metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­(pyridine-κN)[2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine-κ3N2,N1,N6]nickel(II)

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 January 2021; accepted 26 January 2021; online 2 February 2021)

In the title complex, [NiCl2(C5H5N)(C24H16N6)], the NiII ion is six-coordinated in a distorted octa­hedral coordination environment defined by three N atoms of the tridentate 2,3,5,6-tetra-2-pyridyl­pyrazine ligand, one N atom of the pyridine ligand and two Cl anions, with the latter being mutually trans. The complex is disposed about a twofold rotation axis along the a axis. The complex molecules are connected in the crystal via C—H⋯Cl, C—H⋯N and ππ [closest inter-centroid separation = 3.7446 (14) Å between pyridyl rings].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title compound, [NiCl2(py)(tppz)] (py = pyridine, tppz = 2,3,5,6-tetra-2-pyridyl­pyrazine), the crystal structures of a related tetra­nuclear NiII complex, [Ni4Cl6(tppz)2(CH3OH)4]Cl2·CH3OH (Winpenny et al., 2005[Winpenny, R., Lightfoot, K., Parsons, S. & Messenger, D. (2005). CSD Communication (refcode: 278243). CCDC, Cambridge, England.]), and of a dinuclear MnII complex, [Mn2Cl4(tppz)2] (Ha, 2011[Ha, K. (2011). Z. Kristallogr. NCS 226, 59-60.]), have been determined previously.

In the title complex, the central NiII cation is six-coordinated in a considerably distorted octa­hedral coordination environment defined by three N atoms of the tridentate tppz ligand, one N atom of the pyridine ligand and two Cl anions (Fig. 1[link]). The complex is disposed about a twofold rotation axis along the a axis; thus the asymmetric unit contains one half of the complex. The main contribution to the distortion is the tight N—Ni—N chelating angle [<N1—Ni1—N3 = 77.97 (5)°], which results in a non-linear trans arrangement of the N3—Ni1—N3i bonds [<N3—Ni1—N3i = 155.95 (11)°; symmetry code: (i) x − y, −y, −z], whereas the Cl1—Ni1—Cl1i bonds are almost linear [<Cl1—Ni1—Cl1i = 175.77 (4)°]. The Ni—N[pyrazine­(N1) or pyrid­yl(N3, N5)] bond lengths are roughly equivalent, with distances of 2.008 (3) – 2.1026 (19) Å. The pyrazine ring (N1—C1i) slightly deviates from planarity, with a maximum deviation of 0.057 (2) Å for the C2 atom from the least-squares plane of the ring. The dihedral angles between the nearly planar pyridyl rings and the least-squares plane of their carrier pyrazine ring are 14.90 (4)° for the coordinating pyridyl ring (N3—C7) and 54.42 (9)° for the non-coord­inating pyridyl ring (N4—C12), respectively. The dihedral angle between the pyrazine ring and the pyridine ligand (N5—C13i) is 57.8 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for all non-H atoms. [Symmetry code: (i) x − y, −y, −z.]

In the crystal, the complex displays numerous inter- and intra­molecular ππ inter­actions between adjacent six-membered rings. The most significant inter­action of this kind is that between Cg1 (the centroid of the ring N3/C3–C7) and Cg1ii [symmetry code: (ii) x, x − y, −z + [{1\over 6}]], with a centroid-to-centroid distance of 3.7446 (14) Å and a dihedral angle between the ring planes of 22.24 (12)°. In addition, the complex exhibits inter- and intra­molecular C—H⋯N and C—H⋯Cl hydrogen bonds (Table 1[link]) that consolidate the three-dimensional packing (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl1i 0.94 2.78 3.513 (3) 136
C10—H10⋯N4ii 0.94 2.46 3.360 (3) 161
C12—H12⋯Cl1iii 0.94 2.71 3.602 (3) 160
C13—H13⋯Cl1iv 0.94 2.68 3.261 (3) 121
Symmetry codes: (i) [x-y, x, z+{\script{1\over 6}}]; (ii) [y+1, -x+y+1, z-{\script{1\over 6}}]; (iii) [-y+1, x-y, z+{\script{1\over 3}}]; (iv) [x-y, -y, -z].
[Figure 2]
Figure 2
The packing in the crystal of the title compound, viewed approximately along the a axis. Hydrogen-bonding inter­actions are drawn as dashed lines. Colour codes are as in Fig. 1[link].

Synthesis and crystallization

To a solution of NiCl2·6H2O (0.3779 g, 1.590 mmol) in ethanol (20 ml) was added 2,3,5,6-tetra-2-pyridyl­pyrazine (0.6220 g, 1.601 mmol), followed by stirring for 24 h at rooom temperature. The formed precipitate was separated by filtration, washed with ethanol and acetone, and dried at 323 K, to give a brown powder (0.5045 g). Brown crystals suitable for X-ray analysis were obtained by slow evaporation from its pyridine/N,N-di­methyl­formamide (DMF) solution at 333 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The maximum and minimum remaining electron density peaks in the difference Fourier map are located 0.34 and 0.74 Å, respectively, from atoms C9 and Ni1.

Table 2
Experimental details

Crystal data
Chemical formula [NiCl2(C5H5N)(C24H16N6)]
Mr 597.14
Crystal system, space group Hexagonal, P6122
Temperature (K) 223
a, c (Å) 13.8244 (4), 23.8935 (8)
V3) 3954.6 (3)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.97
Crystal size (mm) 0.15 × 0.10 × 0.07
 
Data collection
Diffractometer PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.700, 0.744
No. of measured, independent and observed [I > 2σ(I)] reflections 125055, 2614, 2412
Rint 0.106
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.08
No. of reflections 2614
No. of parameters 179
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.14
Absolute structure Flack x determined using 894 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.002 (5)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).

Dichlorido(pyridine-κN)[2,3,5,6-tetrakis(pyridin-2-yl)pyrazine-κ3N2,N1,N6]nickel(II) top
Crystal data top
[NiCl2(C5H5N)(C24H16N6)]Dx = 1.504 Mg m3
Mr = 597.14Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6122Cell parameters from 9199 reflections
a = 13.8244 (4) Åθ = 2.4–26.0°
c = 23.8935 (8) ŵ = 0.97 mm1
V = 3954.6 (3) Å3T = 223 K
Z = 6Block, brown
F(000) = 18360.15 × 0.10 × 0.07 mm
Data collection top
PHOTON 100 CMOS detector
diffractometer
2412 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.106
φ and ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.700, Tmax = 0.744k = 1717
125055 measured reflectionsl = 2929
2614 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.9047P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2614 reflectionsΔρmax = 0.22 e Å3
179 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack x determined using 894 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.41510 (3)0.00000.00000.01866 (12)
Cl10.44000 (6)0.03687 (5)0.09968 (3)0.03369 (17)
N10.56034 (18)0.00000.00000.0181 (6)
N20.75658 (19)0.00000.00000.0204 (6)
N30.53182 (16)0.17007 (16)0.01208 (8)0.0196 (4)
N40.86393 (17)0.24353 (17)0.07265 (9)0.0265 (5)
N50.2636 (2)0.00000.00000.0303 (7)
C10.65538 (19)0.09724 (18)0.00453 (10)0.0177 (5)
C20.75545 (19)0.09505 (19)0.00914 (9)0.0194 (5)
C30.6391 (2)0.19584 (19)0.00471 (10)0.0187 (5)
C40.7236 (2)0.30472 (19)0.00359 (11)0.0242 (5)
H40.79670.32050.01140.029*
C50.6992 (2)0.3896 (2)0.00019 (12)0.0290 (6)
H50.75570.46420.00560.035*
C60.5912 (2)0.3645 (2)0.01124 (10)0.0279 (6)
H60.57340.42130.01570.033*
C70.5104 (2)0.2537 (2)0.01591 (10)0.0236 (6)
H70.43620.23610.02210.028*
C80.8647 (2)0.1935 (2)0.02484 (10)0.0199 (5)
C90.9581 (2)0.2297 (2)0.00795 (12)0.0299 (6)
H90.95550.19120.04080.036*
C101.0561 (2)0.3239 (2)0.00830 (12)0.0385 (7)
H101.12100.35140.01370.046*
C111.0565 (2)0.3761 (2)0.05722 (11)0.0323 (6)
H111.12170.44030.06940.039*
C120.9594 (2)0.3327 (2)0.08824 (11)0.0309 (6)
H120.96080.36790.12210.037*
C130.1829 (2)0.0605 (2)0.03686 (14)0.0414 (7)
H130.19590.10240.06380.050*
C140.0811 (3)0.0642 (3)0.03700 (18)0.0579 (10)
H140.02500.11050.06240.070*
C150.0629 (3)0.00000.00000.0639 (15)
H150.00510.00000.00000.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01813 (17)0.0145 (2)0.0222 (2)0.00723 (11)0.00093 (9)0.00185 (17)
Cl10.0480 (4)0.0269 (3)0.0215 (3)0.0152 (3)0.0012 (3)0.0025 (2)
N10.0175 (10)0.0147 (13)0.0210 (14)0.0073 (7)0.0002 (6)0.0003 (12)
N20.0200 (11)0.0174 (14)0.0231 (15)0.0087 (7)0.0006 (6)0.0012 (13)
N30.0212 (10)0.0172 (10)0.0196 (10)0.0091 (9)0.0005 (8)0.0004 (8)
N40.0234 (11)0.0264 (11)0.0231 (11)0.0074 (9)0.0023 (9)0.0022 (9)
N50.0247 (12)0.0244 (16)0.0417 (19)0.0122 (8)0.0024 (8)0.0048 (15)
C10.0189 (11)0.0155 (11)0.0171 (12)0.0073 (9)0.0013 (10)0.0007 (9)
C20.0195 (12)0.0165 (12)0.0194 (12)0.0069 (10)0.0017 (10)0.0010 (10)
C30.0220 (12)0.0163 (11)0.0176 (11)0.0095 (10)0.0010 (10)0.0016 (10)
C40.0192 (13)0.0189 (12)0.0329 (14)0.0082 (10)0.0026 (11)0.0010 (11)
C50.0285 (14)0.0168 (12)0.0393 (16)0.0094 (11)0.0007 (13)0.0016 (12)
C60.0345 (14)0.0184 (12)0.0351 (14)0.0166 (12)0.0002 (12)0.0012 (11)
C70.0257 (13)0.0237 (13)0.0254 (14)0.0153 (11)0.0025 (10)0.0015 (10)
C80.0186 (12)0.0160 (12)0.0241 (13)0.0080 (10)0.0010 (10)0.0004 (10)
C90.0228 (13)0.0280 (14)0.0321 (15)0.0075 (11)0.0047 (12)0.0085 (12)
C100.0206 (14)0.0381 (16)0.0406 (18)0.0025 (12)0.0078 (12)0.0054 (14)
C110.0227 (14)0.0252 (15)0.0332 (16)0.0003 (12)0.0021 (12)0.0018 (12)
C120.0319 (14)0.0260 (14)0.0232 (13)0.0057 (12)0.0020 (12)0.0053 (11)
C130.0311 (16)0.0357 (17)0.0571 (19)0.0166 (15)0.0107 (15)0.0109 (15)
C140.0347 (18)0.057 (2)0.082 (3)0.0222 (17)0.0195 (18)0.013 (2)
C150.0362 (19)0.067 (4)0.098 (5)0.0336 (18)0.0005 (18)0.001 (4)
Geometric parameters (Å, º) top
Ni1—N12.008 (3)C4—H40.9400
Ni1—N52.094 (3)C5—C61.380 (4)
Ni1—N3i2.1026 (19)C5—H50.9400
Ni1—N32.1026 (19)C6—C71.377 (4)
Ni1—Cl1i2.4238 (6)C6—H60.9400
Ni1—Cl12.4238 (6)C7—H70.9400
N1—C11.334 (3)C8—C91.373 (3)
N1—C1i1.334 (3)C9—C101.385 (4)
N2—C2i1.340 (3)C9—H90.9400
N2—C21.340 (3)C10—C111.373 (4)
N3—C71.332 (3)C10—H100.9400
N3—C31.353 (3)C11—C121.380 (4)
N4—C121.332 (3)C11—H110.9400
N4—C81.338 (3)C12—H120.9400
N5—C13i1.337 (3)C13—C141.382 (4)
N5—C131.337 (3)C13—H130.9400
C1—C21.403 (3)C14—C151.362 (4)
C1—C31.488 (3)C14—H140.9400
C2—C81.489 (3)C15—C14i1.362 (4)
C3—C41.382 (3)C15—H150.9400
C4—C51.377 (4)
N1—Ni1—N5180.0C5—C4—H4120.5
N1—Ni1—N3i77.97 (5)C3—C4—H4120.5
N5—Ni1—N3i102.03 (5)C4—C5—C6119.5 (2)
N1—Ni1—N377.97 (5)C4—C5—H5120.3
N5—Ni1—N3102.03 (5)C6—C5—H5120.3
N3i—Ni1—N3155.95 (11)C7—C6—C5118.0 (2)
N1—Ni1—Cl1i87.89 (2)C7—C6—H6121.0
N5—Ni1—Cl1i92.11 (2)C5—C6—H6121.0
N3i—Ni1—Cl1i87.19 (5)N3—C7—C6123.4 (2)
N3—Ni1—Cl1i91.94 (5)N3—C7—H7118.3
N1—Ni1—Cl187.89 (2)C6—C7—H7118.3
N5—Ni1—Cl192.11 (2)N4—C8—C9123.2 (2)
N3i—Ni1—Cl191.93 (5)N4—C8—C2114.9 (2)
N3—Ni1—Cl187.18 (5)C9—C8—C2121.9 (2)
Cl1i—Ni1—Cl1175.77 (4)C8—C9—C10118.8 (2)
C1—N1—C1i122.5 (3)C8—C9—H9120.6
C1—N1—Ni1118.76 (13)C10—C9—H9120.6
C1i—N1—Ni1118.76 (13)C11—C10—C9118.6 (2)
C2i—N2—C2119.7 (3)C11—C10—H10120.7
C7—N3—C3118.1 (2)C9—C10—H10120.7
C7—N3—Ni1126.90 (16)C10—C11—C12118.7 (2)
C3—N3—Ni1113.83 (15)C10—C11—H11120.6
C12—N4—C8117.2 (2)C12—C11—H11120.6
C13i—N5—C13117.1 (4)N4—C12—C11123.4 (3)
C13i—N5—Ni1121.44 (18)N4—C12—H12118.3
C13—N5—Ni1121.44 (18)C11—C12—H12118.3
N1—C1—C2118.0 (2)N5—C13—C14122.7 (3)
N1—C1—C3113.6 (2)N5—C13—H13118.7
C2—C1—C3128.4 (2)C14—C13—H13118.7
N2—C2—C1120.2 (2)C15—C14—C13119.4 (4)
N2—C2—C8115.7 (2)C15—C14—H14120.3
C1—C2—C8124.0 (2)C13—C14—H14120.3
N3—C3—C4121.6 (2)C14i—C15—C14118.6 (5)
N3—C3—C1114.0 (2)C14i—C15—H15120.7
C4—C3—C1124.4 (2)C14—C15—H15120.7
C5—C4—C3119.1 (2)
C1i—N1—C1—C25.20 (15)C4—C5—C6—C73.4 (4)
Ni1—N1—C1—C2174.80 (15)C3—N3—C7—C61.8 (4)
C1i—N1—C1—C3175.6 (2)Ni1—N3—C7—C6164.88 (19)
Ni1—N1—C1—C34.4 (2)C5—C6—C7—N32.6 (4)
C2i—N2—C2—C15.36 (16)C12—N4—C8—C90.2 (4)
C2i—N2—C2—C8173.8 (2)C12—N4—C8—C2179.4 (2)
N1—C1—C2—N210.7 (3)N2—C2—C8—N4125.1 (2)
C3—C1—C2—N2170.2 (2)C1—C2—C8—N454.0 (3)
N1—C1—C2—C8168.31 (19)N2—C2—C8—C955.3 (3)
C3—C1—C2—C810.8 (4)C1—C2—C8—C9125.6 (3)
C7—N3—C3—C45.6 (4)N4—C8—C9—C101.4 (4)
Ni1—N3—C3—C4162.80 (19)C2—C8—C9—C10178.1 (3)
C7—N3—C3—C1176.4 (2)C8—C9—C10—C111.3 (5)
Ni1—N3—C3—C115.3 (3)C9—C10—C11—C120.1 (5)
N1—C1—C3—N313.1 (3)C8—N4—C12—C111.3 (4)
C2—C1—C3—N3166.0 (2)C10—C11—C12—N41.4 (5)
N1—C1—C3—C4164.9 (2)C13i—N5—C13—C141.5 (3)
C2—C1—C3—C416.0 (4)Ni1—N5—C13—C14178.5 (3)
N3—C3—C4—C54.8 (4)N5—C13—C14—C153.1 (5)
C1—C3—C4—C5177.3 (2)C13—C14—C15—C14i1.5 (3)
C3—C4—C5—C60.2 (4)
Symmetry code: (i) xy, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl1ii0.942.783.513 (3)136
C10—H10···N4iii0.942.463.360 (3)161
C12—H12···Cl1iv0.942.713.602 (3)160
C13—H13···Cl1i0.942.683.261 (3)121
Symmetry codes: (i) xy, y, z; (ii) xy, x, z+1/6; (iii) y+1, x+y+1, z1/6; (iv) y+1, xy, z+1/3.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. NCS 226, 59–60.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWinpenny, R., Lightfoot, K., Parsons, S. & Messenger, D. (2005). CSD Communication (refcode: 278243). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds