organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,3-Di­hydro-1H-cyclo­penta­[b]naphthalene-4,9-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
*Correspondence e-mail: srk@chem.iitb.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 December 2020; accepted 11 February 2021; online 16 February 2021)

The title compound, C13H10O2, crystallizes with two almost planar mol­ecules in the asymmetric unit. In the crystal, slipped ππ stacking inter­actions help to establish the packing with the shortest centroid–centroid separation being 3.8195 (18) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Several kinds of naphtho­quinone ring-containing compounds have been encountered in nature that are known to be biologically important mol­ecules (Qiu et al., 2018[Qiu, H.-Y., Wang, P.-F., Lin, H.-Y., Tang, C.-Y., Zhu, H.-L. & Yang, Y.-H. (2018). Chem. Biol. Drug Des. 91, 681-690.]). Naphtho­quinones are also important constituents of a variety of quinone-based dyes upon ring fusion with heterocyclic system (Katritzky et al., 1988[Katritzky, A. R. & Fan, W.-Q. (1988). J. Heterocycl. Chem. 25, 901-906.]). We now describe the synthesis and structure of the title compound, 2.

Compound 2 crystallizes with two almost planar mol­ecules in the asymmetric unit (Fig. 1[link]). For the C1-mol­ecule, the C=O bonds (C1=O1 and C8=O2) are almost the same length [1.221 (4) Å and 1.225 (4) Å, respectively]. The C9=C13 double bond connected with the fused cyclo­pentane ring is shorter [1.343 (5) Å] than the equivalent bond found in 2-hy­droxy-3-(2-methyl­prop-1-en-1-yl)naphthalene 1,4-dione (Alcantara Emiliano et al., 2016[Alcantara Emiliano, S., Welma Duarte Silva, S., Alves Pereira, M., R.dos Santos Malta, V. & Luciano Balliano, T. (2016). Acta Cryst. E72, 188-190.]; Cambridge Structural Database refcode XAHPAA) [1.361 (3) Å] due, presumably, to ring strain (Fig. 1[link]). A difference of 2° is found between the angles C1—C13—C9 [123.2 (3)°] and C8—C9—C13 [121.7 (3)°] in the title compound whereas in XAHPAA this difference is about 4° owing to the different substituents. The second C14 mol­ecule, with a similar geometry to the C1 mol­ecule, completes the asymmetric unit of the title compound.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% level while H atoms are omitted for clarity.

The packing is represented in Fig. 2[link]. There is no direct evidence of any intra- or inter­molecular hydrogen bonding in the system. Adjacent mol­ecules are stacked in an angular (shifted) orientation and several slipped aromatic ππ stacking inter­actions help to establish the packing, the shortest centroid–centroid separation being 3.8195 (18) Å (slippage = 1.722 Å) for the C1/C2/C7–C9/C13 and C14/C15/C19–C21/C26 rings.

[Figure 2]
Figure 2
The crystal packing viewed along the b-axis direction.

Synthesis and crystallization

As part of our studies of Diels–Alder chemistry, we explored the DA reaction between 1,3-cyclohexa­diene and the quinone derivative 1 at 170°C in a sealed tube for 12 h (Fig. 3[link]). To our surprise, instead of forming the expected DA adduct 3, the aromatized title compound was achieved in an excellent yield (86%) as a yellow crystalline solid. We suggest that initially the expected [4 + 2] cyclo­addition reaction happened, but at high temperature the cyclo­adduct underwent cyclo­reversion (retro-DA reaction), resulting in the elimination of a volatile ethyl­ene mol­ecule and aromatization. The compound was recrystallized from mixed solvents of petroleum ether and ethyl acetate (4:1) in the refrigerator. Yellow crystalline solid; 1H NMR (400 MHz, CDCl3): δ = 8.06 (J = 5.72, 3.37 Hz, 2H), 7.70 (dd, J = 5.65, 3.31 Hz, 2H), 2.94 (t, J = 7.75 Hz, 4H), 2.09 (m, 2H) p.p.m.; 13C NMR (100 MHz, CDCl3): δ = 183.9, 151.2, 133.3, 133.1, 126.1, 31.1, 21.5 p.p.m.. (Clausen et al., 2001[Clausen, C., Wartchow, R. & Butenschön, H. (2001). Eur. J. Org. Chem. pp. 93-113.]; Franck et al., 1985[Franck, R. W. & Gupta, R. B. (1985). J. Org. Chem. 50, 4632-4635.]).

[Figure 3]
Figure 3
Synthesis scheme for the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C13H10O2
Mr 198.22
Crystal system, space group Tetragonal, P43
Temperature (K) 150
a, c (Å) 7.4781 (1), 33.0219 (10)
V3) 1846.65 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.21 × 0.13 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.636, 1.000
No. of measured, independent and observed [I ≥ 2u(I)] reflections 46308, 3230, 2851
Rint 0.150
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.182, 1.05
No. of reflections 3230
No. of parameters 271
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.32
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 1.0 (16)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,3-Dihydro-1H-cyclopenta[b]naphthalene-4,9-dione top
Crystal data top
C13H10O2Dx = 1.426 Mg m3
Mr = 198.22Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 16230 reflections
a = 7.4781 (1) Åθ = 2.5–30.9°
c = 33.0219 (10) ŵ = 0.10 mm1
V = 1846.65 (7) Å3T = 150 K
Z = 8Block, colourless
F(000) = 832.4470.21 × 0.13 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction CCD
diffractometer
3230 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2851 reflections with I 2u(I)
Graphite monochromatorRint = 0.150
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1010
Tmin = 0.636, Tmax = 1.000k = 1010
46308 measured reflectionsl = 4647
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.1209P)2 + 0.4577P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.182(Δ/σ)max = 0.0002
S = 1.05Δρmax = 0.35 e Å3
3230 reflectionsΔρmin = 0.31 e Å3
271 parametersAbsolute structure: Flack (1983)
1 restraintAbsolute structure parameter: 1.0 (16)
34 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.1998 (3)1.0652 (3)0.53158 (8)0.0313 (6)
O30.4644 (3)0.5372 (3)0.46901 (7)0.0314 (6)
O10.0178 (4)0.5172 (4)0.43869 (8)0.0414 (7)
O40.6811 (4)1.0853 (4)0.56192 (8)0.0395 (7)
C130.0343 (4)0.6351 (4)0.50334 (11)0.0217 (8)
C80.1458 (4)0.9450 (4)0.50952 (11)0.0223 (8)
C150.5855 (4)0.8269 (5)0.47358 (9)0.0199 (7)
C70.1437 (4)0.9603 (4)0.46489 (11)0.0233 (8)
C20.0910 (4)0.8149 (5)0.44071 (10)0.0229 (8)
C10.0324 (4)0.6440 (4)0.45901 (11)0.0239 (8)
C160.5999 (4)0.8685 (4)0.42918 (9)0.0232 (7)
H16a0.4821 (4)0.8576 (4)0.41571 (9)0.0278 (9)*
H16b0.6857 (4)0.7871 (4)0.41571 (9)0.0278 (9)*
C60.1933 (5)1.1217 (5)0.44638 (11)0.0276 (8)
H60.2294 (5)1.2205 (5)0.46249 (11)0.0331 (10)*
C90.0811 (4)0.7738 (4)0.52694 (9)0.0202 (7)
C260.5235 (4)0.6405 (4)0.53587 (11)0.0218 (8)
C180.6846 (5)1.1272 (5)0.47248 (10)0.0272 (8)
H18a0.6030 (5)1.2287 (5)0.47791 (10)0.0327 (10)*
H18b0.8087 (5)1.1644 (5)0.47857 (10)0.0327 (10)*
C170.6672 (5)1.0628 (4)0.42807 (10)0.0257 (8)
H17a0.5815 (5)1.1392 (4)0.41314 (10)0.0308 (9)*
H17b0.7846 (5)1.0690 (4)0.41429 (10)0.0308 (9)*
C140.5197 (4)0.6577 (4)0.49071 (10)0.0219 (7)
C200.6329 (4)0.9584 (4)0.54108 (11)0.0260 (8)
C100.0680 (4)0.7337 (4)0.57106 (10)0.0240 (7)
H10a0.0172 (4)0.8154 (4)0.58461 (10)0.0288 (9)*
H10b0.1862 (4)0.7440 (4)0.58437 (10)0.0288 (9)*
C210.5758 (4)0.7871 (5)0.56003 (10)0.0242 (8)
C250.4721 (5)0.4794 (5)0.55371 (12)0.0293 (8)
H250.4349 (5)0.3815 (5)0.53744 (12)0.0352 (10)*
C40.1399 (4)0.9941 (6)0.38067 (12)0.0334 (9)
H40.1397 (4)1.0054 (6)0.35201 (12)0.0401 (11)*
C240.4762 (5)0.4644 (5)0.59580 (11)0.0337 (9)
H240.4440 (5)0.3544 (5)0.60823 (11)0.0404 (11)*
C190.6330 (4)0.9670 (4)0.49681 (11)0.0197 (8)
C110.0008 (5)0.5378 (4)0.57204 (10)0.0265 (8)
H11a0.1181 (5)0.5317 (4)0.58585 (10)0.0318 (9)*
H11b0.0847 (5)0.4605 (4)0.58681 (10)0.0318 (9)*
C120.0185 (5)0.4755 (5)0.52765 (11)0.0282 (8)
H12a0.0620 (5)0.3733 (5)0.52209 (11)0.0339 (10)*
H12b0.1430 (5)0.4396 (5)0.52153 (11)0.0339 (10)*
C220.5754 (5)0.7690 (5)0.60195 (10)0.0306 (8)
H220.6086 (5)0.8673 (5)0.61857 (10)0.0368 (10)*
C230.5266 (4)0.6074 (6)0.61955 (11)0.0350 (9)
H230.5279 (4)0.5954 (6)0.64819 (11)0.0420 (11)*
C30.0899 (4)0.8328 (5)0.39846 (10)0.0292 (8)
H30.0550 (4)0.7348 (5)0.38194 (10)0.0351 (10)*
C50.1894 (5)1.1370 (5)0.40428 (11)0.0342 (9)
H50.2213 (5)1.2470 (5)0.39185 (11)0.0410 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0404 (14)0.0252 (13)0.0283 (13)0.0019 (11)0.0009 (11)0.0025 (10)
O30.0432 (15)0.0280 (13)0.0231 (13)0.0011 (11)0.0008 (11)0.0038 (11)
O10.0612 (18)0.0350 (15)0.0278 (15)0.0011 (12)0.0138 (13)0.0077 (13)
O40.0519 (17)0.0388 (15)0.0278 (14)0.0009 (12)0.0114 (12)0.0089 (12)
C130.0200 (17)0.0225 (19)0.0226 (19)0.0046 (13)0.0004 (12)0.0008 (12)
C80.0207 (16)0.0237 (17)0.0224 (18)0.0048 (13)0.0017 (13)0.0018 (14)
C150.0193 (16)0.0252 (17)0.0152 (17)0.0025 (13)0.0011 (13)0.0021 (13)
C70.0214 (18)0.0285 (19)0.0201 (18)0.0087 (14)0.0030 (12)0.0069 (13)
C20.0180 (16)0.0321 (19)0.0186 (17)0.0082 (13)0.0012 (13)0.0000 (14)
C10.0257 (19)0.0261 (19)0.0198 (18)0.0070 (14)0.0066 (12)0.0026 (13)
C160.0254 (17)0.0268 (18)0.0172 (17)0.0004 (13)0.0023 (14)0.0036 (14)
C60.0210 (17)0.032 (2)0.0299 (19)0.0049 (13)0.0032 (14)0.0059 (16)
C90.0165 (15)0.0245 (17)0.0198 (18)0.0058 (12)0.0016 (12)0.0016 (13)
C260.0207 (17)0.0245 (18)0.0202 (19)0.0072 (13)0.0032 (12)0.0001 (13)
C180.036 (2)0.0204 (17)0.0253 (19)0.0014 (13)0.0009 (15)0.0004 (14)
C170.0302 (18)0.0264 (18)0.0205 (17)0.0016 (14)0.0034 (14)0.0011 (14)
C140.0215 (16)0.0242 (17)0.0200 (18)0.0042 (13)0.0013 (12)0.0002 (14)
C200.0250 (19)0.031 (2)0.022 (2)0.0047 (14)0.0052 (13)0.0060 (14)
C100.0271 (18)0.0243 (17)0.0207 (17)0.0020 (13)0.0008 (14)0.0027 (14)
C210.0188 (17)0.036 (2)0.0173 (16)0.0076 (14)0.0020 (13)0.0008 (14)
C250.0279 (19)0.0276 (19)0.032 (2)0.0069 (14)0.0060 (15)0.0049 (16)
C40.0206 (18)0.056 (2)0.0234 (19)0.0075 (15)0.0009 (13)0.0121 (17)
C240.0265 (19)0.046 (2)0.028 (2)0.0086 (16)0.0044 (15)0.0196 (17)
C190.0178 (16)0.0238 (19)0.0176 (18)0.0040 (13)0.0009 (12)0.0010 (12)
C110.0280 (18)0.0280 (18)0.0235 (18)0.0000 (13)0.0009 (14)0.0057 (15)
C120.0293 (18)0.0250 (17)0.030 (2)0.0005 (13)0.0003 (15)0.0028 (15)
C220.0252 (18)0.047 (2)0.0198 (17)0.0102 (15)0.0000 (14)0.0021 (16)
C230.0242 (19)0.064 (3)0.0165 (18)0.0111 (17)0.0017 (13)0.0057 (18)
C30.0209 (17)0.044 (2)0.0225 (18)0.0096 (14)0.0060 (14)0.0002 (16)
C50.0239 (18)0.046 (2)0.033 (2)0.0082 (15)0.0094 (16)0.0156 (18)
Geometric parameters (Å, º) top
O2—C81.225 (4)C18—C171.549 (5)
O3—C141.223 (4)C18—C191.493 (5)
O1—C11.221 (4)C17—H17a0.9900
O4—C201.226 (4)C17—H17b0.9900
C13—C11.465 (5)C20—C211.488 (5)
C13—C91.343 (5)C20—C191.463 (5)
C13—C121.492 (5)C10—H10a0.9900
C8—C71.478 (5)C10—H10b0.9900
C8—C91.485 (5)C10—C111.553 (5)
C15—C161.503 (4)C21—C221.391 (5)
C15—C141.471 (5)C25—H250.9500
C15—C191.346 (5)C25—C241.395 (5)
C7—C21.406 (5)C4—H40.9500
C7—C61.403 (5)C4—C31.393 (5)
C2—C11.480 (5)C4—C51.373 (6)
C2—C31.402 (5)C24—H240.9500
C16—H16a0.9900C24—C231.379 (6)
C16—H16b0.9900C11—H11a0.9900
C16—C171.538 (5)C11—H11b0.9900
C6—H60.9500C11—C121.544 (5)
C6—C51.395 (5)C12—H12a0.9900
C9—C101.491 (4)C12—H12b0.9900
C26—C141.497 (5)C22—H220.9500
C26—C211.411 (5)C22—C231.390 (5)
C26—C251.395 (5)C23—H230.9500
C18—H18a0.9900C3—H30.9500
C18—H18b0.9900C5—H50.9500
C9—C13—C1123.2 (3)C21—C20—O4121.0 (3)
C12—C13—C1124.8 (3)C19—C20—O4121.8 (3)
C12—C13—C9112.0 (3)C19—C20—C21117.3 (3)
C7—C8—O2122.6 (3)H10a—C10—C9111.08 (18)
C9—C8—O2120.6 (3)H10b—C10—C9111.08 (17)
C9—C8—C7116.7 (3)H10b—C10—H10a109.0
C14—C15—C16125.2 (3)C11—C10—C9103.4 (3)
C19—C15—C16112.1 (3)C11—C10—H10a111.08 (18)
C19—C15—C14122.6 (3)C11—C10—H10b111.08 (19)
C2—C7—C8120.6 (3)C20—C21—C26120.7 (3)
C6—C7—C8119.9 (3)C22—C21—C26119.1 (3)
C6—C7—C2119.5 (3)C22—C21—C20120.2 (3)
C1—C2—C7121.3 (3)H25—C25—C26120.5 (2)
C3—C2—C7119.5 (3)C24—C25—C26119.0 (4)
C3—C2—C1119.2 (3)C24—C25—H25120.5 (2)
C13—C1—O1121.1 (3)C3—C4—H4119.8 (2)
C2—C1—O1122.5 (3)C5—C4—H4119.8 (2)
C2—C1—C13116.3 (3)C5—C4—C3120.4 (4)
H16a—C16—C15110.96 (17)H24—C24—C25119.7 (2)
H16b—C16—C15110.96 (17)C23—C24—C25120.7 (4)
H16b—C16—H16a109.0C23—C24—H24119.7 (2)
C17—C16—C15104.0 (3)C18—C19—C15112.7 (3)
C17—C16—H16a110.96 (18)C20—C19—C15122.3 (3)
C17—C16—H16b110.96 (18)C20—C19—C18125.0 (3)
H6—C6—C7120.0 (2)H11a—C11—C10110.31 (18)
C5—C6—C7119.9 (4)H11b—C11—C10110.31 (19)
C5—C6—H6120.0 (2)H11b—C11—H11a108.6
C8—C9—C13121.7 (3)C12—C11—C10107.1 (3)
C10—C9—C13113.3 (3)C12—C11—H11a110.31 (17)
C10—C9—C8125.0 (3)C12—C11—H11b110.31 (18)
C21—C26—C14120.1 (3)C11—C12—C13104.3 (3)
C25—C26—C14119.3 (3)H12a—C12—C13110.90 (19)
C25—C26—C21120.6 (3)H12a—C12—C11110.90 (18)
H18b—C18—H18a109.0H12b—C12—C13110.90 (18)
C17—C18—H18a111.00 (19)H12b—C12—C11110.90 (17)
C17—C18—H18b111.00 (18)H12b—C12—H12a108.9
C19—C18—H18a111.00 (18)H22—C22—C21120.0 (2)
C19—C18—H18b111.00 (18)C23—C22—C21120.1 (4)
C19—C18—C17103.8 (3)C23—C22—H22120.0 (2)
C18—C17—C16107.4 (3)C22—C23—C24120.6 (4)
H17a—C17—C16110.24 (18)H23—C23—C24119.7 (2)
H17a—C17—C18110.24 (19)H23—C23—C22119.7 (2)
H17b—C17—C16110.24 (19)C4—C3—C2120.1 (4)
H17b—C17—C18110.24 (19)H3—C3—C2120.0 (2)
H17b—C17—H17a108.5H3—C3—C4120.0 (2)
C15—C14—O3121.4 (3)C4—C5—C6120.5 (4)
C26—C14—O3121.8 (3)H5—C5—C6119.7 (2)
C26—C14—C15116.8 (3)H5—C5—C4119.7 (2)
O2—C8—C7—C2176.0 (3)C8—C7—C2—C3179.9 (3)
O2—C8—C7—C64.5 (4)C8—C7—C6—C5179.3 (3)
O2—C8—C9—C13174.8 (3)C8—C9—C10—C11178.4 (3)
O2—C8—C9—C102.6 (4)C15—C16—C17—C181.4 (3)
O3—C14—C15—C162.7 (4)C15—C14—C26—C214.6 (3)
O3—C14—C15—C19174.3 (3)C15—C14—C26—C25176.5 (3)
O3—C14—C26—C21175.3 (3)C15—C19—C18—C171.7 (3)
O3—C14—C26—C253.7 (4)C15—C19—C20—C210.6 (3)
O1—C1—C13—C9177.1 (3)C7—C2—C3—C40.3 (3)
O1—C1—C13—C121.4 (4)C7—C6—C5—C41.0 (4)
O1—C1—C2—C7178.3 (3)C2—C3—C4—C50.4 (4)
O1—C1—C2—C30.2 (4)C16—C17—C18—C191.8 (3)
O4—C20—C21—C26178.9 (3)C6—C5—C4—C31.1 (4)
O4—C20—C21—C220.4 (4)C9—C10—C11—C121.4 (3)
O4—C20—C19—C15178.0 (3)C26—C21—C20—C190.3 (3)
O4—C20—C19—C181.9 (4)C26—C21—C22—C231.0 (3)
C13—C1—C2—C70.6 (3)C26—C25—C24—C231.4 (4)
C13—C1—C2—C3179.1 (3)C18—C19—C20—C21179.5 (3)
C13—C9—C8—C74.4 (3)C20—C21—C22—C23178.3 (3)
C13—C9—C10—C110.8 (3)C21—C22—C23—C240.7 (4)
C13—C12—C11—C101.5 (3)C25—C24—C23—C220.5 (4)
C8—C7—C2—C11.4 (3)
 

Acknowledgements

We thank Mr Darshan S Mhatre for his help in collecting the X-ray data and with the structure refinement.

References

First citationAlcantara Emiliano, S., Welma Duarte Silva, S., Alves Pereira, M., R.dos Santos Malta, V. & Luciano Balliano, T. (2016). Acta Cryst. E72, 188–190.  CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationClausen, C., Wartchow, R. & Butenschön, H. (2001). Eur. J. Org. Chem. pp. 93–113.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFranck, R. W. & Gupta, R. B. (1985). J. Org. Chem. 50, 4632–4635.  CrossRef CAS Google Scholar
First citationKatritzky, A. R. & Fan, W.-Q. (1988). J. Heterocycl. Chem. 25, 901–906.  CrossRef CAS Google Scholar
First citationQiu, H.-Y., Wang, P.-F., Lin, H.-Y., Tang, C.-Y., Zhu, H.-L. & Yang, Y.-H. (2018). Chem. Biol. Drug Des. 91, 681–690.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds