14—C15—C16—N7176.60 (18)
C5—N4—C7—C874.4 (2)O6—N7—C16—C157.9 (3)
C12—C7—C8—C92.4 (3)O5—N7—C16—C15171.0 (2)
N4—C7—C8—C9179.13 (18)O6—N7—C16—C17174.48 (19)
C12—C7—C8—Cl1175.49 (17)O5—N7—C16—C176.6 (3)
N4—C7—C8—Cl13.0 (3)C15—C16—C17—C180.1 (3)
C7—C8—C9—C101.2 (3)N7—C16—C17—C18177.69 (19)
Cl1—C8—C9—C10176.69 (17)C16—C17—C18—C131.1 (3)
C7—C8—C9—Cl2179.03 (15)C16—C17—C18—N6178.99 (17)
Cl1—C8—C9—Cl21.2 (2)O7—C13—C18—C17178.8 (2)
C8—C9—C10—C110.8 (3)C14—C13—C18—C170.8 (3)
Cl2—C9—C10—C11177.11 (18)O7—C13—C18—N61.2 (3)
C9—C10—C11—C121.5 (4)C14—C13—C18—N6179.27 (16)
C10—C11—C12—C70.2 (4)O4—N6—C18—C17103.0 (2)
C8—C7—C12—C111.7 (3)O3—N6—C18—C1774.9 (3)
N4—C7—C12—C11179.9 (2)O4—N6—C18—C1377.0 (2)
O7—C13—C14—C15180.0 (2)O3—N6—C18—C13105.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.253.134 (2)171
N1—H1B···O2ii0.892.282.828 (3)119
N1—H1B···O7ii0.891.842.695 (2)159
C2—H2B···O30.972.593.444 (3)148
C5—H5A···O7ii0.972.593.287 (2)129
C10—H10···O5iii0.932.563.399 (3)151
C17—H17···O1iv0.932.503.348 (2)152
Symmetry codes: (i) x+5/2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x1, y, z; (iv) x+1, y, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraun, D. E., Gelbrich, T., Kahlenberg, V., Tessadri, R., Wieser, J. & Griesser, U. J. (2009). J. Pharm. Sci. 98, 2010–2026.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray. org.  Google Scholar
First citationFrank, H. M., GuoJun, Z. & QiPeng, Y. (2007). Journal of Beijing University of Chemical Technology, 34, 425–427.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaia, R. C., Tesch, R. & Fraga, C. A. M. (2012). Expert Opin. Ther. Pat. 22, 1169–1178.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOshiro, Y., Sato, S., Kurahashi, N., Tanaka, T., Kikuchi, T., Tottori, K., Uwahodo, Y. & Nishi, T. (1998). J. Med. Chem. 41, 658–667.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, K., Siddiqui, H. H., Shakya, P., Bagga, P., Kumar, A., Khalid, M., Arif, M. & Alok, S. (2015). IJPSR. 6, 4145-4158.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds