metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-chlorido-bis­­(chlorido­{8-[2-(di­methyl­amino)­ethyl­amino]­quinoline}­cadmium) ethanol monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science for Women, University of Baghdad, Iraq, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, UK
*Correspondence e-mail: kariukib@cf.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 February 2021; accepted 8 February 2021; online 16 February 2021)

The title solvated bimetallic complex, [Cd2Cl4(C13H17N3)2]·C2H5OH, comprises two Cd2+ metal ions linked by a pair of μ2 Cl ions. The coordination sphere around each Cd2+ ion is completed by three N atoms of a tridentate 8-[2-(di­methyl­amino)­ethyl­amino]quinoline ligand and another chloride ion to form a distorted fac-CdN3Cl3 octa­hedron. The ethanol mol­ecule is both an acceptor of an N—H⋯O and a donor of an O—H⋯Cl hydrogen bonds to its adjacent complex unit. In the crystal, weak aromatic ππ stacking is observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Part of our research in metal coordination chemistry includes the investigation of N-containing ligands with the quinoline moiety (Amoroso et al. 2009[Amoroso, A. J., Edwards, P. G., Howard, S. T., Kariuki, B. M., Knight, J. C., Ooi, L., Malik, K. M. A., Stratford, L. & Al-Sudani, A.-R. H. (2009). Dalton Trans. pp. 8356-8362.]; Al-Sudani, 2014[Al-Sudani, A.-R. H. (2014). Acta Cryst. E70, m1.]; Kariuki & Al-Sudani, 2014[Kariuki, B. M. & Al-Sudani, A.-R. H. (2014). Acta Cryst. E70, m339-m340.]). The title structure, I, is an ethanol solvate of the complex previously obtained in hydrate form (Al-Sudani & Kariuki, 2013[Al-Sudani, A.-R. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m491-m492.]; Cambridge Structural Database refcode NIKROQ).

The asymmetric unit of I (Fig. 1[link]) comprises one bimetallic complex unit and an ethanol solvent mol­ecule, implying the dinuclear molecules lacks crystallographic symmetry. Unlike the hydrate form of the complex (Al-Sudani & Kariuki, 2013[Al-Sudani, A.-R. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m491-m492.]), the Cd2Cl2 core in I is not strictly planar. One Cd2+ ion deviates by 0.565 (1) Å from the plane of the other Cd2+ and two Cl ions of the core (Fig. 2[link]). The Cd1⋯Cd2 separation is 3.8061 (4) Å. The two pendant Cl ions are oriented roughly perpendicular to, but on opposite sides, of the plane of the (Cd2Cl2) core in both the hydrate and ethanol solvate forms. Similar perpendicular arrangement of the pendant Cl ions is observed in the Cl–(Cd2Cl2)–Cl fragments of other complexes with different ligands (Neis et al., 2010[Neis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). Inorg. Chem. 49, 10092-10107.]; Marsh 1999[Marsh, R. E. (1999). Acta Cryst. B55, 931-936.]; Pauly et al., 2000[Pauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zürcher, F., Hoffmann, R., Fässler, T. F. & Hegetschweiler, K. (2000). Chem. Eur. J. 6, 2830-2846.]). An alternative co-planar arrangement is also possible (Cannas et al., 1980[Cannas, M., Marongiu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090-2094.]).

[Figure 1]
Figure 1
The mol­ecular structure of I showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
Detail of a Cl–(Cd2Cl2)–Cl fragment of I showing the deviation of Cd2 from the plane of Cl2, Cd1 and Cl3 as a green dotted line.

Both Cd2+ ions in I are coordinated by six atoms in a distorted octa­hedral geometry: three of the contacts are nitro­gen atoms from a tridentate ligand and the rest are chloride ions. Distortions in the coordination from ideal 90° angles range from 71.48 (9)° (N3—Cd1—N2) to 105.73 (3)° (Cl1—Cd1–Cl2) for one Cd2+ ion and 71.04 (9) ° (N6—Cd2—N5) to 102.09 (7)° (N5—Cd2—Cl2) for the other. The corres­ponding angles for the hydrate structure are in the range 69.48 (5) to 101.08 (4)°. The N—C—C—N torsion angles in the ethane di­amine are almost the same for both independent ligands [N1—C3—C4—N2 = 63.0 (4)° and N4—C16—C17—N5 = 63.3 (5)°] in I.

An intra­molecular N—H⋯Cl hydrogen bond (Table 1[link], Fig. 3[link]) is observed in the dinuclear molecule. The complex also donates an N—H⋯O hydrogen bond to the ethanol solvent mol­ecule and accepts an O—H⋯Cl contact from the same mol­ecule to generate an R(6)22 loop. In the extended structure, the quinoline ring systems of neighbouring complex units are involved in weak aromatic ππ stacking inter­actions. The groups involved are related by inversion symmetry with a c(i)⋯c(i)′ separation of 3.93 (1) Å [c(i) = the midpoint of the C9—C10 bond of the C5–C13/N3 ring system]. If a second longer inversion-related contact c(ii)⋯c(ii)′ of 4.56 (1) Å [c(ii) = midpoint of the C22—C23 bond of the C18–C26/N6 ring system] is considered to be a significant inter­action, infinite chains running parallel to [101] result (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl4 0.98 2.53 3.492 (3) 166
N5—H5⋯O1 0.98 1.94 2.874 (4) 158
O1—H1⋯Cl4 0.82 2.33 3.136 (3) 166
[Figure 3]
Figure 3
The asymmetric unit of I showing the intra­molecular contact (a) and hydrogen bonding with the ethanol solvent mol­ecule (b and c).
[Figure 4]
Figure 4
A segment of the crystal structure viewed down the b axis showing centroid–centroid contacts c(i)⋯c(i)′ and c(ii)⋯c(ii)′ for inversion symmetry related quinoline ring systems (C5–C13/N3) and (C18–C26/N6), respectively.

Synthesis and crystallization

The 8-[2-(dimethyl­amino)­ethyl­amino]­quinoline ligand and cadmium dichloride were mixed in dry ethanol solvent at room temperature under a positive nitro­gen pressure and the mixture was stirred at room temperature for several hours. The solution was then warmed to dissolve the material and the product was recrystallized on cooling to produce colourless crystals of I.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd2Cl4(C13H17N3)2]·C2H6O
Mr 843.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.9747 (6), 15.6483 (7), 17.8804 (8)
β (°) 95.292 (4)
V3) 3336.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.63
Crystal size (mm) 0.16 × 0.13 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.897, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29581, 8400, 5798
Rint 0.033
(sin θ/λ)max−1) 0.700
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.05
No. of reflections 8400
No. of parameters 376
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.86
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

Di-µ-chlorido-bis(chlorido{8-[2-(dimethylamino)ethylamino]quinoline}cadmium) ethanol monosolvate top
Crystal data top
[Cd2Cl4(C13H17N3)2]·C2H6OF(000) = 1688
Mr = 843.26Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.9747 (6) ÅCell parameters from 7578 reflections
b = 15.6483 (7) Åθ = 3.7–29.2°
c = 17.8804 (8) ŵ = 1.63 mm1
β = 95.292 (4)°T = 296 K
V = 3336.2 (3) Å3Block, colourless
Z = 40.16 × 0.13 × 0.10 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
diffractometer
5798 reflections with I > 2σ(I)
ω scansRint = 0.033
Absorption correction: gaussian
(CrysAlisPro (Rigaku OD, 2019)
θmax = 29.9°, θmin = 1.7°
Tmin = 0.897, Tmax = 1.000h = 1615
29581 measured reflectionsk = 2120
8400 independent reflectionsl = 2324
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0253P)2 + 3.3741P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
8400 reflectionsΔρmax = 0.58 e Å3
376 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C). The methyl groups were allowd to rotate, but not to tip, to best fit the electron density.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5109 (3)0.4794 (3)0.09136 (19)0.0610 (11)
H1A0.4681660.5313600.0912530.092*
H1B0.4661520.4353550.0661150.092*
H1C0.5769270.4886980.0658370.092*
C20.6062 (4)0.3720 (3)0.1695 (3)0.0719 (13)
H2A0.6737190.3801470.1453200.108*
H2B0.5606830.3292610.1429970.108*
H2C0.6248540.3538910.2203850.108*
C30.6125 (3)0.5191 (3)0.2093 (2)0.0579 (11)
H3A0.6612880.5448470.1751990.069*
H3B0.6595580.4925500.2499000.069*
C40.5426 (3)0.5879 (2)0.2411 (2)0.0531 (10)
H4A0.5912260.6319400.2642660.064*
H4B0.4942310.6139840.2009420.064*
C50.5393 (3)0.5251 (2)0.36625 (17)0.0358 (7)
C60.6046 (3)0.5815 (3)0.40930 (19)0.0453 (9)
H60.6091770.6380540.3938750.054*
C70.6649 (3)0.5551 (3)0.4766 (2)0.0516 (10)
H70.7098230.5941590.5047510.062*
C80.6582 (3)0.4734 (3)0.50079 (19)0.0486 (9)
H80.6976950.4568320.5456880.058*
C90.5915 (3)0.4130 (2)0.45811 (18)0.0432 (9)
C100.5328 (3)0.4391 (2)0.38922 (17)0.0360 (7)
C110.5772 (4)0.3284 (3)0.4815 (2)0.0594 (11)
H110.6137260.3095280.5266410.071*
C120.5104 (4)0.2742 (3)0.4385 (2)0.0670 (12)
H120.4989950.2184740.4542220.080*
C130.4587 (3)0.3039 (3)0.3697 (2)0.0562 (10)
H130.4152850.2657680.3395540.067*
C140.0799 (4)0.4866 (3)0.3591 (3)0.0781 (14)
H14A0.0239020.4501260.3841800.117*
H14B0.1034800.4634560.3104560.117*
H14C0.1431770.4901970.3882440.117*
C150.0095 (4)0.6041 (4)0.4240 (2)0.0832 (15)
H15A0.0392180.6605680.4190810.125*
H15B0.0677100.5668750.4453840.125*
H15C0.0504150.6057410.4561120.125*
C160.1216 (3)0.6266 (3)0.3123 (3)0.0659 (12)
H16A0.1661480.5921890.2755860.079*
H16B0.1706640.6459490.3491160.079*
C170.0792 (3)0.7015 (3)0.2743 (2)0.0576 (10)
H17A0.0337430.7358320.3106020.069*
H17B0.1419750.7361120.2540280.069*
C180.0760 (3)0.6499 (2)0.14515 (19)0.0409 (8)
C190.1360 (3)0.7065 (3)0.0994 (2)0.0609 (11)
H190.1374000.7638650.1128890.073*
C200.1960 (4)0.6794 (3)0.0321 (2)0.0741 (14)
H200.2362050.7190860.0017620.089*
C210.1958 (4)0.5963 (3)0.0110 (2)0.0626 (12)
H210.2352480.5793640.0337620.075*
C220.1355 (3)0.5352 (2)0.05715 (19)0.0434 (8)
C230.0746 (3)0.5624 (2)0.12458 (18)0.0370 (7)
C240.1319 (4)0.4480 (3)0.0387 (2)0.0594 (11)
H240.1711480.4278850.0051020.071*
C250.0715 (4)0.3937 (3)0.0846 (3)0.0722 (13)
H250.0695240.3357040.0733340.087*
C260.0121 (4)0.4254 (3)0.1492 (2)0.0655 (12)
H260.0305610.3872450.1797470.079*
C270.1593 (5)0.7698 (4)0.0786 (3)0.112 (2)
H27A0.1277080.7137940.0822930.168*
H27B0.2071180.7708680.0383320.168*
H27C0.1000970.8108050.0687620.168*
C280.2249 (4)0.7913 (3)0.1491 (3)0.0789 (14)
H28A0.2779260.7455790.1620220.095*
H28B0.2674140.8428900.1419810.095*
N10.5435 (2)0.4533 (2)0.16910 (16)0.0465 (7)
N20.4735 (2)0.55133 (17)0.29757 (14)0.0367 (6)
H20.4193750.5946630.3103940.044*
N30.4685 (2)0.38266 (18)0.34557 (15)0.0415 (7)
N40.0328 (3)0.5724 (2)0.35048 (17)0.0490 (8)
N50.0111 (2)0.67654 (17)0.21276 (15)0.0393 (6)
H50.0339350.7260580.2006030.047*
N60.0127 (2)0.50655 (18)0.16967 (16)0.0434 (7)
Cd10.37193 (2)0.43475 (2)0.23492 (2)0.03457 (7)
Cd20.11394 (2)0.56817 (2)0.26458 (2)0.03612 (8)
Cl10.32762 (8)0.30005 (6)0.16560 (5)0.0542 (2)
Cl20.25905 (7)0.55385 (6)0.15909 (5)0.0450 (2)
Cl30.19490 (7)0.42895 (6)0.32090 (5)0.0450 (2)
Cl40.24434 (8)0.67656 (6)0.33611 (5)0.0487 (2)
O10.1615 (3)0.8033 (2)0.20690 (19)0.0813 (9)
H10.1895220.7777560.2440200.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (2)0.094 (3)0.032 (2)0.003 (2)0.0001 (17)0.005 (2)
C20.052 (3)0.088 (4)0.076 (3)0.021 (2)0.012 (2)0.004 (3)
C30.040 (2)0.096 (3)0.037 (2)0.020 (2)0.0032 (16)0.006 (2)
C40.064 (3)0.053 (2)0.039 (2)0.024 (2)0.0120 (17)0.0115 (18)
C50.0321 (17)0.046 (2)0.0283 (16)0.0012 (15)0.0003 (13)0.0006 (15)
C60.044 (2)0.053 (2)0.0384 (19)0.0063 (17)0.0016 (15)0.0013 (17)
C70.043 (2)0.074 (3)0.037 (2)0.0076 (19)0.0017 (15)0.0125 (19)
C80.039 (2)0.074 (3)0.0306 (18)0.0038 (19)0.0061 (14)0.0032 (19)
C90.0387 (19)0.058 (2)0.0330 (18)0.0123 (17)0.0006 (14)0.0030 (17)
C100.0304 (16)0.045 (2)0.0320 (17)0.0055 (15)0.0006 (12)0.0019 (15)
C110.069 (3)0.064 (3)0.043 (2)0.014 (2)0.0100 (18)0.014 (2)
C120.091 (3)0.050 (3)0.058 (3)0.005 (2)0.006 (2)0.018 (2)
C130.066 (3)0.044 (2)0.056 (2)0.000 (2)0.0108 (19)0.0013 (19)
C140.074 (3)0.073 (3)0.091 (4)0.016 (3)0.030 (3)0.008 (3)
C150.083 (3)0.113 (4)0.054 (3)0.012 (3)0.012 (2)0.012 (3)
C160.051 (2)0.075 (3)0.073 (3)0.013 (2)0.014 (2)0.003 (2)
C170.063 (3)0.049 (2)0.061 (2)0.016 (2)0.008 (2)0.008 (2)
C180.0350 (18)0.039 (2)0.047 (2)0.0029 (15)0.0057 (15)0.0014 (16)
C190.069 (3)0.041 (2)0.067 (3)0.012 (2)0.020 (2)0.004 (2)
C200.085 (3)0.066 (3)0.064 (3)0.024 (3)0.032 (2)0.005 (2)
C210.067 (3)0.066 (3)0.050 (2)0.009 (2)0.0244 (19)0.002 (2)
C220.0394 (19)0.048 (2)0.0405 (19)0.0004 (16)0.0075 (15)0.0035 (17)
C230.0293 (16)0.042 (2)0.0380 (18)0.0012 (14)0.0040 (13)0.0002 (15)
C240.070 (3)0.055 (3)0.049 (2)0.006 (2)0.0152 (19)0.014 (2)
C250.098 (4)0.041 (2)0.072 (3)0.003 (2)0.029 (3)0.015 (2)
C260.085 (3)0.040 (2)0.066 (3)0.008 (2)0.025 (2)0.005 (2)
C270.116 (5)0.124 (6)0.096 (4)0.015 (4)0.008 (4)0.006 (4)
C280.080 (3)0.079 (4)0.077 (3)0.006 (3)0.005 (3)0.008 (3)
N10.0359 (16)0.064 (2)0.0386 (16)0.0012 (14)0.0001 (12)0.0056 (15)
N20.0389 (15)0.0333 (15)0.0370 (15)0.0010 (12)0.0011 (11)0.0032 (12)
N30.0457 (17)0.0372 (17)0.0401 (16)0.0039 (13)0.0053 (12)0.0035 (13)
N40.0506 (18)0.051 (2)0.0455 (18)0.0058 (15)0.0060 (14)0.0003 (15)
N50.0423 (16)0.0299 (15)0.0442 (16)0.0006 (12)0.0046 (12)0.0035 (13)
N60.0494 (18)0.0318 (16)0.0458 (17)0.0027 (13)0.0123 (13)0.0022 (13)
Cd10.03461 (13)0.03321 (14)0.03431 (13)0.00004 (10)0.00531 (9)0.00115 (10)
Cd20.03520 (14)0.03407 (14)0.03719 (14)0.00278 (10)0.00686 (10)0.00189 (11)
Cl10.0645 (6)0.0397 (5)0.0574 (6)0.0067 (4)0.0004 (4)0.0091 (4)
Cl20.0485 (5)0.0479 (5)0.0370 (4)0.0107 (4)0.0046 (4)0.0047 (4)
Cl30.0452 (5)0.0395 (5)0.0501 (5)0.0074 (4)0.0039 (4)0.0100 (4)
Cl40.0523 (5)0.0419 (5)0.0483 (5)0.0069 (4)0.0145 (4)0.0010 (4)
O10.080 (2)0.079 (2)0.082 (2)0.0113 (19)0.0056 (18)0.0220 (19)
Geometric parameters (Å, º) top
C1—N11.467 (4)C16—H16B0.9700
C1—H1A0.9600C17—N51.481 (4)
C1—H1B0.9600C17—H17A0.9700
C1—H1C0.9600C17—H17B0.9700
C2—N11.476 (5)C18—C191.364 (5)
C2—H2A0.9600C18—C231.418 (5)
C2—H2B0.9600C18—N51.437 (4)
C2—H2C0.9600C19—C201.409 (5)
C3—N11.467 (5)C19—H190.9300
C3—C41.508 (6)C20—C211.354 (6)
C3—H3A0.9700C20—H200.9300
C3—H3B0.9700C21—C221.417 (5)
C4—N21.478 (4)C21—H210.9300
C4—H4A0.9700C22—C241.405 (5)
C4—H4B0.9700C22—C231.416 (4)
C5—C61.368 (5)C23—N61.361 (4)
C5—C101.412 (5)C24—C251.345 (6)
C5—N21.455 (4)C24—H240.9300
C6—C71.407 (5)C25—C261.390 (5)
C6—H60.9300C25—H250.9300
C7—C81.356 (6)C26—N61.322 (5)
C7—H70.9300C26—H260.9300
C8—C91.414 (5)C27—C281.462 (7)
C8—H80.9300C27—H27A0.9600
C9—C111.404 (5)C27—H27B0.9600
C9—C101.421 (4)C27—H27C0.9600
C10—N31.368 (4)C28—O11.350 (5)
C11—C121.356 (6)C28—H28A0.9700
C11—H110.9300C28—H28B0.9700
C12—C131.404 (5)N1—Cd12.477 (3)
C12—H120.9300N2—Cd12.411 (3)
C13—N31.315 (5)N2—H20.9800
C13—H130.9300N3—Cd12.344 (3)
C14—N41.469 (5)N4—Cd22.439 (3)
C14—H14A0.9600N5—Cd22.392 (3)
C14—H14B0.9600N5—H50.9800
C14—H14C0.9600N6—Cd22.374 (3)
C15—N41.452 (5)Cd1—Cl12.4777 (9)
C15—H15A0.9600Cd1—Cl22.6079 (9)
C15—H15B0.9600Cd1—Cl32.7326 (9)
C15—H15C0.9600Cd2—Cl32.5535 (9)
C16—C171.468 (6)Cd2—Cl42.5656 (9)
C16—N41.478 (5)Cd2—Cl22.6893 (9)
C16—H16A0.9700O1—H10.8200
N1—C1—H1A109.5C23—C22—C21119.1 (3)
N1—C1—H1B109.5N6—C23—C22121.3 (3)
H1A—C1—H1B109.5N6—C23—C18119.0 (3)
N1—C1—H1C109.5C22—C23—C18119.6 (3)
H1A—C1—H1C109.5C25—C24—C22119.8 (4)
H1B—C1—H1C109.5C25—C24—H24120.1
N1—C2—H2A109.5C22—C24—H24120.1
N1—C2—H2B109.5C24—C25—C26119.1 (4)
H2A—C2—H2B109.5C24—C25—H25120.5
N1—C2—H2C109.5C26—C25—H25120.5
H2A—C2—H2C109.5N6—C26—C25123.9 (4)
H2B—C2—H2C109.5N6—C26—H26118.1
N1—C3—C4112.3 (3)C25—C26—H26118.1
N1—C3—H3A109.2C28—C27—H27A109.5
C4—C3—H3A109.2C28—C27—H27B109.5
N1—C3—H3B109.2H27A—C27—H27B109.5
C4—C3—H3B109.2C28—C27—H27C109.5
H3A—C3—H3B107.9H27A—C27—H27C109.5
N2—C4—C3110.3 (3)H27B—C27—H27C109.5
N2—C4—H4A109.6O1—C28—C27113.4 (5)
C3—C4—H4A109.6O1—C28—H28A108.9
N2—C4—H4B109.6C27—C28—H28A108.9
C3—C4—H4B109.6O1—C28—H28B108.9
H4A—C4—H4B108.1C27—C28—H28B108.9
C6—C5—C10119.7 (3)H28A—C28—H28B107.7
C6—C5—N2122.0 (3)C3—N1—C1110.9 (3)
C10—C5—N2118.3 (3)C3—N1—C2109.8 (3)
C5—C6—C7120.9 (4)C1—N1—C2109.6 (3)
C5—C6—H6119.5C3—N1—Cd1107.7 (2)
C7—C6—H6119.5C1—N1—Cd1108.8 (2)
C8—C7—C6120.6 (4)C2—N1—Cd1109.9 (2)
C8—C7—H7119.7C5—N2—C4113.1 (3)
C6—C7—H7119.7C5—N2—Cd1112.9 (2)
C7—C8—C9120.4 (3)C4—N2—Cd1105.4 (2)
C7—C8—H8119.8C5—N2—H2108.4
C9—C8—H8119.8C4—N2—H2108.4
C11—C9—C8123.2 (3)Cd1—N2—H2108.4
C11—C9—C10117.7 (3)C13—N3—C10118.7 (3)
C8—C9—C10119.1 (4)C13—N3—Cd1123.4 (2)
N3—C10—C5119.5 (3)C10—N3—Cd1117.7 (2)
N3—C10—C9121.1 (3)C15—N4—C14108.8 (4)
C5—C10—C9119.3 (3)C15—N4—C16113.4 (4)
C12—C11—C9120.2 (4)C14—N4—C16107.8 (3)
C12—C11—H11119.9C15—N4—Cd2111.6 (3)
C9—C11—H11119.9C14—N4—Cd2110.3 (2)
C11—C12—C13118.6 (4)C16—N4—Cd2104.7 (2)
C11—C12—H12120.7C18—N5—C17114.2 (3)
C13—C12—H12120.7C18—N5—Cd2113.0 (2)
N3—C13—C12123.5 (4)C17—N5—Cd2105.5 (2)
N3—C13—H13118.2C18—N5—H5108.0
C12—C13—H13118.2C17—N5—H5108.0
N4—C14—H14A109.5Cd2—N5—H5108.0
N4—C14—H14B109.5C26—N6—C23118.0 (3)
H14A—C14—H14B109.5C26—N6—Cd2124.7 (2)
N4—C14—H14C109.5C23—N6—Cd2116.1 (2)
H14A—C14—H14C109.5N3—Cd1—N271.48 (9)
H14B—C14—H14C109.5N3—Cd1—N194.32 (10)
N4—C15—H15A109.5N2—Cd1—N174.16 (10)
N4—C15—H15B109.5N3—Cd1—Cl1101.11 (7)
H15A—C15—H15B109.5N2—Cd1—Cl1162.14 (7)
N4—C15—H15C109.5N1—Cd1—Cl190.61 (8)
H15A—C15—H15C109.5N3—Cd1—Cl2151.53 (7)
H15B—C15—H15C109.5N2—Cd1—Cl285.18 (7)
C17—C16—N4114.0 (3)N1—Cd1—Cl294.71 (7)
C17—C16—H16A108.8Cl1—Cd1—Cl2105.73 (3)
N4—C16—H16A108.8N3—Cd1—Cl382.05 (7)
C17—C16—H16B108.8N2—Cd1—Cl398.52 (7)
N4—C16—H16B108.8N1—Cd1—Cl3172.59 (7)
H16A—C16—H16B107.6Cl1—Cd1—Cl396.41 (3)
C16—C17—N5111.8 (3)Cl2—Cd1—Cl385.67 (3)
C16—C17—H17A109.3N6—Cd2—N571.04 (9)
N5—C17—H17A109.3N6—Cd2—N490.64 (10)
C16—C17—H17B109.3N5—Cd2—N476.30 (10)
N5—C17—H17B109.3N6—Cd2—Cl397.45 (7)
H17A—C17—H17B107.9N5—Cd2—Cl3163.54 (7)
C19—C18—C23119.3 (3)N4—Cd2—Cl392.51 (8)
C19—C18—N5122.0 (3)N6—Cd2—Cl4160.78 (7)
C23—C18—N5118.7 (3)N5—Cd2—Cl493.15 (7)
C18—C19—C20121.0 (4)N4—Cd2—Cl496.26 (8)
C18—C19—H19119.5Cl3—Cd2—Cl4100.13 (3)
C20—C19—H19119.5N6—Cd2—Cl282.90 (8)
C21—C20—C19120.9 (4)N5—Cd2—Cl2102.09 (7)
C21—C20—H20119.5N4—Cd2—Cl2173.50 (8)
C19—C20—H20119.5Cl3—Cd2—Cl287.66 (3)
C20—C21—C22120.0 (4)Cl4—Cd2—Cl290.11 (3)
C20—C21—H21120.0Cd1—Cl2—Cd291.85 (3)
C22—C21—H21120.0Cd2—Cl3—Cd192.05 (3)
C24—C22—C23117.9 (3)C28—O1—H1109.5
C24—C22—C21123.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl40.982.533.492 (3)166
N5—H5···O10.981.942.874 (4)158
O1—H1···Cl40.822.333.136 (3)166
 

Acknowledgements

We thank Cardiff University and the University of Baghdad for continued support.

References

First citationAl-Sudani, A.-R. H. (2014). Acta Cryst. E70, m1.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Sudani, A.-R. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m491–m492.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmoroso, A. J., Edwards, P. G., Howard, S. T., Kariuki, B. M., Knight, J. C., Ooi, L., Malik, K. M. A., Stratford, L. & Al-Sudani, A.-R. H. (2009). Dalton Trans. pp. 8356–8362.  CSD CrossRef Google Scholar
First citationCannas, M., Marongiu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090–2094.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKariuki, B. M. & Al-Sudani, A.-R. H. (2014). Acta Cryst. E70, m339–m340.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E. (1999). Acta Cryst. B55, 931–936.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNeis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). Inorg. Chem. 49, 10092–10107.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zürcher, F., Hoffmann, R., Fässler, T. F. & Hegetschweiler, K. (2000). Chem. Eur. J. 6, 2830–2846.  CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds