organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-amino-4-methyl­thio­phene-3-carboxyl­ate

crossmark logo

aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 31 March 2021; accepted 1 April 2021; online 9 April 2021)

The title compound, C8H11NO2S, crystallizes with two mol­ecules, A and B, in the asymmetric unit. Each molecule features an intramolecular N—H⋯O hydrogen bond and the same H atom is also involved in an intermolecular N—H⋯S bond to generate A + B dimers. Further N—H⋯O hydrogen bonds link the dimers into a [010] chain.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­phene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, anti­depressant, anti­microbial and anti­convulsant activities (Molvi et al., 2007[Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049-1058.]; Ashalatha et al., 2007[Ashalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719-728.]; Rai et al., 2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). Thio­phene derivatives are found to be active as allosteric enhancers at the adenosine A1 receptor, which has been linked to anti­arrhythmic and anti­lipolytic activity (Cannito et al.,1990[Cannito, A., Perrissin, M., Luu-Duc, C., Huguet, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635-639.]; Lütjens et al., 2003[Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2003). J. Med. Chem. 46, 1870-1877.]; Göblyös & Ijzerman, 2009[Göblyös, A. & IJzerman, A. P. (2009). Purinergic Signal. 5, 51-61.]; Nikolakopoulos et al., 2006[Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358-2365.]). Thio­phenes also possess properties that are suitable for functional materials, such as field effect transistors (MacDiarmid, 2001[MacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581-2590.]; Kraft, 2001[Kraft, A. (2001). ChemPhysChem, 2, 163-165.]) and organic light-emitting diodes (Akcelrud, 2003[Akcelrud, L. (2003). Prog. Polym. Sci. 28, 875-962.]; Perepichka et al., 2005[Perepichka, I. F., Perepichka, D. F., Meng, H. & Wudl, F. (2005). Adv. Mater. 17, 2281-2305.]) because of their reversible oxidation occurring at low potentials (Nessakh et al., 1995[Nessakh, B., Horowitz, G., Garnier, F., Deloffre, F., Srivastava, P. & Yassar, A. (1995). J. Electroanal. Chem. 399, 97-103.]; van Haare et al., 1995[Haare, J. A. E. H. van, Groenendaal, L., Peerlings, H. W. I., Havinga, E. E., Vekemans, J. A. J. M., Janssen, R. A. J. & Meijer, E. W. (1995). Chem. Mater. 7, 1984-1989.]) and their semiconductor-like behaviour obtained upon p-doping (Roncali et al., 2005[Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589-1610.]).

Many 2-,3-amino­thio­phene derivatives have been prepared so far and the structures of more than 25 of them have been published (see, e.g.: Çoruh et al., 2003[Çoruh, U., Ustabaş, R., Tümer, F., García-Granda, S., Demir, Ü., Ekinci, D. & Yavuz, M. (2003). Acta Cryst. E59, o1339-o1341.]; Nirmala et al., 2005[Nirmala, K. A., Vasu, Chopra, D., Mohan, S. & Prasad, M. R. (2005). Acta Cryst. E61, o1541-o1543.]; Bourgeaux & Skene, 2007[Bourgeaux, M. & Skene, W. G. (2007). Acta Cryst. E63, o1603-o1605.]; Akkurt et al., 2008[Akkurt, M., Yıldırım, S. Ö., Asiri, A. M. & McKee, V. (2008). Acta Cryst. E64, o1084.]; Zhang & Jiao, 2010[Zhang, Q. & Jiao, Y.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 283-284.]; Ghorab et al., 2012[Ghorab, M. M., Al-Said, M. S., Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o2111.]). Crystal structures of several thio­phenes have been determined in which different functional groups are attached in place of NH2 at the 2-position of the ring (Yan & Liu, 2007[Yan, F.-Y. & Liu, D.-Q. (2007). Acta Cryst. E63, o4877.]; Mukhtar et al., 2012[Mukhtar, A., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2012). Acta Cryst. E68, o2042.]; de Oliveira et al., 2012[Oliveira, J. G. B. de, Mendonça Junio, F. J. B., de Lima, M., do C. A., de Simone, C. A. & Ellena, J. A. (2012). Acta Cryst. E68, o2360.]; Mabkhot et al., 2013[Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049.]; Kaur et al., 2014[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). Acta Cryst. E70, o951-o952.]). Compounds are known in which the replacement of NH2 group by iodine resulted in a cyclo­mer by the association of two monomers through a weak inter­molecular CN⋯I Lewis acid–base inter­action (Moncol et al., 2007[Moncol, J., Puterová, Z. & Végh, D. (2007). Acta Cryst. E63, o3921.]). In the crystal structure of another compound, which is a derivative of piperidine containing amino­thio­phenes, a dimer is formed by the inter­molecular C—H⋯S inter­action between the piperidine and thio­phene rings (Al-Adiwish et al., 2012[Al-Adiwish, W. M., Adan, D., Mohamed Tahir, M. I., Yaacob, W. A. & Kassim, M. B. (2012). Acta Cryst. E68, o138.]).

We report herein the synthesis, characterization and crystal structure of the title compound, 2-amino-4-methyl­thio­phene-3-carboxyl­ate (1) (Fig. 1[link]), which crystallizes in the triclinic space group P[\overline{1}] with four mol­ecules in the unit cell (Z′ = 2). The two mol­ecules in the asymmetric unit are labelled as A and B. In both A and B, the thio­phene ring and the directly attached atoms are all coplanar within experimental error [for A: the r.m.s. deviation of the thio­phene moiety is 0.003 (1) Å with N1, C5, and C6 at 0.044 (3), 0.005 (3) and 0.011 (3) Å, respectively; for B the r.m.s. deviation is 0.001 (1) Å with N1, C5 and C6 at 0.009 (4), 0.009 (4), and 0.003 (3) Å, respectively]. For A the dihedral angle between the thio­phene ring and the NH2 substituent is 12.5 (18)° while for the C7, O1 and O2 moiety, this angle is 1.65 (10)°, indicating that this group is almost exactly coplanar with the ring. For B the corresponding values are 11 (2) and 2.1 (2)°.

[Figure 1]
Figure 1
Diagram showing the two mol­ecules A and B with atom labelling. R23(6) inter­actions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B links the A and B mol­ecules. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.

A search for structures containing a 2-amino-thio­phene-3-carboxyl­ate moiety gave 45 hits, two of which are particularly relevant to the current reported structure, viz. ethyl 2-amino-4-iso­butyl­thio­phene-3-carboxyl­ate (KIKPIE; Liao et al., 2007[Liao, Q.-B., Huang, J., Yang, Z.-Z. & Liu, M.-G. (2007). Acta Cryst. E63, o3824.]) and ethyl 2-amino-4-phenyl­thio­phen-3-carboxyl­ate (VIWPUM; Dufresne & Skene, 2010[Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3221.]). The only difference between these structures and that of 1 is in the substituent at the 3-position on the ring which are 2-methyl­propyl and phenyl for KIKPIE (Liao et al., 2007[Liao, Q.-B., Huang, J., Yang, Z.-Z. & Liu, M.-G. (2007). Acta Cryst. E63, o3824.]) and VIWPUM (Dufresne & Skene, 2010[Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3221.]). In both cases the metrical parameters are similar as well as the planarity of the substituents.

As far as the packing of the mol­ecules is concerned, there is both intra- and inter­molecular hydrogen bonding. This links the mol­ecules into a C42(12) chain in the b-axis direction (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). In addition, there are R23(6) inter­actions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B, which links the A and B mol­ecules (Table 1[link], Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1BA⋯O1B 0.82 (3) 2.14 (3) 2.734 (3) 130 (2)
N1B—H1BB⋯O1Ai 0.87 (3) 2.10 (3) 2.946 (3) 163 (2)
N1A—H1AA⋯S1Bii 0.83 (3) 3.07 (3) 3.819 (2) 151 (2)
N1A—H1AA⋯O1A 0.83 (3) 2.14 (3) 2.736 (3) 129 (2)
N1A—H1AB⋯O1B 0.86 (3) 2.05 (3) 2.897 (3) 165 (2)
C7A—H7AA⋯S1Aiii 0.97 3.02 3.736 (3) 131
Symmetry codes: (i) [x, y-1, z]; (ii) x, y+1, z; (iii) [-x+1, -y+2, -z+2].
[Figure 2]
Figure 2
Diagram showing both intra- and inter­molecular hydrogen bonding, which links the mol­ecules into a C42(12) chain in the b-axis direction, and R23(6) inter­actions involving the NH2 and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B which links the A and B mol­ecules. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.
[Figure 3]
Figure 3
Packing diagram viewed along the a axis. Hydrogen bonds are shown with dashed lines.

Synthesis and crystallization

The title compound (ethyl 2-amino-4-methyl­thio­phene-3-carboxyl­ate) (1) was prepared by the procedure described in the literature (Zhang et al., 2010[Zhang, Q. & Jiao, Y.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 283-284.]). A mixture of acetone (0.5 mmol) and ethyl­cyano­acetate (0.5 mmol) in absolute ethanol (2 ml) was added to a solution of elemental S (0.5 mmol) and di­ethyl­amine (0.5 mmol) in absolute ethanol (2 ml) and stirred constantly for 3 h at 50°C. The reaction completion was confirmed by using pre-coated silica gel 60 F254 MERCK (20×20 cm). The reaction mixture was quenched with ice-cold water and extracted with ethyl acetate. The organic layer was separated, dried over anhydrous sodium sulfate and concentrated. The crude product was purified using silica gel column chromatography (100–200 mesh) using hexa­ne/ethyl acetate (7:3) mixture solution. Yellow crystals were obtained by slow evaporation of a saturated solution in ethyl acetate and the crystals were used for X-ray diffraction studies. Compound 1: Yield: (85%). m.p. 76–79°C. 1H NMR (400 MHz, CDCl3) δ 6.07 (s, 2H), 5.82 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). 13C NMR (400 MHz, CDCl3) δ 166.13, 164.17, 136.71, 106.72, 102.85, 59.54, 18.40, 14.40. ESI–MS: m/z calculated for C8H11NO2S 185.05; found [M + H]+ 186.15.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H11NO2S
Mr 185.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.664 (3), 9.876 (3), 13.018 (5)
α, β, γ (°) 91.602 (12), 104.301 (13), 101.729 (13)
V3) 931.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.48 × 0.35 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.565, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 27589, 5636, 3845
Rint 0.062
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.168, 1.03
No. of reflections 5636
No. of parameters 237
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.39
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]a), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]b) and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Ethyl 2-amino-4-methylthiophene-3-carboxylate top
Crystal data top
C8H11NO2SZ = 4
Mr = 185.24F(000) = 392
Triclinic, P1Dx = 1.321 Mg m3
a = 7.664 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.876 (3) ÅCell parameters from 9004 reflections
c = 13.018 (5) Åθ = 2.6–30.7°
α = 91.602 (12)°µ = 0.31 mm1
β = 104.301 (13)°T = 293 K
γ = 101.729 (13)°Plate, colourless
V = 931.7 (6) Å30.48 × 0.35 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3845 reflections with I > 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 30.5°, θmin = 2.1°
Tmin = 0.565, Tmax = 0.747h = 1010
27589 measured reflectionsk = 1414
5636 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.2238P]
where P = (Fo2 + 2Fc2)/3
5636 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL2018/3 (Sheldrick 2015b). The amine hydrogen atoms were refined isotropically while the C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 Å, and with 1.2Ueq(C) for H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.57912 (8)0.63040 (5)0.90873 (4)0.05608 (17)
O1A0.5956 (2)1.07513 (14)0.82938 (11)0.0598 (4)
O2A0.77241 (18)1.13164 (13)0.99478 (10)0.0469 (3)
N1A0.4678 (3)0.7995 (2)0.76263 (15)0.0611 (5)
H1AA0.478 (4)0.878 (3)0.741 (2)0.074 (8)*
H1AB0.420 (4)0.728 (3)0.718 (2)0.067 (7)*
C1A0.5667 (3)0.79097 (18)0.86174 (15)0.0434 (4)
C2A0.6638 (2)0.89702 (17)0.93919 (13)0.0394 (4)
C3A0.7481 (2)0.84624 (19)1.03824 (14)0.0429 (4)
C4A0.7121 (3)0.7062 (2)1.03180 (17)0.0535 (5)
H4AA0.7547880.6554681.0881650.064*
C5A0.8619 (3)0.9325 (2)1.13746 (16)0.0580 (5)
H5AA0.8993850.8729871.1918590.087*
H5AB0.7901950.9902781.1609980.087*
H5AC0.9691170.9898111.1232370.087*
C6A0.6715 (2)1.03954 (17)0.91494 (14)0.0400 (4)
C7A0.7865 (3)1.27623 (18)0.97679 (16)0.0501 (4)
H7AA0.6649311.2973110.9571870.060*
H7AB0.8459481.2992390.9199400.060*
C8A0.8989 (3)1.3566 (2)1.07851 (18)0.0607 (5)
H8AA0.9102491.4540591.0704040.091*
H8AB1.0192201.3357041.0963800.091*
H8AC0.8394181.3316951.1342250.091*
S1B0.35148 (12)0.08122 (6)0.57884 (5)0.0809 (3)
O1B0.3541 (2)0.53445 (14)0.63773 (11)0.0620 (4)
O2B0.2205 (2)0.52307 (14)0.46392 (11)0.0538 (3)
N1B0.4376 (3)0.2976 (2)0.72151 (14)0.0639 (5)
H1BA0.451 (3)0.381 (3)0.7357 (18)0.057 (7)*
H1BB0.484 (4)0.242 (3)0.765 (2)0.076 (8)*
C1B0.3661 (3)0.25098 (19)0.61927 (15)0.0474 (4)
C2B0.2967 (3)0.32322 (18)0.53404 (13)0.0425 (4)
C3B0.2320 (3)0.2374 (2)0.43493 (16)0.0564 (5)
C4B0.2549 (5)0.1078 (3)0.4495 (2)0.0824 (8)
H4BA0.2212580.0381770.3942110.099*
C5B0.1488 (4)0.2818 (3)0.32835 (17)0.0748 (7)
H5BA0.1210580.2054340.2754780.112*
H5BB0.2345170.3574790.3112170.112*
H5BC0.0374190.3111130.3299220.112*
C6B0.2961 (3)0.46767 (18)0.55163 (14)0.0424 (4)
C7B0.2082 (3)0.6659 (2)0.47361 (19)0.0609 (5)
H7BA0.3302340.7253220.4988480.073*
H7BB0.1362180.6793950.5232290.073*
C8B0.1157 (4)0.6988 (3)0.3643 (2)0.0809 (8)
H8BA0.0892680.7895010.3679820.121*
H8BB0.0027740.6312830.3365450.121*
H8BC0.1958950.6967140.3183320.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0707 (4)0.0344 (2)0.0629 (3)0.0106 (2)0.0173 (3)0.0055 (2)
O1A0.0810 (10)0.0432 (7)0.0456 (7)0.0181 (7)0.0054 (7)0.0073 (6)
O2A0.0547 (8)0.0354 (6)0.0441 (7)0.0084 (5)0.0020 (6)0.0059 (5)
N1A0.0846 (14)0.0431 (9)0.0456 (9)0.0128 (9)0.0003 (9)0.0027 (8)
C1A0.0497 (10)0.0369 (8)0.0453 (9)0.0108 (7)0.0141 (8)0.0038 (7)
C2A0.0404 (9)0.0366 (8)0.0414 (8)0.0088 (7)0.0103 (7)0.0065 (6)
C3A0.0425 (9)0.0434 (9)0.0450 (9)0.0116 (7)0.0128 (7)0.0109 (7)
C4A0.0631 (12)0.0458 (10)0.0543 (11)0.0166 (9)0.0144 (9)0.0176 (8)
C5A0.0635 (13)0.0579 (12)0.0444 (10)0.0124 (10)0.0012 (9)0.0109 (9)
C6A0.0428 (9)0.0378 (8)0.0400 (8)0.0115 (7)0.0091 (7)0.0055 (6)
C7A0.0621 (12)0.0345 (8)0.0500 (10)0.0116 (8)0.0062 (9)0.0055 (7)
C8A0.0653 (13)0.0454 (10)0.0605 (13)0.0052 (9)0.0021 (10)0.0021 (9)
S1B0.1329 (7)0.0398 (3)0.0631 (4)0.0278 (3)0.0053 (4)0.0040 (2)
O1B0.0879 (11)0.0431 (7)0.0452 (7)0.0163 (7)0.0015 (7)0.0043 (6)
O2B0.0696 (9)0.0449 (7)0.0446 (7)0.0190 (6)0.0046 (6)0.0083 (6)
N1B0.0985 (16)0.0499 (10)0.0380 (8)0.0265 (10)0.0011 (9)0.0056 (8)
C1B0.0601 (11)0.0383 (8)0.0419 (9)0.0129 (8)0.0077 (8)0.0040 (7)
C2B0.0492 (10)0.0395 (8)0.0360 (8)0.0107 (7)0.0052 (7)0.0015 (6)
C3B0.0707 (13)0.0495 (10)0.0404 (9)0.0104 (9)0.0015 (9)0.0040 (8)
C4B0.128 (2)0.0480 (12)0.0570 (13)0.0180 (14)0.0015 (14)0.0132 (10)
C5B0.1004 (19)0.0743 (15)0.0386 (10)0.0216 (14)0.0035 (11)0.0068 (10)
C6B0.0463 (9)0.0398 (8)0.0399 (8)0.0107 (7)0.0074 (7)0.0050 (7)
C7B0.0672 (13)0.0447 (10)0.0700 (14)0.0180 (9)0.0105 (11)0.0160 (9)
C8B0.0828 (18)0.0716 (16)0.0840 (18)0.0226 (14)0.0055 (14)0.0366 (14)
Geometric parameters (Å, º) top
S1A—C4A1.727 (2)S1B—C4B1.715 (3)
S1A—C1A1.7277 (19)S1B—C1B1.716 (2)
O1A—C6A1.220 (2)O1B—C6B1.217 (2)
O2A—C6A1.330 (2)O2B—C6B1.333 (2)
O2A—C7A1.440 (2)O2B—C7B1.437 (2)
N1A—C1A1.340 (3)N1B—C1B1.337 (3)
N1A—H1AA0.83 (3)N1B—H1BA0.82 (3)
N1A—H1AB0.86 (3)N1B—H1BB0.87 (3)
C1A—C2A1.386 (3)C1B—C2B1.389 (2)
C2A—C6A1.444 (2)C2B—C6B1.440 (2)
C2A—C3A1.445 (2)C2B—C3B1.443 (3)
C3A—C4A1.350 (3)C3B—C4B1.339 (3)
C3A—C5A1.495 (3)C3B—C5B1.495 (3)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—H5AA0.9600C5B—H5BA0.9600
C5A—H5AB0.9600C5B—H5BB0.9600
C5A—H5AC0.9600C5B—H5BC0.9600
C7A—C8A1.492 (3)C7B—C8B1.502 (3)
C7A—H7AA0.9700C7B—H7BA0.9700
C7A—H7AB0.9700C7B—H7BB0.9700
C8A—H8AA0.9600C8B—H8BA0.9600
C8A—H8AB0.9600C8B—H8BB0.9600
C8A—H8AC0.9600C8B—H8BC0.9600
C4A—S1A—C1A91.37 (9)C4B—S1B—C1B91.28 (11)
C6A—O2A—C7A117.21 (14)C6B—O2B—C7B117.81 (16)
C1A—N1A—H1AA116.2 (19)C1B—N1B—H1BA116.5 (17)
C1A—N1A—H1AB122.2 (17)C1B—N1B—H1BB118.1 (18)
H1AA—N1A—H1AB120 (2)H1BA—N1B—H1BB124 (2)
N1A—C1A—C2A128.91 (17)N1B—C1B—C2B128.53 (18)
N1A—C1A—S1A119.95 (15)N1B—C1B—S1B120.36 (15)
C2A—C1A—S1A111.12 (14)C2B—C1B—S1B111.12 (14)
C1A—C2A—C6A119.56 (16)C1B—C2B—C6B119.66 (16)
C1A—C2A—C3A112.69 (15)C1B—C2B—C3B112.43 (17)
C6A—C2A—C3A127.75 (16)C6B—C2B—C3B127.92 (17)
C4A—C3A—C2A111.36 (17)C4B—C3B—C2B111.01 (19)
C4A—C3A—C5A122.25 (18)C4B—C3B—C5B122.6 (2)
C2A—C3A—C5A126.40 (16)C2B—C3B—C5B126.34 (19)
C3A—C4A—S1A113.46 (15)C3B—C4B—S1B114.16 (17)
C3A—C4A—H4AA123.3C3B—C4B—H4BA122.9
S1A—C4A—H4AA123.3S1B—C4B—H4BA122.9
C3A—C5A—H5AA109.5C3B—C5B—H5BA109.5
C3A—C5A—H5AB109.5C3B—C5B—H5BB109.5
H5AA—C5A—H5AB109.5H5BA—C5B—H5BB109.5
C3A—C5A—H5AC109.5C3B—C5B—H5BC109.5
H5AA—C5A—H5AC109.5H5BA—C5B—H5BC109.5
H5AB—C5A—H5AC109.5H5BB—C5B—H5BC109.5
O1A—C6A—O2A121.81 (16)O1B—C6B—O2B121.96 (17)
O1A—C6A—C2A124.29 (16)O1B—C6B—C2B124.56 (17)
O2A—C6A—C2A113.89 (15)O2B—C6B—C2B113.46 (16)
O2A—C7A—C8A106.65 (16)O2B—C7B—C8B106.1 (2)
O2A—C7A—H7AA110.4O2B—C7B—H7BA110.5
C8A—C7A—H7AA110.4C8B—C7B—H7BA110.5
O2A—C7A—H7AB110.4O2B—C7B—H7BB110.5
C8A—C7A—H7AB110.4C8B—C7B—H7BB110.5
H7AA—C7A—H7AB108.6H7BA—C7B—H7BB108.7
C7A—C8A—H8AA109.5C7B—C8B—H8BA109.5
C7A—C8A—H8AB109.5C7B—C8B—H8BB109.5
H8AA—C8A—H8AB109.5H8BA—C8B—H8BB109.5
C7A—C8A—H8AC109.5C7B—C8B—H8BC109.5
H8AA—C8A—H8AC109.5H8BA—C8B—H8BC109.5
H8AB—C8A—H8AC109.5H8BB—C8B—H8BC109.5
C4A—S1A—C1A—N1A177.88 (18)C4B—S1B—C1B—N1B179.6 (2)
C4A—S1A—C1A—C2A0.54 (15)C4B—S1B—C1B—C2B0.33 (19)
N1A—C1A—C2A—C6A2.3 (3)N1B—C1B—C2B—C6B0.3 (3)
S1A—C1A—C2A—C6A179.41 (13)S1B—C1B—C2B—C6B179.78 (15)
N1A—C1A—C2A—C3A177.8 (2)N1B—C1B—C2B—C3B179.7 (2)
S1A—C1A—C2A—C3A0.5 (2)S1B—C1B—C2B—C3B0.3 (2)
C1A—C2A—C3A—C4A0.1 (2)C1B—C2B—C3B—C4B0.0 (3)
C6A—C2A—C3A—C4A179.77 (18)C6B—C2B—C3B—C4B180.0 (2)
C1A—C2A—C3A—C5A179.96 (18)C1B—C2B—C3B—C5B179.7 (2)
C6A—C2A—C3A—C5A0.2 (3)C6B—C2B—C3B—C5B0.3 (4)
C2A—C3A—C4A—S1A0.3 (2)C2B—C3B—C4B—S1B0.2 (3)
C5A—C3A—C4A—S1A179.62 (16)C5B—C3B—C4B—S1B179.5 (2)
C1A—S1A—C4A—C3A0.52 (17)C1B—S1B—C4B—C3B0.3 (3)
C7A—O2A—C6A—O1A0.9 (3)C7B—O2B—C6B—O1B0.2 (3)
C7A—O2A—C6A—C2A179.88 (16)C7B—O2B—C6B—C2B178.22 (17)
C1A—C2A—C6A—O1A0.7 (3)C1B—C2B—C6B—O1B0.4 (3)
C3A—C2A—C6A—O1A179.46 (18)C3B—C2B—C6B—O1B179.5 (2)
C1A—C2A—C6A—O2A178.48 (15)C1B—C2B—C6B—O2B177.98 (17)
C3A—C2A—C6A—O2A1.4 (3)C3B—C2B—C6B—O2B2.1 (3)
C6A—O2A—C7A—C8A177.71 (17)C6B—O2B—C7B—C8B179.07 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BA···O1B0.82 (3)2.14 (3)2.734 (3)130 (2)
N1B—H1BB···O1Ai0.87 (3)2.10 (3)2.946 (3)163 (2)
N1A—H1AA···S1Bii0.83 (3)3.07 (3)3.819 (2)151 (2)
N1A—H1AA···O1A0.83 (3)2.14 (3)2.736 (3)129 (2)
N1A—H1AB···O1B0.86 (3)2.05 (3)2.897 (3)165 (2)
C7A—H7AA···S1Aiii0.973.023.736 (3)131
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+2, z+2.
 

Funding information

RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research.

References

First citationAkcelrud, L. (2003). Prog. Polym. Sci. 28, 875–962.  Web of Science CrossRef CAS Google Scholar
First citationAkkurt, M., Yıldırım, S. Ö., Asiri, A. M. & McKee, V. (2008). Acta Cryst. E64, o1084.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Adiwish, W. M., Adan, D., Mohamed Tahir, M. I., Yaacob, W. A. & Kassim, M. B. (2012). Acta Cryst. E68, o138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAshalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719–728.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBourgeaux, M. & Skene, W. G. (2007). Acta Cryst. E63, o1603–o1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannito, A., Perrissin, M., Luu-Duc, C., Huguet, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.  CrossRef CAS Web of Science Google Scholar
First citationÇoruh, U., Ustabaş, R., Tümer, F., García-Granda, S., Demir, Ü., Ekinci, D. & Yavuz, M. (2003). Acta Cryst. E59, o1339–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGhorab, M. M., Al-Said, M. S., Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o2111.  CSD CrossRef IUCr Journals Google Scholar
First citationGöblyös, A. & IJzerman, A. P. (2009). Purinergic Signal. 5, 51–61.  Web of Science PubMed Google Scholar
First citationHaare, J. A. E. H. van, Groenendaal, L., Peerlings, H. W. I., Havinga, E. E., Vekemans, J. A. J. M., Janssen, R. A. J. & Meijer, E. W. (1995). Chem. Mater. 7, 1984–1989.  CrossRef Web of Science Google Scholar
First citationKaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). Acta Cryst. E70, o951–o952.  CSD CrossRef IUCr Journals Google Scholar
First citationKraft, A. (2001). ChemPhysChem, 2, 163–165.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiao, Q.-B., Huang, J., Yang, Z.-Z. & Liu, M.-G. (2007). Acta Cryst. E63, o3824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2003). J. Med. Chem. 46, 1870–1877.  Web of Science CrossRef PubMed Google Scholar
First citationMabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049.  CSD CrossRef IUCr Journals Google Scholar
First citationMacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581–2590.  CrossRef CAS Google Scholar
First citationMolvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoncol, J., Puterová, Z. & Végh, D. (2007). Acta Cryst. E63, o3921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukhtar, A., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2012). Acta Cryst. E68, o2042.  CSD CrossRef IUCr Journals Google Scholar
First citationNessakh, B., Horowitz, G., Garnier, F., Deloffre, F., Srivastava, P. & Yassar, A. (1995). J. Electroanal. Chem. 399, 97–103.  CrossRef Web of Science Google Scholar
First citationNikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNirmala, K. A., Vasu, Chopra, D., Mohan, S. & Prasad, M. R. (2005). Acta Cryst. E61, o1541–o1543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOliveira, J. G. B. de, Mendonça Junio, F. J. B., de Lima, M., do C. A., de Simone, C. A. & Ellena, J. A. (2012). Acta Cryst. E68, o2360.  Google Scholar
First citationPerepichka, I. F., Perepichka, D. F., Meng, H. & Wudl, F. (2005). Adv. Mater. 17, 2281–2305.  Web of Science CrossRef CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationRoncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589–1610.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYan, F.-Y. & Liu, D.-Q. (2007). Acta Cryst. E63, o4877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Q. & Jiao, Y.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 283–284.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds