organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Bromo-2-[({2-[(2-hy­dr­oxy­eth­yl)amino]­eth­yl}imino)­meth­yl]phenol

crossmark logo

aInstitute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
*Correspondence e-mail: samolova@fzu.cz

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 23 March 2021; accepted 29 March 2021; online 9 April 2021)

The new title Schiff base compound, C11H15BrN2O2, crystallizes in the monoclinic space group P21 with two independent mol­ecules in the asymmetric unit. It was prepared by the condensation reaction of 5-bromo-2-hy­droxy­benzaldehyde and amino­ethyl­ethano­lamine. There is an intra­molecular O—H⋯N hydrogen bond with an S(6) ring motif. Moreover, there are inter­molecular C—H⋯N, C—H⋯O and Br⋯O inter­actions in the crystal structure of the title compound.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases and their derivatives have played a key role in the development of coordination chemistry (Vafaza­deh et al., 2019[Vafazadeh,R., Kazemi-nasab, A. & Willis, A.C. (2019). Acta Chim. Slov. 66, 1010-1018.]; Ghorbani et al., 2017[Ghorbani, M., Khalaji, A. D., Feizi, N., Akbari, A., Eigner, V. & Dusek, M. (2017). J. Mol. Struct. 1130, 442-446.]) due to their easy preparation, structural diversity, biological properties, catalytic activity and also their ability to act as chelating ligands (Böhme & Fels, 2020[Böhme, U. & Fels, S. (2020). IUCrData, 5, x201384.]; Adrian et al., 2020[Adrian, R. A., Canales, D. & Arman, H. D. (2020). IUCrData, 5, x201344.]; Saranya et al., 2020[Saranya, J., Jone Kirubavathy, S., Chitra, S., Zarrouk, A., Kalpana, K., Lavanya, K. & Ravikiran, B. (2020). Arab. J. Sci. Eng. 45, s4683-s4695.]; Yousif et al., 2017[Yousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J. & Abdullah, B. (2017). Arabian J. Chem. 10, S1639-S1644.]; Guo et al., 2019[Guo, Y., Hu, X., Zhang, X., Pu, X. & Wang, Y. (2019). RSC Adv. 9, 41737-41744.]; Bhattacharjee et al., 2017[Bhattacharjee, A., Halder, S., Ghosh, K., Rizzoli, C. & Roy, P. (2017). New J. Chem. 41, 5696-5706.]; Shweta et al., 2016[Shweta, S., Neeraj, N., Asthana, S. K., Mishra, R. K. & Upadhyay, K. K. (2016). RSC Adv. 6, 55430-55437.]; Reimann et al., 2019[Reimann, M. J., Salmon, D. R., Horton, J. T., Gier, E. C. & Jefferies, L. R. (2019). ACS Omega, 4, 2874-2882.]; Ceylan et al., 2015[Ceylan, U., Durgun, M., Türkmen, H., Yalçın, P., Kilic, A. & Özdemir, N. (2015). J. Mol. Struct. 1089, 222-232.]; Salehi et al., 2016[Salehi, M., Ghasemi, F., Kubicki, M., Asadi, A., Behzad, M., Ghasemi, M. H. & Gholizadeh, A. (2016). Inorg. Chim. Acta, 453, 238-246.]; Zhu et al., 2019[Zhu, X., Duan, Y., Li, P., Fan, H., Han, T. & Huang, X. (2019). Anal. Methods, 11, 642-647.]; Kumar et al., 2019[Kumar, V., Kumar, P., Kumar, S., Singhal, D. & Gupta, R. (2019). Inorg. Chem. 58, 10364-10376.]; Atahan & Durmus, 2015[Atahan, A. & Durmus, S. (2015). Spectrochim. Acta A, 144, 61-67.]). In the present work, we report the crystal structure of the new Schiff base, commonly known as amino­ethyl­ethano­lamine-5-bromo-2-hy­droxy­benzaldehyde. The asymmetric unit of the title compound contains two independent mol­ecules, as shown in Fig. 1[link]. All bond lengths and angles are within their expected ranges according to other published Schiff base structures (Böhme & Fels, 2020[Böhme, U. & Fels, S. (2020). IUCrData, 5, x201384.]; Ceylan et al., 2015[Ceylan, U., Durgun, M., Türkmen, H., Yalçın, P., Kilic, A. & Özdemir, N. (2015). J. Mol. Struct. 