organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9-[(Z)-2-(4,4,5,5-Tetra­methyl-1,3,2-dioxaborolan-2-yl)ethen­yl]-9H-carbazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 5 February 2021; accepted 8 February 2021; online 12 February 2021)

The title compound, C20H22BNO2, has a polarized π-system due to resonance between N—C(H)=C(H)—B and ionic N+=C(H)—C(H)=B canonical structures. The dihedral angles between the ethenyl plane (r.m.s. deviation for C2H2 = 0.0333 Å) with the ethenyl-C(NC2-pyrrole) plane (r.m.s. deviation CNC2 0.0423 Å) and the ethenyl-C(BO2-1,3,2-dioxaborolane) plane (r.m.s. deviation BCO2 0.0082 Å) are 45.86 (8) and 37.47 (8)°, respectively, and are greater than those found for the previously reported E-isomer [Hatayama & Okuno (2012[Hatayama, Y. & Okuno, T. (2012). Acta Cryst. E68, o84.]) Acta Cryst. E68, o84]. In comparison with the E-isomer, the reduced planarity of Z-isomer results in a decrease of the contribution of the N+=C(H)—C(H)=B canonical structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C20H22BNO2, has a hybrid π-conjugated system comprising an N—C(H)=C(H)—B unit (Fig. 1[link]). The insertion of a π-conjugated system in the N—B bond can give a highly polarized π-system as a result of the contribution of an ionic canonical structure, N+=C(H)—C(H)=B. However, the contribution of the ionic canonical structure is very small when p-phenyl­ene is inserted into the N—B bond (Yuan et al., 2006[Yuan, Z., Entwistle, C. D., Collings, J. C., Albesa-Jové, D., Batsanov, A. S., Howard, J. A. K., Taylor, N. J., Kaiser, H. M., Kaufmann, D. E., Poon, S. Y., Wong, W. Y., Jardin, C., Fathallah, S., Boucekkine, A., Halet, J. F. & Marder, T. B. (2006). Chem. Eur. J. 12, 2758-2771.]). By contrast, there is a significant contribution of the ionic canonical structure when a C≡C bond is inserted into the N—B bond (Onuma et al., 2015[Onuma, K., Suzuki, K. & Yamashita, M. (2015). Chem. Lett. 44, 405-407.]). The crystal structure of one isomer of the C=C bond-inserted system, namely 9-[(E)-2-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)ethen­yl]-9H-carbazole has been reported (Hatayama & Okuno, 2012[Hatayama, Y. & Okuno, T. (2012). Acta Cryst. E68, o84.]), which is an E-isomer of the title compound. In this work, the preparation of the Z-isomer is reported as is a comparison of the crystal structures of the isomers.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-numbering scheme with displacement ellipsoids drawn at the 50% probability level and H atoms shown as arbitrary spheres.

The dihedral angles between the C13/C14/H13/H14 plane (r.m.s. deviation 0.0333 Å) and the N1/C1/C12/C13 plane (r.m.s. deviation 0.0423 Å) and B1/O1/O2/C14 plane (r.m.s. deviation 0.0082 Å) are 45.86 (8) and 37.47 (8)°, respectively. The relatively large angles result in steric repulsion between carbazolyl and Bpin (pin = pinacolato) residues. The equivalent dihedral angles for the two independent mol­ecules in the E-isomer are 19.37 (3) and 10.74 (6)° and 5.70 (11) and 9.74 (9)°, respectively (Hatayama & Okuno, 2012[Hatayama, Y. & Okuno, T. (2012). Acta Cryst. E68, o84.]). In comparison with the Z-isomer, the E-isomer has a more planar conformation. The C=C bond length of the olefinic unit in the Z-isomer is ca 0.01 Å shorter than those of the E-isomer in spite of the steric repulsion. This is presumably because the reduced planarity of the Z-isomer decreases the contribution of the N+=C(H)—C(H)=B canonical structure.

In conclusion, structural analyses of both isomers of the hybrid π-system afford an important insight showing the discussed dihedral angles play a crucial role for contribution of the ionic canonical structure.

Synthesis and crystallization

A solution of [Rh(cod)Cl]2 (0.024 g, 0.050 mmol), tri­cyclo­hexyl­phosphane (0.056 g, 0.198 mmol) and 4,4,5,5-tetra­methyl-1,3,2-dioxaborolane (0.478 ml, 3.30 mmol) in a mixture of cyclo­hexane (10 ml) and tri­ethyl­amine (2.3 ml, 17 mmol) was stirred for 3 h under an Ar atmosphere. Powdered 9-ethynyl-9H-carbazole (0.78 g, 4.1 mmol) was added to the solution followed by stirring for 4 h, also under Ar. After a filtration, the filtrate was concentrated under reduced pressure. The residue was extracted with CHCl3, and the solvent was removed via a rotary evaporator. The crude product was purified by gel permeation chromatography (GPC) (0.020 g, 1.5%). 1H NMR (400 MHz, CDCl3): δ 1.05 (s, 12H); 5.64 (d, J = 11.0 Hz, 1H); 7.25 (t, J = 7.2 Hz, 2H); 7.41 (t, J = 8.2 Hz, 2H); 7.45 (d, J = 11.0 Hz, 1H); 7.47 (d, J = 8.2 Hz, 2H); 8.04 (d, J = 7.7 Hz, 2H).

Single crystals of the title compound suitable for X-ray crystallographic analysis were prepared by recrystallization from its hexane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C20H22BNO2
Mr 319.21
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 8.204 (3), 9.700 (5), 11.330 (5)
α, β, γ (°) 80.975 (15), 81.242 (17), 78.726 (17)
V3) 866.4 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.10 × 0.04
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.990, 0.997
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 5921, 3005, 2462
Rint 0.041
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.148, 1.04
No. of reflections 3005
No. of parameters 217
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.24, −0.30
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.]), SHELXD and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OPTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OPTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

9-[(Z)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)ethenyl]-9H-carbazole top
Crystal data top
C20H22BNO2Z = 2
Mr = 319.21F(000) = 340.00
Triclinic, P1Dx = 1.224 Mg m3
a = 8.204 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.700 (5) ÅCell parameters from 2244 reflections
c = 11.330 (5) Åθ = 1.8–25.0°
α = 80.975 (15)°µ = 0.08 mm1
β = 81.242 (17)°T = 93 K
γ = 78.726 (17)°Chip, colorless
V = 866.4 (7) Å30.20 × 0.10 × 0.04 mm
Data collection top
Rigaku Saturn724+
diffractometer
2462 reflections with F2 > 2.0σ(F2)
Detector resolution: 28.445 pixels mm-1Rint = 0.041
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 99
Tmin = 0.990, Tmax = 0.997k = 1110
5921 measured reflectionsl = 1313
3005 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters not refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.3242P]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom for Csp2) and 1.5 Ueq(parent atom for Csp3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20319 (15)0.34856 (14)1.00915 (12)0.0230 (3)
O20.38376 (15)0.17377 (14)1.10767 (12)0.0239 (3)
N10.41036 (19)0.40247 (16)0.74648 (14)0.0205 (4)
C10.3703 (2)0.5164 (2)0.65803 (17)0.0216 (4)
C20.4130 (2)0.6510 (2)0.64047 (19)0.0270 (5)
C30.3585 (3)0.7445 (2)0.5436 (2)0.0326 (5)
C40.2609 (3)0.7075 (2)0.46672 (19)0.0323 (5)
C50.2164 (2)0.5748 (2)0.48530 (18)0.0281 (5)
C60.2716 (2)0.4769 (2)0.58157 (17)0.0216 (4)
C70.2548 (2)0.3314 (2)0.62426 (16)0.0204 (4)
C80.1799 (2)0.2338 (2)0.58267 (18)0.0252 (5)
C90.1991 (2)0.0959 (2)0.63799 (19)0.0272 (5)
C100.2929 (2)0.0528 (2)0.73549 (19)0.0267 (5)
C110.3653 (2)0.1483 (2)0.78009 (17)0.0223 (4)
C120.3436 (2)0.28763 (19)0.72443 (16)0.0190 (4)
C130.5305 (2)0.3982 (2)0.82481 (18)0.0236 (4)
C140.5195 (2)0.3395 (2)0.93873 (17)0.0228 (4)
C150.1022 (2)0.2904 (2)1.11685 (17)0.0222 (4)
C160.2149 (2)0.1462 (2)1.15663 (18)0.0226 (4)
C170.0748 (3)0.3957 (2)1.2068 (2)0.0312 (5)
C180.0659 (2)0.2788 (2)1.0809 (2)0.0291 (5)
C190.2125 (3)0.1056 (2)1.29157 (19)0.0326 (5)
C200.1851 (2)0.0232 (2)1.09897 (19)0.0285 (5)
B10.3668 (3)0.2849 (2)1.0180 (2)0.0212 (5)
H20.47740.67740.69340.032*
H30.38820.83610.52890.039*
H40.22490.77440.40100.039*
H50.14890.55030.43330.034*
H80.11650.26240.51680.030*
H90.14860.02910.61000.033*
H100.30670.04340.77150.032*
H110.42780.11940.84650.027*
H130.62800.44700.78220.028*
H140.62000.33200.97900.037*
H17A0.00750.36071.28040.037*
H17B0.18340.40731.22620.037*
H17C0.01590.48741.17180.037*
H18A0.13580.24011.15150.035*
H18B0.12250.37301.04940.035*
H18C0.04740.21581.01860.035*
H19A0.10130.08631.32720.039*
H19B0.29660.02031.30790.039*
H19C0.23820.18351.32700.039*
H20A0.07330.00201.12980.034*
H20B0.19350.04881.01130.034*
H20C0.26970.06061.11860.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0134 (7)0.0253 (7)0.0279 (8)0.0019 (5)0.0006 (5)0.0002 (6)
O20.0119 (7)0.0310 (8)0.0269 (8)0.0027 (5)0.0019 (5)0.0002 (6)
N10.0150 (8)0.0221 (9)0.0245 (8)0.0050 (6)0.0014 (6)0.0022 (7)
C10.0137 (9)0.0220 (10)0.0256 (10)0.0010 (7)0.0058 (7)0.0031 (8)
C20.0174 (10)0.0248 (10)0.0360 (12)0.0037 (8)0.0065 (8)0.0052 (9)
C30.0241 (11)0.0224 (11)0.0421 (13)0.0013 (8)0.0108 (9)0.0018 (9)
C40.0258 (11)0.0287 (12)0.0323 (12)0.0058 (9)0.0062 (9)0.0035 (9)
C50.0209 (10)0.0296 (11)0.0270 (11)0.0056 (8)0.0032 (8)0.0019 (9)
C60.0144 (9)0.0243 (10)0.0223 (10)0.0008 (7)0.0048 (7)0.0041 (8)
C70.0114 (9)0.0261 (10)0.0214 (10)0.0008 (7)0.0022 (7)0.0058 (8)
C80.0157 (9)0.0326 (11)0.0277 (11)0.0001 (8)0.0023 (8)0.0105 (9)
C90.0185 (10)0.0308 (11)0.0362 (12)0.0062 (8)0.0028 (8)0.0141 (9)
C100.0204 (10)0.0236 (10)0.0343 (11)0.0036 (8)0.0020 (8)0.0043 (8)
C110.0158 (9)0.0252 (10)0.0250 (10)0.0038 (8)0.0010 (8)0.0032 (8)
C120.0120 (9)0.0222 (10)0.0222 (10)0.0038 (7)0.0028 (7)0.0048 (7)
C130.0148 (9)0.0257 (10)0.0324 (11)0.0078 (8)0.0012 (8)0.0065 (8)
C140.0135 (9)0.0266 (10)0.0298 (11)0.0033 (8)0.0035 (8)0.0077 (8)
C150.0132 (9)0.0257 (10)0.0269 (10)0.0043 (7)0.0002 (7)0.0024 (8)
C160.0131 (9)0.0272 (10)0.0265 (10)0.0045 (8)0.0002 (7)0.0013 (8)
C170.0217 (11)0.0338 (12)0.0388 (12)0.0069 (9)0.0044 (9)0.0125 (10)
C180.0145 (10)0.0297 (11)0.0433 (13)0.0047 (8)0.0055 (8)0.0027 (9)
C190.0261 (11)0.0415 (13)0.0278 (11)0.0075 (9)0.0012 (9)0.0026 (9)
C200.0217 (10)0.0260 (11)0.0360 (12)0.0038 (8)0.0003 (9)0.0023 (9)
B10.0150 (10)0.0245 (11)0.0249 (11)0.0018 (8)0.0027 (8)0.0073 (9)
Geometric parameters (Å, º) top
O1—B11.375 (2)C10—H100.9505
O1—C151.467 (2)C11—C121.389 (3)
O2—B11.362 (3)C11—H110.9501
O2—C161.471 (2)C13—C141.324 (3)
N1—C11.395 (3)C13—H131.0277
N1—C121.404 (3)C14—B11.557 (3)
N1—C131.414 (3)C14—H140.9869
C1—C21.393 (3)C15—C171.517 (3)
C1—C61.412 (3)C15—C181.525 (3)
C2—C31.380 (3)C15—C161.561 (3)
C2—H20.9501C16—C191.516 (3)
C3—C41.396 (3)C16—C201.522 (3)
C3—H30.9502C17—H17A0.9797
C4—C51.383 (3)C17—H17B0.9805
C4—H40.9503C17—H17C0.9804
C5—C61.398 (3)C18—H18A0.9798
C5—H50.9509C18—H18B0.9799
C6—C71.445 (3)C18—H18C0.9805
C7—C81.397 (3)C19—H19A0.9804
C7—C121.407 (3)C19—H19B0.9808
C8—C91.375 (3)C19—H19C0.9800
C8—H80.9496C20—H20A0.9798
C9—C101.405 (3)C20—H20B0.9805
C9—H90.9497C20—H20C0.9807
C10—C111.386 (3)
B1—O1—C15106.68 (15)N1—C13—H13111.4
B1—O2—C16107.55 (14)C13—C14—B1128.25 (18)
C1—N1—C12108.46 (16)C13—C14—H14115.7
C1—N1—C13123.14 (16)B1—C14—H14116.1
C12—N1—C13126.85 (16)O1—C15—C17106.93 (15)
C2—C1—N1129.49 (19)O1—C15—C18107.93 (16)
C2—C1—C6121.62 (18)C17—C15—C18109.52 (16)
N1—C1—C6108.89 (17)O1—C15—C16102.76 (14)
C3—C2—C1117.8 (2)C17—C15—C16113.79 (17)
C3—C2—H2121.1C18—C15—C16115.22 (16)
C1—C2—H2121.1O2—C16—C19107.36 (15)
C2—C3—C4121.6 (2)O2—C16—C20107.45 (15)
C2—C3—H3119.2C19—C16—C20110.32 (17)
C4—C3—H3119.3O2—C16—C15102.16 (14)
C5—C4—C3120.7 (2)C19—C16—C15115.19 (17)
C5—C4—H4119.7C20—C16—C15113.57 (17)
C3—C4—H4119.6C15—C17—H17A109.5
C4—C5—C6119.2 (2)C15—C17—H17B109.4
C4—C5—H5120.5H17A—C17—H17B109.5
C6—C5—H5120.4C15—C17—H17C109.4
C5—C6—C1119.20 (18)H17A—C17—H17C109.5
C5—C6—C7134.00 (19)H17B—C17—H17C109.4
C1—C6—C7106.78 (16)C15—C18—H18A109.5
C8—C7—C12119.23 (18)C15—C18—H18B109.5
C8—C7—C6133.36 (18)H18A—C18—H18B109.5
C12—C7—C6107.30 (16)C15—C18—H18C109.5
C9—C8—C7119.36 (18)H18A—C18—H18C109.4
C9—C8—H8120.4H18B—C18—H18C109.4
C7—C8—H8120.3C16—C19—H19A109.5
C8—C9—C10120.67 (18)C16—C19—H19B109.5
C8—C9—H9119.7H19A—C19—H19B109.4
C10—C9—H9119.6C16—C19—H19C109.5
C11—C10—C9121.08 (19)H19A—C19—H19C109.5
C11—C10—H10119.5H19B—C19—H19C109.4
C9—C10—H10119.5C16—C20—H20A109.6
C10—C11—C12117.78 (18)C16—C20—H20B109.5
C10—C11—H11121.1H20A—C20—H20B109.5
C12—C11—H11121.1C16—C20—H20C109.5
C11—C12—N1129.49 (18)H20A—C20—H20C109.4
C11—C12—C7121.82 (18)H20B—C20—H20C109.4
N1—C12—C7108.51 (16)O2—B1—O1113.61 (17)
C14—C13—N1124.70 (17)O2—B1—C14122.75 (17)
C14—C13—H13123.9O1—B1—C14123.54 (18)
C12—N1—C1—C2178.03 (18)C13—N1—C12—C7168.45 (16)
C13—N1—C1—C211.4 (3)C8—C7—C12—C112.8 (3)
C12—N1—C1—C62.38 (19)C6—C7—C12—C11173.95 (16)
C13—N1—C1—C6169.01 (16)C8—C7—C12—N1178.38 (16)
N1—C1—C2—C3179.05 (17)C6—C7—C12—N11.58 (19)
C6—C1—C2—C31.4 (3)C1—N1—C13—C14144.8 (2)
C1—C2—C3—C41.3 (3)C12—N1—C13—C1451.1 (3)
C2—C3—C4—C50.3 (3)N1—C13—C14—B110.5 (3)
C3—C4—C5—C60.6 (3)B1—O1—C15—C1797.21 (18)
C4—C5—C6—C10.5 (3)B1—O1—C15—C18145.05 (16)
C4—C5—C6—C7177.45 (19)B1—O1—C15—C1622.88 (19)
C2—C1—C6—C50.5 (3)B1—O2—C16—C19142.55 (17)
N1—C1—C6—C5179.86 (15)B1—O2—C16—C2098.79 (18)
C2—C1—C6—C7178.99 (16)B1—O2—C16—C1520.98 (19)
N1—C1—C6—C71.38 (19)O1—C15—C16—O226.31 (18)
C5—C6—C7—C81.9 (4)C17—C15—C16—O288.90 (18)
C1—C6—C7—C8176.28 (19)C18—C15—C16—O2143.41 (16)
C5—C6—C7—C12178.03 (19)O1—C15—C16—C19142.33 (16)
C1—C6—C7—C120.13 (19)C17—C15—C16—C1927.1 (2)
C12—C7—C8—C92.1 (3)C18—C15—C16—C19100.6 (2)
C6—C7—C8—C9173.73 (18)O1—C15—C16—C2089.07 (18)
C7—C8—C9—C100.0 (3)C17—C15—C16—C20155.71 (17)
C8—C9—C10—C111.4 (3)C18—C15—C16—C2028.0 (2)
C9—C10—C11—C120.6 (3)C16—O2—B1—O17.5 (2)
C10—C11—C12—N1175.98 (18)C16—O2—B1—C14176.06 (17)
C10—C11—C12—C71.5 (3)C15—O1—B1—O210.7 (2)
C1—N1—C12—C11172.61 (18)C15—O1—B1—C14165.67 (17)
C13—N1—C12—C116.6 (3)C13—C14—B1—O2148.6 (2)
C1—N1—C12—C72.46 (19)C13—C14—B1—O135.3 (3)
 

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatayama, Y. & Okuno, T. (2012). Acta Cryst. E68, o84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOnuma, K., Suzuki, K. & Yamashita, M. (2015). Chem. Lett. 44, 405–407.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Z., Entwistle, C. D., Collings, J. C., Albesa-Jové, D., Batsanov, A. S., Howard, J. A. K., Taylor, N. J., Kaiser, H. M., Kaufmann, D. E., Poon, S. Y., Wong, W. Y., Jardin, C., Fathallah, S., Boucekkine, A., Halet, J. F. & Marder, T. B. (2006). Chem. Eur. J. 12, 2758–2771.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds