metal-organic compounds
Dichlorido(pyridine-κN)[2,3,5,6-tetrakis(pyridin-2-yl)pyrazine-κ3N2,N1,N6]nickel(II)
aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr
In the title complex, [NiCl2(C5H5N)(C24H16N6)], the NiII ion is six-coordinated in a distorted octahedral coordination environment defined by three N atoms of the tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand, one N atom of the pyridine ligand and two Cl− anions, with the latter being mutually trans. The complex is disposed about a twofold rotation axis along the a axis. The complex molecules are connected in the crystal via C—H⋯Cl, C—H⋯N and π–π [closest inter-centroid separation = 3.7446 (14) Å between pyridyl rings].
CCDC reference: 2058988
Structure description
With reference to the title compound, [NiCl2(py)(tppz)] (py = pyridine, tppz = 2,3,5,6-tetra-2-pyridylpyrazine), the crystal structures of a related tetranuclear NiII complex, [Ni4Cl6(tppz)2(CH3OH)4]Cl2·CH3OH (Winpenny et al., 2005), and of a dinuclear MnII complex, [Mn2Cl4(tppz)2] (Ha, 2011), have been determined previously.
In the title complex, the central NiII cation is six-coordinated in a considerably distorted octahedral coordination environment defined by three N atoms of the tridentate tppz ligand, one N atom of the pyridine ligand and two Cl− anions (Fig. 1). The complex is disposed about a twofold rotation axis along the a axis; thus the contains one half of the complex. The main contribution to the distortion is the tight N—Ni—N chelating angle [<N1—Ni1—N3 = 77.97 (5)°], which results in a non-linear trans arrangement of the N3—Ni1—N3i bonds [<N3—Ni1—N3i = 155.95 (11)°; symmetry code: (i) x − y, −y, −z], whereas the Cl1—Ni1—Cl1i bonds are almost linear [<Cl1—Ni1—Cl1i = 175.77 (4)°]. The Ni—N[pyrazine(N1) or pyridyl(N3, N5)] bond lengths are roughly equivalent, with distances of 2.008 (3) – 2.1026 (19) Å. The pyrazine ring (N1—C1i) slightly deviates from planarity, with a maximum deviation of 0.057 (2) Å for the C2 atom from the least-squares plane of the ring. The dihedral angles between the nearly planar pyridyl rings and the least-squares plane of their carrier pyrazine ring are 14.90 (4)° for the coordinating pyridyl ring (N3—C7) and 54.42 (9)° for the non-coordinating pyridyl ring (N4—C12), respectively. The dihedral angle between the pyrazine ring and the pyridine ligand (N5—C13i) is 57.8 (1)°.
In the crystal, the complex displays numerous inter- and intramolecular π–π interactions between adjacent six-membered rings. The most significant interaction of this kind is that between Cg1 (the centroid of the ring N3/C3–C7) and Cg1ii [symmetry code: (ii) x, x − y, −z + ], with a centroid-to-centroid distance of 3.7446 (14) Å and a dihedral angle between the ring planes of 22.24 (12)°. In addition, the complex exhibits inter- and intramolecular C—H⋯N and C—H⋯Cl hydrogen bonds (Table 1) that consolidate the three-dimensional packing (Fig. 2).
Synthesis and crystallization
To a solution of NiCl2·6H2O (0.3779 g, 1.590 mmol) in ethanol (20 ml) was added 2,3,5,6-tetra-2-pyridylpyrazine (0.6220 g, 1.601 mmol), followed by stirring for 24 h at rooom temperature. The formed precipitate was separated by filtration, washed with ethanol and acetone, and dried at 323 K, to give a brown powder (0.5045 g). Brown crystals suitable for X-ray analysis were obtained by slow evaporation from its pyridine/N,N-dimethylformamide (DMF) solution at 333 K.
Refinement
Crystal data, data collection and structure . The maximum and minimum remaining electron density peaks in the difference Fourier map are located 0.34 and 0.74 Å, respectively, from atoms C9 and Ni1.
details are summarized in Table 2Structural data
CCDC reference: 2058988
https://doi.org/10.1107/S2414314621000948/wm4144sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621000948/wm4144Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).[NiCl2(C5H5N)(C24H16N6)] | Dx = 1.504 Mg m−3 |
Mr = 597.14 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6122 | Cell parameters from 9199 reflections |
a = 13.8244 (4) Å | θ = 2.4–26.0° |
c = 23.8935 (8) Å | µ = 0.97 mm−1 |
V = 3954.6 (3) Å3 | T = 223 K |
Z = 6 | Block, brown |
F(000) = 1836 | 0.15 × 0.10 × 0.07 mm |
PHOTON 100 CMOS detector diffractometer | 2412 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.106 |
φ and ω scans | θmax = 26.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −17→17 |
Tmin = 0.700, Tmax = 0.744 | k = −17→17 |
125055 measured reflections | l = −29→29 |
2614 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0277P)2 + 0.9047P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2614 reflections | Δρmax = 0.22 e Å−3 |
179 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 894 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.002 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.41510 (3) | 0.0000 | 0.0000 | 0.01866 (12) | |
Cl1 | 0.44000 (6) | 0.03687 (5) | −0.09968 (3) | 0.03369 (17) | |
N1 | 0.56034 (18) | 0.0000 | 0.0000 | 0.0181 (6) | |
N2 | 0.75658 (19) | 0.0000 | 0.0000 | 0.0204 (6) | |
N3 | 0.53182 (16) | 0.17007 (16) | 0.01208 (8) | 0.0196 (4) | |
N4 | 0.86393 (17) | 0.24353 (17) | 0.07265 (9) | 0.0265 (5) | |
N5 | 0.2636 (2) | 0.0000 | 0.0000 | 0.0303 (7) | |
C1 | 0.65538 (19) | 0.09724 (18) | 0.00453 (10) | 0.0177 (5) | |
C2 | 0.75545 (19) | 0.09505 (19) | 0.00914 (9) | 0.0194 (5) | |
C3 | 0.6391 (2) | 0.19584 (19) | 0.00471 (10) | 0.0187 (5) | |
C4 | 0.7236 (2) | 0.30472 (19) | −0.00359 (11) | 0.0242 (5) | |
H4 | 0.7967 | 0.3205 | −0.0114 | 0.029* | |
C5 | 0.6992 (2) | 0.3896 (2) | −0.00019 (12) | 0.0290 (6) | |
H5 | 0.7557 | 0.4642 | −0.0056 | 0.035* | |
C6 | 0.5912 (2) | 0.3645 (2) | 0.01124 (10) | 0.0279 (6) | |
H6 | 0.5734 | 0.4213 | 0.0157 | 0.033* | |
C7 | 0.5104 (2) | 0.2537 (2) | 0.01591 (10) | 0.0236 (6) | |
H7 | 0.4362 | 0.2361 | 0.0221 | 0.028* | |
C8 | 0.8647 (2) | 0.1935 (2) | 0.02484 (10) | 0.0199 (5) | |
C9 | 0.9581 (2) | 0.2297 (2) | −0.00795 (12) | 0.0299 (6) | |
H9 | 0.9555 | 0.1912 | −0.0408 | 0.036* | |
C10 | 1.0561 (2) | 0.3239 (2) | 0.00830 (12) | 0.0385 (7) | |
H10 | 1.1210 | 0.3514 | −0.0137 | 0.046* | |
C11 | 1.0565 (2) | 0.3761 (2) | 0.05722 (11) | 0.0323 (6) | |
H11 | 1.1217 | 0.4403 | 0.0694 | 0.039* | |
C12 | 0.9594 (2) | 0.3327 (2) | 0.08824 (11) | 0.0309 (6) | |
H12 | 0.9608 | 0.3679 | 0.1221 | 0.037* | |
C13 | 0.1829 (2) | −0.0605 (2) | 0.03686 (14) | 0.0414 (7) | |
H13 | 0.1959 | −0.1024 | 0.0638 | 0.050* | |
C14 | 0.0811 (3) | −0.0642 (3) | 0.03700 (18) | 0.0579 (10) | |
H14 | 0.0250 | −0.1105 | 0.0624 | 0.070* | |
C15 | 0.0629 (3) | 0.0000 | 0.0000 | 0.0639 (15) | |
H15 | −0.0051 | 0.0000 | 0.0000 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01813 (17) | 0.0145 (2) | 0.0222 (2) | 0.00723 (11) | 0.00093 (9) | 0.00185 (17) |
Cl1 | 0.0480 (4) | 0.0269 (3) | 0.0215 (3) | 0.0152 (3) | −0.0012 (3) | 0.0025 (2) |
N1 | 0.0175 (10) | 0.0147 (13) | 0.0210 (14) | 0.0073 (7) | −0.0002 (6) | −0.0003 (12) |
N2 | 0.0200 (11) | 0.0174 (14) | 0.0231 (15) | 0.0087 (7) | −0.0006 (6) | −0.0012 (13) |
N3 | 0.0212 (10) | 0.0172 (10) | 0.0196 (10) | 0.0091 (9) | 0.0005 (8) | 0.0004 (8) |
N4 | 0.0234 (11) | 0.0264 (11) | 0.0231 (11) | 0.0074 (9) | 0.0023 (9) | −0.0022 (9) |
N5 | 0.0247 (12) | 0.0244 (16) | 0.0417 (19) | 0.0122 (8) | 0.0024 (8) | 0.0048 (15) |
C1 | 0.0189 (11) | 0.0155 (11) | 0.0171 (12) | 0.0073 (9) | 0.0013 (10) | −0.0007 (9) |
C2 | 0.0195 (12) | 0.0165 (12) | 0.0194 (12) | 0.0069 (10) | 0.0017 (10) | 0.0010 (10) |
C3 | 0.0220 (12) | 0.0163 (11) | 0.0176 (11) | 0.0095 (10) | −0.0010 (10) | −0.0016 (10) |
C4 | 0.0192 (13) | 0.0189 (12) | 0.0329 (14) | 0.0082 (10) | 0.0026 (11) | 0.0010 (11) |
C5 | 0.0285 (14) | 0.0168 (12) | 0.0393 (16) | 0.0094 (11) | 0.0007 (13) | 0.0016 (12) |
C6 | 0.0345 (14) | 0.0184 (12) | 0.0351 (14) | 0.0166 (12) | 0.0002 (12) | −0.0012 (11) |
C7 | 0.0257 (13) | 0.0237 (13) | 0.0254 (14) | 0.0153 (11) | 0.0025 (10) | 0.0015 (10) |
C8 | 0.0186 (12) | 0.0160 (12) | 0.0241 (13) | 0.0080 (10) | −0.0010 (10) | −0.0004 (10) |
C9 | 0.0228 (13) | 0.0280 (14) | 0.0321 (15) | 0.0075 (11) | 0.0047 (12) | −0.0085 (12) |
C10 | 0.0206 (14) | 0.0381 (16) | 0.0406 (18) | 0.0025 (12) | 0.0078 (12) | −0.0054 (14) |
C11 | 0.0227 (14) | 0.0252 (15) | 0.0332 (16) | 0.0003 (12) | −0.0021 (12) | −0.0018 (12) |
C12 | 0.0319 (14) | 0.0260 (14) | 0.0232 (13) | 0.0057 (12) | −0.0020 (12) | −0.0053 (11) |
C13 | 0.0311 (16) | 0.0357 (17) | 0.0571 (19) | 0.0166 (15) | 0.0107 (15) | 0.0109 (15) |
C14 | 0.0347 (18) | 0.057 (2) | 0.082 (3) | 0.0222 (17) | 0.0195 (18) | 0.013 (2) |
C15 | 0.0362 (19) | 0.067 (4) | 0.098 (5) | 0.0336 (18) | 0.0005 (18) | 0.001 (4) |
Ni1—N1 | 2.008 (3) | C4—H4 | 0.9400 |
Ni1—N5 | 2.094 (3) | C5—C6 | 1.380 (4) |
Ni1—N3i | 2.1026 (19) | C5—H5 | 0.9400 |
Ni1—N3 | 2.1026 (19) | C6—C7 | 1.377 (4) |
Ni1—Cl1i | 2.4238 (6) | C6—H6 | 0.9400 |
Ni1—Cl1 | 2.4238 (6) | C7—H7 | 0.9400 |
N1—C1 | 1.334 (3) | C8—C9 | 1.373 (3) |
N1—C1i | 1.334 (3) | C9—C10 | 1.385 (4) |
N2—C2i | 1.340 (3) | C9—H9 | 0.9400 |
N2—C2 | 1.340 (3) | C10—C11 | 1.373 (4) |
N3—C7 | 1.332 (3) | C10—H10 | 0.9400 |
N3—C3 | 1.353 (3) | C11—C12 | 1.380 (4) |
N4—C12 | 1.332 (3) | C11—H11 | 0.9400 |
N4—C8 | 1.338 (3) | C12—H12 | 0.9400 |
N5—C13i | 1.337 (3) | C13—C14 | 1.382 (4) |
N5—C13 | 1.337 (3) | C13—H13 | 0.9400 |
C1—C2 | 1.403 (3) | C14—C15 | 1.362 (4) |
C1—C3 | 1.488 (3) | C14—H14 | 0.9400 |
C2—C8 | 1.489 (3) | C15—C14i | 1.362 (4) |
C3—C4 | 1.382 (3) | C15—H15 | 0.9400 |
C4—C5 | 1.377 (4) | ||
N1—Ni1—N5 | 180.0 | C5—C4—H4 | 120.5 |
N1—Ni1—N3i | 77.97 (5) | C3—C4—H4 | 120.5 |
N5—Ni1—N3i | 102.03 (5) | C4—C5—C6 | 119.5 (2) |
N1—Ni1—N3 | 77.97 (5) | C4—C5—H5 | 120.3 |
N5—Ni1—N3 | 102.03 (5) | C6—C5—H5 | 120.3 |
N3i—Ni1—N3 | 155.95 (11) | C7—C6—C5 | 118.0 (2) |
N1—Ni1—Cl1i | 87.89 (2) | C7—C6—H6 | 121.0 |
N5—Ni1—Cl1i | 92.11 (2) | C5—C6—H6 | 121.0 |
N3i—Ni1—Cl1i | 87.19 (5) | N3—C7—C6 | 123.4 (2) |
N3—Ni1—Cl1i | 91.94 (5) | N3—C7—H7 | 118.3 |
N1—Ni1—Cl1 | 87.89 (2) | C6—C7—H7 | 118.3 |
N5—Ni1—Cl1 | 92.11 (2) | N4—C8—C9 | 123.2 (2) |
N3i—Ni1—Cl1 | 91.93 (5) | N4—C8—C2 | 114.9 (2) |
N3—Ni1—Cl1 | 87.18 (5) | C9—C8—C2 | 121.9 (2) |
Cl1i—Ni1—Cl1 | 175.77 (4) | C8—C9—C10 | 118.8 (2) |
C1—N1—C1i | 122.5 (3) | C8—C9—H9 | 120.6 |
C1—N1—Ni1 | 118.76 (13) | C10—C9—H9 | 120.6 |
C1i—N1—Ni1 | 118.76 (13) | C11—C10—C9 | 118.6 (2) |
C2i—N2—C2 | 119.7 (3) | C11—C10—H10 | 120.7 |
C7—N3—C3 | 118.1 (2) | C9—C10—H10 | 120.7 |
C7—N3—Ni1 | 126.90 (16) | C10—C11—C12 | 118.7 (2) |
C3—N3—Ni1 | 113.83 (15) | C10—C11—H11 | 120.6 |
C12—N4—C8 | 117.2 (2) | C12—C11—H11 | 120.6 |
C13i—N5—C13 | 117.1 (4) | N4—C12—C11 | 123.4 (3) |
C13i—N5—Ni1 | 121.44 (18) | N4—C12—H12 | 118.3 |
C13—N5—Ni1 | 121.44 (18) | C11—C12—H12 | 118.3 |
N1—C1—C2 | 118.0 (2) | N5—C13—C14 | 122.7 (3) |
N1—C1—C3 | 113.6 (2) | N5—C13—H13 | 118.7 |
C2—C1—C3 | 128.4 (2) | C14—C13—H13 | 118.7 |
N2—C2—C1 | 120.2 (2) | C15—C14—C13 | 119.4 (4) |
N2—C2—C8 | 115.7 (2) | C15—C14—H14 | 120.3 |
C1—C2—C8 | 124.0 (2) | C13—C14—H14 | 120.3 |
N3—C3—C4 | 121.6 (2) | C14i—C15—C14 | 118.6 (5) |
N3—C3—C1 | 114.0 (2) | C14i—C15—H15 | 120.7 |
C4—C3—C1 | 124.4 (2) | C14—C15—H15 | 120.7 |
C5—C4—C3 | 119.1 (2) | ||
C1i—N1—C1—C2 | −5.20 (15) | C4—C5—C6—C7 | −3.4 (4) |
Ni1—N1—C1—C2 | 174.80 (15) | C3—N3—C7—C6 | 1.8 (4) |
C1i—N1—C1—C3 | 175.6 (2) | Ni1—N3—C7—C6 | −164.88 (19) |
Ni1—N1—C1—C3 | −4.4 (2) | C5—C6—C7—N3 | 2.6 (4) |
C2i—N2—C2—C1 | −5.36 (16) | C12—N4—C8—C9 | 0.2 (4) |
C2i—N2—C2—C8 | 173.8 (2) | C12—N4—C8—C2 | −179.4 (2) |
N1—C1—C2—N2 | 10.7 (3) | N2—C2—C8—N4 | −125.1 (2) |
C3—C1—C2—N2 | −170.2 (2) | C1—C2—C8—N4 | 54.0 (3) |
N1—C1—C2—C8 | −168.31 (19) | N2—C2—C8—C9 | 55.3 (3) |
C3—C1—C2—C8 | 10.8 (4) | C1—C2—C8—C9 | −125.6 (3) |
C7—N3—C3—C4 | −5.6 (4) | N4—C8—C9—C10 | −1.4 (4) |
Ni1—N3—C3—C4 | 162.80 (19) | C2—C8—C9—C10 | 178.1 (3) |
C7—N3—C3—C1 | 176.4 (2) | C8—C9—C10—C11 | 1.3 (5) |
Ni1—N3—C3—C1 | −15.3 (3) | C9—C10—C11—C12 | 0.1 (5) |
N1—C1—C3—N3 | 13.1 (3) | C8—N4—C12—C11 | 1.3 (4) |
C2—C1—C3—N3 | −166.0 (2) | C10—C11—C12—N4 | −1.4 (5) |
N1—C1—C3—C4 | −164.9 (2) | C13i—N5—C13—C14 | 1.5 (3) |
C2—C1—C3—C4 | 16.0 (4) | Ni1—N5—C13—C14 | −178.5 (3) |
N3—C3—C4—C5 | 4.8 (4) | N5—C13—C14—C15 | −3.1 (5) |
C1—C3—C4—C5 | −177.3 (2) | C13—C14—C15—C14i | 1.5 (3) |
C3—C4—C5—C6 | −0.2 (4) |
Symmetry code: (i) x−y, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cl1ii | 0.94 | 2.78 | 3.513 (3) | 136 |
C10—H10···N4iii | 0.94 | 2.46 | 3.360 (3) | 161 |
C12—H12···Cl1iv | 0.94 | 2.71 | 3.602 (3) | 160 |
C13—H13···Cl1i | 0.94 | 2.68 | 3.261 (3) | 121 |
Symmetry codes: (i) x−y, −y, −z; (ii) x−y, x, z+1/6; (iii) y+1, −x+y+1, z−1/6; (iv) −y+1, x−y, z+1/3. |
Acknowledgements
The author thanks the KBSI, Seoul Center, for the X-ray data collection.
Funding information
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).
References
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ha, K. (2011). Z. Kristallogr. NCS 226, 59–60. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Winpenny, R., Lightfoot, K., Parsons, S. & Messenger, D. (2005). CSD Communication (refcode: 278243). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.