organic compounds
Ethyl 2-amino-4-methylthiophene-3-carboxylate
aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C8H11NO2S, crystallizes with two molecules, A and B, in the Each molecule features an intramolecular N—H⋯O hydrogen bond and the same H atom is also involved in an intermolecular N—H⋯S bond to generate A + B dimers. Further N—H⋯O hydrogen bonds link the dimers into a [010] chain.
CCDC reference: 2074848
Structure description
Thiophene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, antidepressant, antimicrobial and anticonvulsant activities (Molvi et al., 2007; Ashalatha et al., 2007; Rai et al., 2008). Thiophene derivatives are found to be active as allosteric enhancers at the adenosine A1 receptor, which has been linked to antiarrhythmic and antilipolytic activity (Cannito et al.,1990; Lütjens et al., 2003; Göblyös & Ijzerman, 2009; Nikolakopoulos et al., 2006). Thiophenes also possess properties that are suitable for functional materials, such as transistors (MacDiarmid, 2001; Kraft, 2001) and organic light-emitting diodes (Akcelrud, 2003; Perepichka et al., 2005) because of their reversible oxidation occurring at low potentials (Nessakh et al., 1995; van Haare et al., 1995) and their semiconductor-like behaviour obtained upon p-doping (Roncali et al., 2005).
Many 2-,3-aminothiophene derivatives have been prepared so far and the structures of more than 25 of them have been published (see, e.g.: Çoruh et al., 2003; Nirmala et al., 2005; Bourgeaux & Skene, 2007; Akkurt et al., 2008; Zhang & Jiao, 2010; Ghorab et al., 2012). Crystal structures of several thiophenes have been determined in which different functional groups are attached in place of NH2 at the 2-position of the ring (Yan & Liu, 2007; Mukhtar et al., 2012; de Oliveira et al., 2012; Mabkhot et al., 2013; Kaur et al., 2014). Compounds are known in which the replacement of NH2 group by iodine resulted in a cyclomer by the association of two monomers through a weak intermolecular CN⋯I Lewis acid–base interaction (Moncol et al., 2007). In the of another compound, which is a derivative of piperidine containing aminothiophenes, a dimer is formed by the intermolecular C—H⋯S interaction between the piperidine and thiophene rings (Al-Adiwish et al., 2012).
We report herein the synthesis, characterization and 1) (Fig. 1), which crystallizes in the triclinic P with four molecules in the (Z′ = 2). The two molecules in the are labelled as A and B. In both A and B, the thiophene ring and the directly attached atoms are all coplanar within experimental error [for A: the r.m.s. deviation of the thiophene moiety is 0.003 (1) Å with N1, C5, and C6 at 0.044 (3), 0.005 (3) and 0.011 (3) Å, respectively; for B the r.m.s. deviation is 0.001 (1) Å with N1, C5 and C6 at 0.009 (4), 0.009 (4), and 0.003 (3) Å, respectively]. For A the dihedral angle between the thiophene ring and the NH2 substituent is 12.5 (18)° while for the C7, O1 and O2 moiety, this angle is 1.65 (10)°, indicating that this group is almost exactly coplanar with the ring. For B the corresponding values are 11 (2) and 2.1 (2)°.
of the title compound, 2-amino-4-methylthiophene-3-carboxylate (A search for structures containing a 2-amino-thiophene-3-carboxylate moiety gave 45 hits, two of which are particularly relevant to the current reported structure, viz. ethyl 2-amino-4-isobutylthiophene-3-carboxylate (KIKPIE; Liao et al., 2007) and ethyl 2-amino-4-phenylthiophen-3-carboxylate (VIWPUM; Dufresne & Skene, 2010). The only difference between these structures and that of 1 is in the substituent at the 3-position on the ring which are 2-methylpropyl and phenyl for KIKPIE (Liao et al., 2007) and VIWPUM (Dufresne & Skene, 2010). In both cases the metrical parameters are similar as well as the planarity of the substituents.
As far as the packing of the molecules is concerned, there is both intra- and intermolecular hydrogen bonding. This links the molecules into a C42(12) chain in the b-axis direction (Etter et al., 1990). In addition, there are R23(6) interactions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B, which links the A and B molecules (Table 1, Figs. 2 and 3).
Synthesis and crystallization
The title compound (ethyl 2-amino-4-methylthiophene-3-carboxylate) (1) was prepared by the procedure described in the literature (Zhang et al., 2010). A mixture of acetone (0.5 mmol) and ethylcyanoacetate (0.5 mmol) in absolute ethanol (2 ml) was added to a solution of elemental S (0.5 mmol) and diethylamine (0.5 mmol) in absolute ethanol (2 ml) and stirred constantly for 3 h at 50°C. The reaction completion was confirmed by using pre-coated silica gel 60 F254 MERCK (20×20 cm). The reaction mixture was quenched with ice-cold water and extracted with ethyl acetate. The organic layer was separated, dried over anhydrous sodium sulfate and concentrated. The crude product was purified using silica gel (100–200 mesh) using hexane/ethyl acetate (7:3) mixture solution. Yellow crystals were obtained by slow evaporation of a in ethyl acetate and the crystals were used for X-ray diffraction studies. Compound 1: Yield: (85%). m.p. 76–79°C. 1H NMR (400 MHz, CDCl3) δ 6.07 (s, 2H), 5.82 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). 13C NMR (400 MHz, CDCl3) δ 166.13, 164.17, 136.71, 106.72, 102.85, 59.54, 18.40, 14.40. ESI–MS: m/z calculated for C8H11NO2S 185.05; found [M + H]+ 186.15.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2074848
https://doi.org/10.1107/S2414314621003515/bt4112sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621003515/bt4112Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314621003515/bt4112Isup3.cml
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).C8H11NO2S | Z = 4 |
Mr = 185.24 | F(000) = 392 |
Triclinic, P1 | Dx = 1.321 Mg m−3 |
a = 7.664 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.876 (3) Å | Cell parameters from 9004 reflections |
c = 13.018 (5) Å | θ = 2.6–30.7° |
α = 91.602 (12)° | µ = 0.31 mm−1 |
β = 104.301 (13)° | T = 293 K |
γ = 101.729 (13)° | Plate, colourless |
V = 931.7 (6) Å3 | 0.48 × 0.35 × 0.12 mm |
Bruker APEXII CCD diffractometer | 3845 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.062 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 30.5°, θmin = 2.1° |
Tmin = 0.565, Tmax = 0.747 | h = −10→10 |
27589 measured reflections | k = −14→14 |
5636 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: mixed |
wR(F2) = 0.168 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0812P)2 + 0.2238P] where P = (Fo2 + 2Fc2)/3 |
5636 reflections | (Δ/σ)max < 0.001 |
237 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL2018/3 (Sheldrick 2015b). The amine hydrogen atoms were refined isotropically while the C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 Å, and with 1.2Ueq(C) for H atoms. |
x | y | z | Uiso*/Ueq | ||
S1A | 0.57912 (8) | 0.63040 (5) | 0.90873 (4) | 0.05608 (17) | |
O1A | 0.5956 (2) | 1.07513 (14) | 0.82938 (11) | 0.0598 (4) | |
O2A | 0.77241 (18) | 1.13164 (13) | 0.99478 (10) | 0.0469 (3) | |
N1A | 0.4678 (3) | 0.7995 (2) | 0.76263 (15) | 0.0611 (5) | |
H1AA | 0.478 (4) | 0.878 (3) | 0.741 (2) | 0.074 (8)* | |
H1AB | 0.420 (4) | 0.728 (3) | 0.718 (2) | 0.067 (7)* | |
C1A | 0.5667 (3) | 0.79097 (18) | 0.86174 (15) | 0.0434 (4) | |
C2A | 0.6638 (2) | 0.89702 (17) | 0.93919 (13) | 0.0394 (4) | |
C3A | 0.7481 (2) | 0.84624 (19) | 1.03824 (14) | 0.0429 (4) | |
C4A | 0.7121 (3) | 0.7062 (2) | 1.03180 (17) | 0.0535 (5) | |
H4AA | 0.754788 | 0.655468 | 1.088165 | 0.064* | |
C5A | 0.8619 (3) | 0.9325 (2) | 1.13746 (16) | 0.0580 (5) | |
H5AA | 0.899385 | 0.872987 | 1.191859 | 0.087* | |
H5AB | 0.790195 | 0.990278 | 1.160998 | 0.087* | |
H5AC | 0.969117 | 0.989811 | 1.123237 | 0.087* | |
C6A | 0.6715 (2) | 1.03954 (17) | 0.91494 (14) | 0.0400 (4) | |
C7A | 0.7865 (3) | 1.27623 (18) | 0.97679 (16) | 0.0501 (4) | |
H7AA | 0.664931 | 1.297311 | 0.957187 | 0.060* | |
H7AB | 0.845948 | 1.299239 | 0.919940 | 0.060* | |
C8A | 0.8989 (3) | 1.3566 (2) | 1.07851 (18) | 0.0607 (5) | |
H8AA | 0.910249 | 1.454059 | 1.070404 | 0.091* | |
H8AB | 1.019220 | 1.335704 | 1.096380 | 0.091* | |
H8AC | 0.839418 | 1.331695 | 1.134225 | 0.091* | |
S1B | 0.35148 (12) | 0.08122 (6) | 0.57884 (5) | 0.0809 (3) | |
O1B | 0.3541 (2) | 0.53445 (14) | 0.63773 (11) | 0.0620 (4) | |
O2B | 0.2205 (2) | 0.52307 (14) | 0.46392 (11) | 0.0538 (3) | |
N1B | 0.4376 (3) | 0.2976 (2) | 0.72151 (14) | 0.0639 (5) | |
H1BA | 0.451 (3) | 0.381 (3) | 0.7357 (18) | 0.057 (7)* | |
H1BB | 0.484 (4) | 0.242 (3) | 0.765 (2) | 0.076 (8)* | |
C1B | 0.3661 (3) | 0.25098 (19) | 0.61927 (15) | 0.0474 (4) | |
C2B | 0.2967 (3) | 0.32322 (18) | 0.53404 (13) | 0.0425 (4) | |
C3B | 0.2320 (3) | 0.2374 (2) | 0.43493 (16) | 0.0564 (5) | |
C4B | 0.2549 (5) | 0.1078 (3) | 0.4495 (2) | 0.0824 (8) | |
H4BA | 0.221258 | 0.038177 | 0.394211 | 0.099* | |
C5B | 0.1488 (4) | 0.2818 (3) | 0.32835 (17) | 0.0748 (7) | |
H5BA | 0.121058 | 0.205434 | 0.275478 | 0.112* | |
H5BB | 0.234517 | 0.357479 | 0.311217 | 0.112* | |
H5BC | 0.037419 | 0.311113 | 0.329922 | 0.112* | |
C6B | 0.2961 (3) | 0.46767 (18) | 0.55163 (14) | 0.0424 (4) | |
C7B | 0.2082 (3) | 0.6659 (2) | 0.47361 (19) | 0.0609 (5) | |
H7BA | 0.330234 | 0.725322 | 0.498848 | 0.073* | |
H7BB | 0.136218 | 0.679395 | 0.523229 | 0.073* | |
C8B | 0.1157 (4) | 0.6988 (3) | 0.3643 (2) | 0.0809 (8) | |
H8BA | 0.089268 | 0.789501 | 0.367982 | 0.121* | |
H8BB | 0.002774 | 0.631283 | 0.336545 | 0.121* | |
H8BC | 0.195895 | 0.696714 | 0.318332 | 0.121* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0707 (4) | 0.0344 (2) | 0.0629 (3) | 0.0106 (2) | 0.0173 (3) | 0.0055 (2) |
O1A | 0.0810 (10) | 0.0432 (7) | 0.0456 (7) | 0.0181 (7) | −0.0054 (7) | 0.0073 (6) |
O2A | 0.0547 (8) | 0.0354 (6) | 0.0441 (7) | 0.0084 (5) | 0.0020 (6) | 0.0059 (5) |
N1A | 0.0846 (14) | 0.0431 (9) | 0.0456 (9) | 0.0128 (9) | 0.0003 (9) | −0.0027 (8) |
C1A | 0.0497 (10) | 0.0369 (8) | 0.0453 (9) | 0.0108 (7) | 0.0141 (8) | 0.0038 (7) |
C2A | 0.0404 (9) | 0.0366 (8) | 0.0414 (8) | 0.0088 (7) | 0.0103 (7) | 0.0065 (6) |
C3A | 0.0425 (9) | 0.0434 (9) | 0.0450 (9) | 0.0116 (7) | 0.0128 (7) | 0.0109 (7) |
C4A | 0.0631 (12) | 0.0458 (10) | 0.0543 (11) | 0.0166 (9) | 0.0144 (9) | 0.0176 (8) |
C5A | 0.0635 (13) | 0.0579 (12) | 0.0444 (10) | 0.0124 (10) | −0.0012 (9) | 0.0109 (9) |
C6A | 0.0428 (9) | 0.0378 (8) | 0.0400 (8) | 0.0115 (7) | 0.0091 (7) | 0.0055 (6) |
C7A | 0.0621 (12) | 0.0345 (8) | 0.0500 (10) | 0.0116 (8) | 0.0062 (9) | 0.0055 (7) |
C8A | 0.0653 (13) | 0.0454 (10) | 0.0605 (13) | 0.0052 (9) | 0.0021 (10) | −0.0021 (9) |
S1B | 0.1329 (7) | 0.0398 (3) | 0.0631 (4) | 0.0278 (3) | 0.0053 (4) | 0.0040 (2) |
O1B | 0.0879 (11) | 0.0431 (7) | 0.0452 (7) | 0.0163 (7) | −0.0015 (7) | −0.0043 (6) |
O2B | 0.0696 (9) | 0.0449 (7) | 0.0446 (7) | 0.0190 (6) | 0.0046 (6) | 0.0083 (6) |
N1B | 0.0985 (16) | 0.0499 (10) | 0.0380 (8) | 0.0265 (10) | −0.0011 (9) | 0.0056 (8) |
C1B | 0.0601 (11) | 0.0383 (8) | 0.0419 (9) | 0.0129 (8) | 0.0077 (8) | 0.0040 (7) |
C2B | 0.0492 (10) | 0.0395 (8) | 0.0360 (8) | 0.0107 (7) | 0.0052 (7) | 0.0015 (6) |
C3B | 0.0707 (13) | 0.0495 (10) | 0.0404 (9) | 0.0104 (9) | 0.0015 (9) | −0.0040 (8) |
C4B | 0.128 (2) | 0.0480 (12) | 0.0570 (13) | 0.0180 (14) | 0.0015 (14) | −0.0132 (10) |
C5B | 0.1004 (19) | 0.0743 (15) | 0.0386 (10) | 0.0216 (14) | −0.0035 (11) | −0.0068 (10) |
C6B | 0.0463 (9) | 0.0398 (8) | 0.0399 (8) | 0.0107 (7) | 0.0074 (7) | 0.0050 (7) |
C7B | 0.0672 (13) | 0.0447 (10) | 0.0700 (14) | 0.0180 (9) | 0.0105 (11) | 0.0160 (9) |
C8B | 0.0828 (18) | 0.0716 (16) | 0.0840 (18) | 0.0226 (14) | 0.0055 (14) | 0.0366 (14) |
S1A—C4A | 1.727 (2) | S1B—C4B | 1.715 (3) |
S1A—C1A | 1.7277 (19) | S1B—C1B | 1.716 (2) |
O1A—C6A | 1.220 (2) | O1B—C6B | 1.217 (2) |
O2A—C6A | 1.330 (2) | O2B—C6B | 1.333 (2) |
O2A—C7A | 1.440 (2) | O2B—C7B | 1.437 (2) |
N1A—C1A | 1.340 (3) | N1B—C1B | 1.337 (3) |
N1A—H1AA | 0.83 (3) | N1B—H1BA | 0.82 (3) |
N1A—H1AB | 0.86 (3) | N1B—H1BB | 0.87 (3) |
C1A—C2A | 1.386 (3) | C1B—C2B | 1.389 (2) |
C2A—C6A | 1.444 (2) | C2B—C6B | 1.440 (2) |
C2A—C3A | 1.445 (2) | C2B—C3B | 1.443 (3) |
C3A—C4A | 1.350 (3) | C3B—C4B | 1.339 (3) |
C3A—C5A | 1.495 (3) | C3B—C5B | 1.495 (3) |
C4A—H4AA | 0.9300 | C4B—H4BA | 0.9300 |
C5A—H5AA | 0.9600 | C5B—H5BA | 0.9600 |
C5A—H5AB | 0.9600 | C5B—H5BB | 0.9600 |
C5A—H5AC | 0.9600 | C5B—H5BC | 0.9600 |
C7A—C8A | 1.492 (3) | C7B—C8B | 1.502 (3) |
C7A—H7AA | 0.9700 | C7B—H7BA | 0.9700 |
C7A—H7AB | 0.9700 | C7B—H7BB | 0.9700 |
C8A—H8AA | 0.9600 | C8B—H8BA | 0.9600 |
C8A—H8AB | 0.9600 | C8B—H8BB | 0.9600 |
C8A—H8AC | 0.9600 | C8B—H8BC | 0.9600 |
C4A—S1A—C1A | 91.37 (9) | C4B—S1B—C1B | 91.28 (11) |
C6A—O2A—C7A | 117.21 (14) | C6B—O2B—C7B | 117.81 (16) |
C1A—N1A—H1AA | 116.2 (19) | C1B—N1B—H1BA | 116.5 (17) |
C1A—N1A—H1AB | 122.2 (17) | C1B—N1B—H1BB | 118.1 (18) |
H1AA—N1A—H1AB | 120 (2) | H1BA—N1B—H1BB | 124 (2) |
N1A—C1A—C2A | 128.91 (17) | N1B—C1B—C2B | 128.53 (18) |
N1A—C1A—S1A | 119.95 (15) | N1B—C1B—S1B | 120.36 (15) |
C2A—C1A—S1A | 111.12 (14) | C2B—C1B—S1B | 111.12 (14) |
C1A—C2A—C6A | 119.56 (16) | C1B—C2B—C6B | 119.66 (16) |
C1A—C2A—C3A | 112.69 (15) | C1B—C2B—C3B | 112.43 (17) |
C6A—C2A—C3A | 127.75 (16) | C6B—C2B—C3B | 127.92 (17) |
C4A—C3A—C2A | 111.36 (17) | C4B—C3B—C2B | 111.01 (19) |
C4A—C3A—C5A | 122.25 (18) | C4B—C3B—C5B | 122.6 (2) |
C2A—C3A—C5A | 126.40 (16) | C2B—C3B—C5B | 126.34 (19) |
C3A—C4A—S1A | 113.46 (15) | C3B—C4B—S1B | 114.16 (17) |
C3A—C4A—H4AA | 123.3 | C3B—C4B—H4BA | 122.9 |
S1A—C4A—H4AA | 123.3 | S1B—C4B—H4BA | 122.9 |
C3A—C5A—H5AA | 109.5 | C3B—C5B—H5BA | 109.5 |
C3A—C5A—H5AB | 109.5 | C3B—C5B—H5BB | 109.5 |
H5AA—C5A—H5AB | 109.5 | H5BA—C5B—H5BB | 109.5 |
C3A—C5A—H5AC | 109.5 | C3B—C5B—H5BC | 109.5 |
H5AA—C5A—H5AC | 109.5 | H5BA—C5B—H5BC | 109.5 |
H5AB—C5A—H5AC | 109.5 | H5BB—C5B—H5BC | 109.5 |
O1A—C6A—O2A | 121.81 (16) | O1B—C6B—O2B | 121.96 (17) |
O1A—C6A—C2A | 124.29 (16) | O1B—C6B—C2B | 124.56 (17) |
O2A—C6A—C2A | 113.89 (15) | O2B—C6B—C2B | 113.46 (16) |
O2A—C7A—C8A | 106.65 (16) | O2B—C7B—C8B | 106.1 (2) |
O2A—C7A—H7AA | 110.4 | O2B—C7B—H7BA | 110.5 |
C8A—C7A—H7AA | 110.4 | C8B—C7B—H7BA | 110.5 |
O2A—C7A—H7AB | 110.4 | O2B—C7B—H7BB | 110.5 |
C8A—C7A—H7AB | 110.4 | C8B—C7B—H7BB | 110.5 |
H7AA—C7A—H7AB | 108.6 | H7BA—C7B—H7BB | 108.7 |
C7A—C8A—H8AA | 109.5 | C7B—C8B—H8BA | 109.5 |
C7A—C8A—H8AB | 109.5 | C7B—C8B—H8BB | 109.5 |
H8AA—C8A—H8AB | 109.5 | H8BA—C8B—H8BB | 109.5 |
C7A—C8A—H8AC | 109.5 | C7B—C8B—H8BC | 109.5 |
H8AA—C8A—H8AC | 109.5 | H8BA—C8B—H8BC | 109.5 |
H8AB—C8A—H8AC | 109.5 | H8BB—C8B—H8BC | 109.5 |
C4A—S1A—C1A—N1A | −177.88 (18) | C4B—S1B—C1B—N1B | −179.6 (2) |
C4A—S1A—C1A—C2A | 0.54 (15) | C4B—S1B—C1B—C2B | 0.33 (19) |
N1A—C1A—C2A—C6A | −2.3 (3) | N1B—C1B—C2B—C6B | −0.3 (3) |
S1A—C1A—C2A—C6A | 179.41 (13) | S1B—C1B—C2B—C6B | 179.78 (15) |
N1A—C1A—C2A—C3A | 177.8 (2) | N1B—C1B—C2B—C3B | 179.7 (2) |
S1A—C1A—C2A—C3A | −0.5 (2) | S1B—C1B—C2B—C3B | −0.3 (2) |
C1A—C2A—C3A—C4A | 0.1 (2) | C1B—C2B—C3B—C4B | 0.0 (3) |
C6A—C2A—C3A—C4A | −179.77 (18) | C6B—C2B—C3B—C4B | 180.0 (2) |
C1A—C2A—C3A—C5A | −179.96 (18) | C1B—C2B—C3B—C5B | 179.7 (2) |
C6A—C2A—C3A—C5A | 0.2 (3) | C6B—C2B—C3B—C5B | −0.3 (4) |
C2A—C3A—C4A—S1A | 0.3 (2) | C2B—C3B—C4B—S1B | 0.2 (3) |
C5A—C3A—C4A—S1A | −179.62 (16) | C5B—C3B—C4B—S1B | −179.5 (2) |
C1A—S1A—C4A—C3A | −0.52 (17) | C1B—S1B—C4B—C3B | −0.3 (3) |
C7A—O2A—C6A—O1A | 0.9 (3) | C7B—O2B—C6B—O1B | −0.2 (3) |
C7A—O2A—C6A—C2A | −179.88 (16) | C7B—O2B—C6B—C2B | 178.22 (17) |
C1A—C2A—C6A—O1A | 0.7 (3) | C1B—C2B—C6B—O1B | 0.4 (3) |
C3A—C2A—C6A—O1A | −179.46 (18) | C3B—C2B—C6B—O1B | −179.5 (2) |
C1A—C2A—C6A—O2A | −178.48 (15) | C1B—C2B—C6B—O2B | −177.98 (17) |
C3A—C2A—C6A—O2A | 1.4 (3) | C3B—C2B—C6B—O2B | 2.1 (3) |
C6A—O2A—C7A—C8A | 177.71 (17) | C6B—O2B—C7B—C8B | −179.07 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H1BA···O1B | 0.82 (3) | 2.14 (3) | 2.734 (3) | 130 (2) |
N1B—H1BB···O1Ai | 0.87 (3) | 2.10 (3) | 2.946 (3) | 163 (2) |
N1A—H1AA···S1Bii | 0.83 (3) | 3.07 (3) | 3.819 (2) | 151 (2) |
N1A—H1AA···O1A | 0.83 (3) | 2.14 (3) | 2.736 (3) | 129 (2) |
N1A—H1AB···O1B | 0.86 (3) | 2.05 (3) | 2.897 (3) | 165 (2) |
C7A—H7AA···S1Aiii | 0.97 | 3.02 | 3.736 (3) | 131 |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, −y+2, −z+2. |
Funding information
RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research.
References
Akcelrud, L. (2003). Prog. Polym. Sci. 28, 875–962. Web of Science CrossRef CAS Google Scholar
Akkurt, M., Yıldırım, S. Ö., Asiri, A. M. & McKee, V. (2008). Acta Cryst. E64, o1084. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Adiwish, W. M., Adan, D., Mohamed Tahir, M. I., Yaacob, W. A. & Kassim, M. B. (2012). Acta Cryst. E68, o138. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ashalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719–728. Web of Science CrossRef PubMed CAS Google Scholar
Bourgeaux, M. & Skene, W. G. (2007). Acta Cryst. E63, o1603–o1605. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cannito, A., Perrissin, M., Luu-Duc, C., Huguet, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639. CrossRef CAS Web of Science Google Scholar
Çoruh, U., Ustabaş, R., Tümer, F., García-Granda, S., Demir, Ü., Ekinci, D. & Yavuz, M. (2003). Acta Cryst. E59, o1339–o1341. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3221. Web of Science CSD CrossRef IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Ghorab, M. M., Al-Said, M. S., Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o2111. CSD CrossRef IUCr Journals Google Scholar
Göblyös, A. & IJzerman, A. P. (2009). Purinergic Signal. 5, 51–61. Web of Science PubMed Google Scholar
Haare, J. A. E. H. van, Groenendaal, L., Peerlings, H. W. I., Havinga, E. E., Vekemans, J. A. J. M., Janssen, R. A. J. & Meijer, E. W. (1995). Chem. Mater. 7, 1984–1989. CrossRef Web of Science Google Scholar
Kaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). Acta Cryst. E70, o951–o952. CSD CrossRef IUCr Journals Google Scholar
Kraft, A. (2001). ChemPhysChem, 2, 163–165. Web of Science CrossRef CAS PubMed Google Scholar
Liao, Q.-B., Huang, J., Yang, Z.-Z. & Liu, M.-G. (2007). Acta Cryst. E63, o3824. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2003). J. Med. Chem. 46, 1870–1877. Web of Science CrossRef PubMed Google Scholar
Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049. CSD CrossRef IUCr Journals Google Scholar
MacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581–2590. CrossRef CAS Google Scholar
Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058. Web of Science CrossRef PubMed CAS Google Scholar
Moncol, J., Puterová, Z. & Végh, D. (2007). Acta Cryst. E63, o3921. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mukhtar, A., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2012). Acta Cryst. E68, o2042. CSD CrossRef IUCr Journals Google Scholar
Nessakh, B., Horowitz, G., Garnier, F., Deloffre, F., Srivastava, P. & Yassar, A. (1995). J. Electroanal. Chem. 399, 97–103. CrossRef Web of Science Google Scholar
Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365. Web of Science CrossRef PubMed CAS Google Scholar
Nirmala, K. A., Vasu, Chopra, D., Mohan, S. & Prasad, M. R. (2005). Acta Cryst. E61, o1541–o1543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oliveira, J. G. B. de, Mendonça Junio, F. J. B., de Lima, M., do C. A., de Simone, C. A. & Ellena, J. A. (2012). Acta Cryst. E68, o2360. Google Scholar
Perepichka, I. F., Perepichka, D. F., Meng, H. & Wudl, F. (2005). Adv. Mater. 17, 2281–2305. Web of Science CrossRef CAS Google Scholar
Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. Web of Science PubMed Google Scholar
Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589–1610. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yan, F.-Y. & Liu, D.-Q. (2007). Acta Cryst. E63, o4877. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, Q. & Jiao, Y.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 283–284. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.