1089, 222-232.]; Salehi et al., 2016[Salehi, M., Ghasemi, F., Kubicki, M., Asadi, A., Behzad, M., Ghasemi, M. H. & Gholizadeh, A. (2016). Inorg. Chim. Acta, 453, 238-246.]). The N1a=C7a double bond is 1.273 (6) Å and N1b=C7b 1.276 (7) Å, the N1a—C8a single bond is 1.460 (6) Å and N1b—C8b 1.455 (7) Å, in good agreement with the corresponding values for the similar compounds (Salehi et al., 2016[Salehi, M., Ghasemi, F., Kubicki, M., Asadi, A., Behzad, M., Ghasemi, M. H. & Gholizadeh, A. (2016). Inorg. Chim. Acta, 453, 238-246.]; Ceylan et al., 2015[Ceylan, U., Durgun, M., Türkmen, H., Yalçın, P., Kilic, A. & Özdemir, N. (2015). J. Mol. Struct. 1089, 222-232.]). The bond angles C7a—N1a—C8a [118.0 (4)°], C7b—N1b—C8b [117.9 (4)°], C2a—C7a—N1a [121.5 (4)°] and C2b—C7b—N1b [121.7 (4)°] are also in agreement with those angles in the similar compounds (Salehi et al., 2016[Salehi, M., Ghasemi, F., Kubicki, M., Asadi, A., Behzad, M., Ghasemi, M. H. & Gholizadeh, A. (2016). Inorg. Chim. Acta, 453, 238-246.]; Ceylan et al., 2015[Ceylan, U., Durgun, M., Türkmen, H., Yalçın, P., Kilic, A. & Özdemir, N. (2015). J. Mol. Struct. 1089, 222-232.]). An intra­molecular hydrogen bond with an S(6) ring is observed in each independent mol­ecule. Moreover, the O2a and O2b atoms are involved in a second intra­molecular hydrogen bond. The mol­ecules are connected through inter­molecular O—H⋯N hydrogen bonds and Br⋯O inter­actions with distances Br1a⋯O2b = 3.206 (2) Å and Br1b⋯O2a = 3.282 (2) Å (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1a—H1o1a⋯N1a 0.82 (5) 1.89 (6) 2.597 (5) 144 (5)
O2a—H1o2a⋯N2bi 0.82 (3) 2.02 (4) 2.826 (6) 168 (6)
O1b—H1o1b⋯N1b 0.82 (5) 1.91 (6) 2.587 (6) 139 (5)
O2b—H1o2b⋯N2aii 0.82 (3) 2.06 (4) 2.859 (6) 165 (6)
N2a—H1n2a⋯O2a 0.88 (3) 2.45 (5) 2.871 (6) 110 (5)
N2b—H1n2b⋯O2b 0.88 (3) 2.44 (5) 2.884 (5) 112 (5)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of the title structure. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View of the hydrogen-bond system and the Br⋯O inter­actions in the title compound. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) 2 − x, y − [{1\over 2}], 2 − z; (ii) 1 − x, [{1\over 2}] + y, 1 − z; (iii) 1 + x, y, z; (iv) 3 − x, [{1\over 2}] + y, 2 − z.

Synthesis and crystallization

5-Bromo-2-hy­droxy­benzaldehyde (2 mmol) was dissolved in ethanol (10 ml) and stirred for 10 min. Then, a solution of amino­ethyl­ethano­lamine (0.2 mmol) dissolved in ethanol (5 ml) was added dropwise. The mixture was stirred and refluxed for 6 h. After that, the solution was concentrated under reduced pressure. Yellow crystals suitable for X-ray analysis were obtained by slow evaporation of solvent at room temperature for several days. These were filtered off and washed several times with cold ethanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Marching Cube ELD software (MCS) was used for the electron density map visualization (Rohlíček & Hušák, 2007[Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600-601.]).

Table 2
Experimental details

Crystal data
Chemical formula C11H15BrN2O2
Mr 287.2
Crystal system, space group Monoclinic, P21
Temperature (K) 95
a, b, c (Å) 6.0518 (2), 27.7837 (7), 6.9028 (2)
β (°) 90.497 (2)
V3) 1160.60 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.74
Crystal size (mm) 0.38 × 0.25 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.34, 0.816
No. of measured, independent and observed [I > 3σ(I)] reflections 8118, 4637, 4488
Rint 0.021
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.134, 2.31
No. of reflections 4637
No. of parameters 308
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.81, −0.48
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2215 Friedel pairs
Absolute structure parameter −0.03 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, (2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr.229, 345-352.]), MCE (Rohlíček & Hušák, 2007[Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600-601.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: Superflip (Palatinus & Chapuis, (2007); program(s) used to refine structure: Jana2006 (Petříček et al., 2014), MCE (Rohlíček & Hušák, 2007); molecular graphics: DIAMOND (Brandenburg, 1999).

4-Bromo-2-[({2-[(2-hydroxyethyl)amino]ethyl}imino)methyl]phenol top
Crystal data top
C11H15BrN2O2F(000) = 584
Mr = 287.2Dx = 1.643 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 5986 reflections
a = 6.0518 (2) Åθ = 6.4–75.4°
b = 27.7837 (7) ŵ = 4.74 mm1
c = 6.9028 (2) ÅT = 95 K
β = 90.497 (2)°Platelet, colourless
V = 1160.60 (6) Å30.38 × 0.25 × 0.04 mm
Z = 4
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
4637 independent reflections
Radiation source: X-ray tube4488 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 5.2027 pixels mm-1θmax = 75.5°, θmin = 6.4°
ω scansh = 77
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2015)
k = 3434
Tmin = 0.34, Tmax = 0.816l = 78
8118 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.134(Δ/σ)max = 0.0004
S = 2.31Δρmax = 0.81 e Å3
4637 reflectionsΔρmin = 0.48 e Å3
308 parametersAbsolute structure: Flack (1983), 2215 Friedel pairs
6 restraintsAbsolute structure parameter: 0.03 (3)
103 constraints
Special details top

Refinement. All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. Marching Cube ELD software (MCS) was used for the electron density map visualization (Rohlicek & Husak, 2007). According to common practice, H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å while positions of H atom bonded to N and O were refined with restrained bond lengths 0.820 (1) Å for O—H bonds and 0.880 (1) Å for N—H bonds. In both cases Uiso(H) was set to 1.2Ueq(C,N,O). All non-hydrogen atoms were refined using harmonic refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1a0.82327 (7)0.119124 (17)0.59379 (6)0.01689 (14)
Br1b0.67219 (7)0.617268 (17)0.82063 (6)0.01663 (14)
O1a0.3912 (6)0.31366 (13)0.6749 (5)0.0160 (10)
O2a1.4292 (6)0.51220 (14)0.8603 (5)0.0181 (10)
O1b1.0984 (6)0.81041 (13)0.9575 (6)0.0170 (10)
O2b0.0585 (6)1.01653 (14)0.6475 (5)0.0173 (10)
N1a0.7625 (7)0.35173 (15)0.5676 (6)0.0136 (11)
N2a1.0395 (7)0.46689 (15)0.7058 (6)0.0138 (11)
N1b0.7210 (7)0.84968 (16)0.8774 (6)0.0147 (11)
N2b0.4536 (7)0.96878 (15)0.7831 (6)0.0130 (11)
C1a0.4889 (8)0.27034 (18)0.6505 (7)0.0123 (13)
C2a0.7071 (8)0.26658 (17)0.5792 (6)0.0113 (12)
C3a0.8022 (7)0.22102 (17)0.5563 (7)0.0110 (12)
C4a0.6828 (8)0.18042 (17)0.6059 (7)0.0127 (13)
C5a0.4692 (8)0.18358 (18)0.6760 (7)0.0135 (13)
C6a0.3746 (8)0.22869 (18)0.6977 (7)0.0136 (13)
C7a0.8414 (8)0.30963 (18)0.5459 (7)0.0119 (12)
C8a0.9119 (8)0.39261 (18)0.5457 (8)0.0153 (14)
C9a0.9002 (8)0.42429 (17)0.7262 (7)0.0156 (13)
C10a1.0340 (9)0.49712 (19)0.8800 (7)0.0147 (14)
C11a1.2178 (9)0.53440 (19)0.8765 (8)0.0169 (14)
C1b1.0028 (8)0.76776 (19)0.9183 (7)0.0132 (13)
C2b0.7840 (8)0.76505 (17)0.8468 (7)0.0123 (13)
C3b0.6901 (7)0.71945 (18)0.8096 (6)0.0111 (12)
C4b0.8125 (8)0.67826 (17)0.8475 (7)0.0128 (13)
C5b1.0266 (8)0.68081 (17)0.9183 (7)0.0129 (13)
C6b1.1215 (8)0.72560 (19)0.9527 (7)0.0138 (13)
C7b0.6447 (8)0.80791 (19)0.8387 (7)0.0131 (13)
C8b0.5641 (8)0.8890 (2)0.8969 (7)0.0174 (15)
C9b0.5974 (8)0.92782 (17)0.7427 (7)0.0132 (12)
C10b0.4570 (8)1.00481 (18)0.6268 (7)0.0140 (14)
C11b0.2681 (8)1.04018 (18)0.6529 (8)0.0166 (14)
H1o1a0.477 (9)0.3360 (17)0.656 (10)0.0192*
H1o2a1.447 (12)0.501 (2)0.970 (4)0.0217*
H1o1b1.022 (10)0.8341 (15)0.933 (10)0.0204*
H1o2b0.047 (12)1.006 (2)0.537 (4)0.0208*
H1n2a1.177 (3)0.460 (2)0.679 (9)0.0165*
H1n2b0.316 (4)0.958 (2)0.786 (9)0.0157*
H1c3a0.9491140.2179620.5064730.0132*
H1c5a0.3883960.1550440.7089970.0162*
H1c6a0.2268620.2311760.7462910.0163*
H1c7a0.9923280.3059950.5069160.0142*
H1c8a0.8687140.411040.4339750.0184*
H2c8a1.060280.3811030.5300930.0184*
H1c9a0.7500080.4340450.74660.0187*
H2c9a0.9476850.4061410.8372890.0187*
H1c10a1.0505790.4772450.9929390.0176*
H2c10a0.8936410.5130990.8871220.0176*
H1c11a1.1945850.5558490.7691790.0203*
H2c11a1.2133540.5532760.9928450.0203*
H1c3b0.5425520.7169520.7583730.0133*
H1c5b1.1089220.651910.9434630.0155*
H1c6b1.2705280.7275041.000810.0166*
H1c7b0.4917110.8045930.80340.0157*
H1c8b0.5791140.9031031.0233260.0208*
H2c8b0.416260.8766510.8874210.0208*
H1c9b0.7487320.9381940.7446450.0159*
H2c9b0.5615790.914890.6173360.0159*
H1c10b0.4413540.9889390.5039180.0168*
H2c10b0.595031.0218370.6305260.0168*
H1c11b0.2857471.0566060.774450.0199*
H2c11b0.2732351.06410.5527190.0199*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1a0.0181 (2)0.0121 (2)0.0204 (2)0.0014 (2)0.00076 (17)0.0019 (2)
Br1b0.0185 (2)0.0122 (2)0.0192 (2)0.0015 (2)0.00028 (17)0.0015 (2)
O1a0.0109 (16)0.0154 (17)0.0216 (18)0.0020 (13)0.0010 (14)0.0024 (15)
O2a0.0133 (17)0.0247 (19)0.0162 (17)0.0031 (14)0.0002 (14)0.0033 (15)
O1b0.0106 (16)0.0154 (17)0.0249 (19)0.0008 (13)0.0014 (14)0.0021 (15)
O2b0.0138 (16)0.0240 (19)0.0143 (16)0.0014 (14)0.0011 (13)0.0026 (14)
N1a0.0119 (18)0.015 (2)0.0133 (18)0.0008 (16)0.0012 (14)0.0011 (15)
N2a0.0125 (18)0.0143 (19)0.0146 (19)0.0025 (15)0.0002 (15)0.0001 (16)
N1b0.0149 (19)0.014 (2)0.015 (2)0.0022 (16)0.0014 (16)0.0023 (16)
N2b0.0105 (18)0.0136 (19)0.015 (2)0.0003 (14)0.0009 (15)0.0015 (16)
C1a0.011 (2)0.017 (2)0.009 (2)0.0011 (18)0.0007 (17)0.0011 (18)
C2a0.011 (2)0.017 (2)0.0064 (19)0.0010 (18)0.0020 (16)0.0004 (17)
C3a0.008 (2)0.013 (2)0.0116 (19)0.0002 (17)0.0007 (16)0.0009 (17)
C4a0.015 (2)0.011 (2)0.011 (2)0.0018 (17)0.0019 (17)0.0020 (16)
C5a0.014 (2)0.016 (2)0.010 (2)0.0047 (18)0.0037 (18)0.0009 (17)
C6a0.008 (2)0.022 (3)0.011 (2)0.0001 (19)0.0018 (17)0.0017 (18)
C7a0.009 (2)0.016 (2)0.010 (2)0.0003 (17)0.0003 (16)0.0014 (18)
C8a0.013 (2)0.014 (2)0.019 (3)0.0026 (18)0.0001 (18)0.0023 (18)
C9a0.016 (2)0.015 (2)0.016 (2)0.0021 (18)0.0002 (18)0.0004 (18)
C10a0.012 (2)0.017 (3)0.016 (2)0.0000 (19)0.0005 (19)0.0000 (18)
C11a0.016 (2)0.019 (3)0.016 (2)0.0004 (19)0.0018 (19)0.0006 (19)
C1b0.012 (2)0.017 (2)0.010 (2)0.0011 (18)0.0033 (17)0.0001 (18)
C2b0.013 (2)0.015 (2)0.008 (2)0.0004 (18)0.0011 (17)0.0010 (18)
C3b0.009 (2)0.013 (2)0.011 (2)0.0007 (17)0.0004 (16)0.0014 (17)
C4b0.016 (2)0.013 (2)0.010 (2)0.0021 (18)0.0012 (18)0.0023 (17)
C5b0.015 (2)0.013 (2)0.011 (2)0.0054 (18)0.0016 (18)0.0005 (17)
C6b0.009 (2)0.019 (2)0.013 (2)0.0006 (18)0.0011 (19)0.0013 (19)
C7b0.009 (2)0.018 (2)0.013 (2)0.0005 (18)0.0008 (17)0.0010 (18)
C8b0.018 (3)0.015 (3)0.019 (3)0.0007 (17)0.004 (2)0.0006 (18)
C9b0.012 (2)0.013 (2)0.014 (2)0.0019 (17)0.0001 (18)0.0003 (18)
C10b0.011 (2)0.018 (3)0.013 (2)0.0013 (18)0.0028 (19)0.0015 (17)
C11b0.016 (2)0.014 (2)0.020 (2)0.0017 (19)0.001 (2)0.0009 (19)
Geometric parameters (Å, º) top
Br1a—C4a1.906 (5)C8a—C9a1.528 (7)
Br1b—C4b1.904 (5)C8a—H1c8a0.96
O1a—C1a1.352 (6)C8a—H2c8a0.96
O1a—H1o1a0.82 (5)C9a—H1c9a0.96
O2a—C11a1.425 (6)C9a—H2c9a0.96
O2a—H1o2a0.82 (3)C10a—C11a1.520 (7)
O1b—C1b1.345 (6)C10a—H1c10a0.96
O1b—H1o1b0.82 (5)C10a—H2c10a0.96
O2b—C11b1.429 (6)C11a—H1c11a0.96
O2b—H1o2b0.82 (3)C11a—H2c11a0.96
N1a—C7a1.273 (6)C1b—C2b1.411 (7)
N1a—C8a1.460 (6)C1b—C6b1.393 (7)
N2a—C9a1.460 (6)C2b—C3b1.411 (7)
N2a—C10a1.467 (7)C2b—C7b1.460 (7)
N2a—H1n2a0.88 (3)C3b—C4b1.387 (7)
N1b—C7b1.276 (7)C3b—H1c3b0.96
N1b—C8b1.455 (7)C4b—C5b1.382 (7)
N2b—C9b1.461 (6)C5b—C6b1.390 (7)
N2b—C10b1.472 (7)C5b—H1c5b0.96
N2b—H1n2b0.88 (3)C6b—H1c6b0.96
C1a—C2a1.417 (7)C7b—H1c7b0.96
C1a—C6a1.388 (7)C8b—C9b1.530 (7)
C2a—C3a1.400 (7)C8b—H1c8b0.96
C2a—C7a1.465 (7)C8b—H2c8b0.96
C3a—C4a1.384 (7)C9b—H1c9b0.96
C3a—H1c3a0.96C9b—H2c9b0.96
C4a—C5a1.387 (7)C10b—C11b1.519 (7)
C5a—C6a1.387 (7)C10b—H1c10b0.96
C5a—H1c5a0.96C10b—H2c10b0.96
C6a—H1c6a0.96C11b—H1c11b0.96
C7a—H1c7a0.96C11b—H2c11b0.96
C1a—O1a—H1o1a112 (4)O2a—C11a—C10a111.3 (4)
C11a—O2a—H1o2a101 (5)O2a—C11a—H1c11a109.47
C1b—O1b—H1o1b115 (4)O2a—C11a—H2c11a109.47
C11b—O2b—H1o2b105 (5)C10a—C11a—H1c11a109.47
C7a—N1a—C8a118.0 (4)C10a—C11a—H2c11a109.47
C9a—N2a—C10a111.6 (4)H1c11a—C11a—H2c11a107.54
C9a—N2a—H1n2a113 (4)O1b—C1b—C2b121.2 (4)
C10a—N2a—H1n2a109 (4)O1b—C1b—C6b119.1 (4)
C7b—N1b—C8b117.9 (4)C2b—C1b—C6b119.7 (5)
C9b—N2b—C10b112.2 (4)C1b—C2b—C3b119.1 (4)
C9b—N2b—H1n2b108 (4)C1b—C2b—C7b120.6 (4)
C10b—N2b—H1n2b105 (4)C3b—C2b—C7b119.6 (4)
O1a—C1a—C2a121.3 (4)C2b—C3b—C4b119.5 (4)
O1a—C1a—C6a119.5 (4)C2b—C3b—H1c3b120.24
C2a—C1a—C6a119.2 (4)C4b—C3b—H1c3b120.24
C1a—C2a—C3a119.4 (4)Br1b—C4b—C3b118.6 (4)
C1a—C2a—C7a120.9 (4)Br1b—C4b—C5b119.7 (4)
C3a—C2a—C7a119.4 (4)C3b—C4b—C5b121.5 (4)
C2a—C3a—C4a119.5 (4)C4b—C5b—C6b119.4 (4)
C2a—C3a—H1c3a120.23C4b—C5b—H1c5b120.31
C4a—C3a—H1c3a120.23C6b—C5b—H1c5b120.31
Br1a—C4a—C3a118.9 (4)C1b—C6b—C5b120.8 (4)
Br1a—C4a—C5a119.3 (4)C1b—C6b—H1c6b119.6
C3a—C4a—C5a121.7 (4)C5b—C6b—H1c6b119.6
C4a—C5a—C6a118.8 (4)N1b—C7b—C2b121.7 (4)
C4a—C5a—H1c5a120.6N1b—C7b—H1c7b119.13
C6a—C5a—H1c5a120.6C2b—C7b—H1c7b119.13
C1a—C6a—C5a121.4 (5)N1b—C8b—C9b112.0 (4)
C1a—C6a—H1c6a119.31N1b—C8b—H1c8b109.47
C5a—C6a—H1c6a119.31N1b—C8b—H2c8b109.47
N1a—C7a—C2a121.5 (4)C9b—C8b—H1c8b109.47
N1a—C7a—H1c7a119.24C9b—C8b—H2c8b109.47
C2a—C7a—H1c7a119.24H1c8b—C8b—H2c8b106.79
N1a—C8a—C9a109.3 (4)N2b—C9b—C8b109.5 (4)
N1a—C8a—H1c8a109.47N2b—C9b—H1c9b109.47
N1a—C8a—H2c8a109.47N2b—C9b—H2c9b109.47
C9a—C8a—H1c8a109.47C8b—C9b—H1c9b109.47
C9a—C8a—H2c8a109.47C8b—C9b—H2c9b109.47
H1c8a—C8a—H2c8a109.64H1c9b—C9b—H2c9b109.45
N2a—C9a—C8a111.0 (4)N2b—C10b—C11b109.7 (4)
N2a—C9a—H1c9a109.47N2b—C10b—H1c10b109.47
N2a—C9a—H2c9a109.47N2b—C10b—H2c10b109.47
C8a—C9a—H1c9a109.47C11b—C10b—H1c10b109.47
C8a—C9a—H2c9a109.47C11b—C10b—H2c10b109.47
H1c9a—C9a—H2c9a107.95H1c10b—C10b—H2c10b109.22
N2a—C10a—C11a110.8 (4)O2b—C11b—C10b111.6 (4)
N2a—C10a—H1c10a109.47O2b—C11b—H1c11b109.47
N2a—C10a—H2c10a109.47O2b—C11b—H2c11b109.47
C11a—C10a—H1c10a109.47C10b—C11b—H1c11b109.47
C11a—C10a—H2c10a109.47C10b—C11b—H2c11b109.47
H1c10a—C10a—H2c10a108.1H1c11b—C11b—H2c11b107.25
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1a—H1o1a···N1a0.82 (5)1.89 (6)2.597 (5)144 (5)
O1a—H1o1a···C7a0.82 (5)2.45 (6)2.876 (6)113 (4)
O2a—H1o2a···N2bi0.82 (3)2.02 (4)2.826 (6)168 (6)
O1b—H1o1b···N1b0.82 (5)1.91 (6)2.587 (6)139 (5)
O2b—H1o2b···N2aii0.82 (3)2.06 (4)2.859 (6)165 (6)
N2a—H1n2a···O2a0.88 (3)2.45 (5)2.871 (6)110 (5)
N2b—H1n2b···O2b0.88 (3)2.44 (5)2.884 (5)112 (5)
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to Golestan University. CzechNanoLab project LM2018110 funded by MEYS CR is gratefully acknowledged for financial support of the measurements at LNSM Research Infrastructure.

References

First citationAdrian, R. A., Canales, D. & Arman, H. D. (2020). IUCrData, 5, x201344.  Google Scholar
First citationAtahan, A. & Durmus, S. (2015). Spectrochim. Acta A, 144, 61–67.  Web of Science CrossRef CAS Google Scholar
First citationBhattacharjee, A., Halder, S., Ghosh, K., Rizzoli, C. & Roy, P. (2017). New J. Chem. 41, 5696–5706.  Web of Science CSD CrossRef CAS Google Scholar
First citationBöhme, U. & Fels, S. (2020). IUCrData, 5, x201384.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCeylan, U., Durgun, M., Türkmen, H., Yalçın, P., Kilic, A. & Özdemir, N. (2015). J. Mol. Struct. 1089, 222–232.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhorbani, M., Khalaji, A. D., Feizi, N., Akbari, A., Eigner, V. & Dusek, M. (2017). J. Mol. Struct. 1130, 442–446.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, Y., Hu, X., Zhang, X., Pu, X. & Wang, Y. (2019). RSC Adv. 9, 41737–41744.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, V., Kumar, P., Kumar, S., Singhal, D. & Gupta, R. (2019). Inorg. Chem. 58, 10364–10376.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr.229, 345–352.  Google Scholar
First citationReimann, M. J., Salmon, D. R., Horton, J. T., Gier, E. C. & Jefferies, L. R. (2019). ACS Omega, 4, 2874–2882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600–601.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSalehi, M., Ghasemi, F., Kubicki, M., Asadi, A., Behzad, M., Ghasemi, M. H. & Gholizadeh, A. (2016). Inorg. Chim. Acta, 453, 238–246.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaranya, J., Jone Kirubavathy, S., Chitra, S., Zarrouk, A., Kalpana, K., Lavanya, K. & Ravikiran, B. (2020). Arab. J. Sci. Eng. 45, s4683–s4695.  Web of Science CrossRef Google Scholar
First citationShweta, S., Neeraj, N., Asthana, S. K., Mishra, R. K. & Upadhyay, K. K. (2016). RSC Adv. 6, 55430–55437.  Web of Science CrossRef CAS Google Scholar
First citationVafazadeh,R., Kazemi-nasab, A. & Willis, A.C. (2019). Acta Chim. Slov. 66, 1010–1018.  Web of Science CrossRef CAS Google Scholar
First citationYousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J. & Abdullah, B. (2017). Arabian J. Chem. 10, S1639–S1644.  Web of Science CrossRef CAS Google Scholar
First citationZhu, X., Duan, Y., Li, P., Fan, H., Han, T. & Huang, X. (2019). Anal. Methods, 11, 642–647.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds