organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2,4-Di­nitro­phen­yl)-1-(pyridin-4-yl)ethanol monohydrate

crossmark logo

aDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, People's Republic of China
*Correspondence e-mail: wu_zhichao63@sina.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 December 2020; accepted 18 December 2020; online 2 February 2021)

In the title compound, C13H11N3O5·H2O, the dihedral angle between the aromatic rings is 9.60 (7)° and the chain linking the rings has an anti conformation with a torsion angle of −178.28 (12)°. In the crystal, the components are linked by O—H⋯O and O—H⋯N hydrogen bonds, generating (010) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives have been widely used in biochemistry. Pyridine salts, for example, are well known for their photoactivity and exhibit potential for targetting mitochondria and in the photodynamic therapy of diseases (Wang et al., 2020[Wang, J., Zhu, X., Zhang, J., Wang, H., Liu, G., Bu, Y., Yu, J., Tian, Y. & Zhou, H. (2020). Appl. Mater. Interfaces, 12, 1988-1996.]; Li et al.,2017[Li, H., Li, Y., Zhang, H., Xu, G., Zhang, Y., Liu, X., Zhou, H., Yang, X., Zhang, X. & Tian, Y. (2017). Chem. Commun. 53, 13245-13248.]). The Knoevenagel reaction is one of the most efficient methods of constructing pyridine-containing organic semiconductors though a two-step process: (1) format the hydroxyl-containing inter­mediates; (2) obtain products by a dehydration reaction. We report here the of the title compound, C13H11N3O5·H2O (Fig. 1[link]), a hydroxyl-containing inter­mediate. The dihedral angle between the benzene and pyridine rings is 9.60 (7)° and the chain linking the rings has an anti conformation with a C5—C11—C18—C6 torsion angle of −178.28 (12)°. In the crystal, the components are linked by O—H⋯O and O—H⋯N hydrogen bonds (Table 1[link]), generating (010) sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.80 (2) 2.01 (2) 2.801 (3) 173 (2)
O1—H1B⋯N10ii 0.86 (3) 2.00 (3) 2.841 (3) 166.1 (19)
O2—H2⋯O1iii 0.82 1.85 2.666 (3) 175
C17—H17⋯O20iv 0.93 2.53 3.226 (4) 131
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.

Synthesis and crystallization

1-Methyl-2,4-di­nitro-benzene (0.546 g, 3.00 mmol) and pyridine-4-carbaldehyde (0.321 g, 3.00 mmol) were dissolved in dimethyl sulfoxide (50 ml). The mixture was heated to 80°C for 4 h, then cooled to room temperature and poured into water. The precipitate was collected by filtration and dried to obtain a yellow solid (0.712 g, 2.4 mol). Yellow crystals suitable for X-ray analysis were obtained by recrystallization from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H11N3O5·H2O
Mr 307.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.639 (8), 20.045 (12), 8.116 (5)
β (°) 101.326 (5)
V3) 1378.2 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.19 × 0.18 × 0.17
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.616, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10488, 2889, 2531
Rint 0.025
(sin θ/λ)max−1) 0.645
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.03
No. of reflections 2889
No. of parameters 208
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.24
Computer programs: SMART and SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

2-(2,4-Dinitrophenyl)-1-(pyridin-4-yl)ethanol monohydrate top
Crystal data top
C13H11N3O5·H2OF(000) = 640
Mr = 307.26Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.639 (8) ÅCell parameters from 6924 reflections
b = 20.045 (12) Åθ = 2.6–27.1°
c = 8.116 (5) ŵ = 0.12 mm1
β = 101.326 (5)°T = 296 K
V = 1378.2 (17) Å3Block, yellow
Z = 40.19 × 0.18 × 0.17 mm
Data collection top
Bruker SMART CCD
diffractometer
2531 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
ω scansθmax = 27.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.616, Tmax = 0.746k = 2225
10488 measured reflectionsl = 1010
2889 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.4306P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2889 reflectionsΔρmax = 0.37 e Å3
208 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.11854 (12)0.30340 (6)0.04733 (14)0.0475 (3)
H20.08560.30090.05440.071*
C30.03252 (17)0.51894 (7)0.25550 (18)0.0418 (3)
H30.04320.56440.23320.050*
C40.10032 (16)0.48431 (7)0.23286 (18)0.0389 (3)
C50.40549 (16)0.30336 (7)0.08026 (17)0.0383 (3)
C60.12367 (17)0.41637 (7)0.26901 (17)0.0393 (3)
C70.14831 (17)0.48357 (8)0.31235 (18)0.0435 (3)
N80.29271 (16)0.51917 (8)0.33273 (18)0.0563 (4)
N90.21854 (15)0.52431 (6)0.16714 (18)0.0500 (3)
N100.68428 (15)0.23063 (7)0.09129 (19)0.0534 (4)
C110.25687 (16)0.34380 (7)0.07980 (18)0.0394 (3)
H110.24820.37870.00600.047*
O120.30318 (16)0.49757 (7)0.08429 (19)0.0669 (4)
C130.41333 (17)0.23595 (7)0.1180 (2)0.0451 (3)
H130.32540.21370.14080.054*
O140.30398 (18)0.57810 (8)0.2980 (2)0.0795 (4)
C150.0034 (2)0.38446 (8)0.3309 (2)0.0488 (4)
H150.01540.33960.35940.059*
C160.1328 (2)0.41660 (8)0.3516 (2)0.0504 (4)
H160.21190.39370.39100.060*
C170.55312 (19)0.20209 (8)0.1213 (2)0.0529 (4)
H170.55600.15670.14590.064*
C180.26799 (18)0.37632 (7)0.25304 (19)0.0438 (3)
H18A0.28390.34170.33820.053*
H18B0.35960.40540.27470.053*
C190.54071 (18)0.33341 (8)0.0472 (2)0.0499 (4)
H190.54070.37850.02050.060*
O200.2244 (2)0.58322 (7)0.1986 (3)0.1047 (7)
C210.67505 (19)0.29564 (9)0.0543 (2)0.0547 (4)
H210.76470.31660.03200.066*
O220.3925 (2)0.48738 (9)0.3855 (3)0.1002 (6)
O10.00579 (15)0.69790 (7)0.28295 (16)0.0537 (3)
H1A0.044 (3)0.7282 (11)0.324 (3)0.072 (7)*
H1B0.094 (3)0.7007 (10)0.319 (3)0.072 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0343 (5)0.0568 (6)0.0508 (6)0.0054 (4)0.0066 (4)0.0012 (5)
C30.0400 (7)0.0391 (7)0.0445 (7)0.0017 (6)0.0040 (6)0.0014 (6)
C40.0356 (7)0.0387 (7)0.0413 (7)0.0043 (5)0.0053 (5)0.0016 (6)
C50.0340 (7)0.0411 (7)0.0395 (7)0.0008 (5)0.0064 (5)0.0012 (5)
C60.0403 (7)0.0395 (7)0.0377 (7)0.0010 (6)0.0062 (5)0.0019 (5)
C70.0380 (7)0.0513 (8)0.0412 (7)0.0024 (6)0.0075 (6)0.0072 (6)
N80.0428 (7)0.0717 (10)0.0559 (8)0.0063 (7)0.0134 (6)0.0074 (7)
N90.0424 (7)0.0421 (7)0.0661 (9)0.0068 (5)0.0121 (6)0.0001 (6)
N100.0366 (7)0.0576 (8)0.0659 (9)0.0065 (6)0.0094 (6)0.0050 (7)
C110.0337 (7)0.0408 (7)0.0433 (7)0.0001 (5)0.0065 (5)0.0032 (6)
O120.0645 (8)0.0615 (8)0.0841 (9)0.0096 (6)0.0378 (7)0.0020 (7)
C130.0352 (7)0.0427 (8)0.0577 (9)0.0029 (6)0.0095 (6)0.0028 (6)
O140.0669 (9)0.0698 (9)0.1059 (12)0.0257 (7)0.0271 (8)0.0022 (8)
C150.0599 (9)0.0382 (7)0.0521 (8)0.0003 (7)0.0200 (7)0.0022 (6)
C160.0502 (9)0.0520 (9)0.0534 (9)0.0089 (7)0.0212 (7)0.0031 (7)
C170.0424 (8)0.0441 (8)0.0718 (11)0.0034 (6)0.0100 (7)0.0057 (7)
C180.0423 (8)0.0433 (8)0.0442 (8)0.0061 (6)0.0049 (6)0.0004 (6)
C190.0407 (8)0.0444 (8)0.0661 (10)0.0025 (6)0.0144 (7)0.0063 (7)
O200.0977 (12)0.0435 (7)0.193 (2)0.0191 (7)0.0773 (13)0.0134 (10)
C210.0345 (8)0.0607 (10)0.0708 (11)0.0036 (7)0.0149 (7)0.0058 (8)
O220.0645 (9)0.1094 (13)0.1428 (17)0.0092 (9)0.0599 (11)0.0136 (12)
O10.0379 (6)0.0607 (8)0.0601 (7)0.0024 (5)0.0034 (5)0.0086 (6)
Geometric parameters (Å, º) top
O2—C111.4248 (19)N10—C171.334 (2)
O2—H20.8200N10—C211.336 (2)
C3—C71.378 (2)C11—C181.536 (2)
C3—C41.384 (2)C11—H110.9800
C3—H30.9300C13—C171.381 (2)
C4—C61.400 (2)C13—H130.9300
C4—N91.478 (2)C15—C161.380 (2)
C5—C131.384 (2)C15—H150.9300
C5—C191.387 (2)C16—H160.9300
C5—C111.518 (2)C17—H170.9300
C6—C151.395 (2)C18—H18A0.9700
C6—C181.510 (2)C18—H18B0.9700
C7—C161.380 (2)C19—C211.377 (2)
C7—N81.474 (2)C19—H190.9300
N8—O141.214 (2)C21—H210.9300
N8—O221.216 (2)O1—H1A0.80 (2)
N9—O201.207 (2)O1—H1B0.86 (3)
N9—O121.2113 (19)
C11—O2—H2109.5C5—C11—H11109.3
C7—C3—C4117.52 (14)C18—C11—H11109.3
C7—C3—H3121.2C17—C13—C5119.26 (14)
C4—C3—H3121.2C17—C13—H13120.4
C3—C4—C6123.32 (13)C5—C13—H13120.4
C3—C4—N9115.20 (13)C16—C15—C6122.89 (15)
C6—C4—N9121.48 (13)C16—C15—H15118.6
C13—C5—C19117.41 (14)C6—C15—H15118.6
C13—C5—C11121.77 (13)C15—C16—C7118.20 (14)
C19—C5—C11120.79 (14)C15—C16—H16120.9
C15—C6—C4115.76 (13)C7—C16—H16120.9
C15—C6—C18118.25 (14)N10—C17—C13123.82 (16)
C4—C6—C18125.94 (13)N10—C17—H17118.1
C3—C7—C16122.26 (14)C13—C17—H17118.1
C3—C7—N8118.34 (15)C6—C18—C11113.58 (12)
C16—C7—N8119.40 (14)C6—C18—H18A108.8
O14—N8—O22124.18 (16)C11—C18—H18A108.8
O14—N8—C7118.42 (15)C6—C18—H18B108.8
O22—N8—C7117.39 (17)C11—C18—H18B108.8
O20—N9—O12123.07 (15)H18A—C18—H18B107.7
O20—N9—C4117.22 (14)C21—C19—C5119.22 (15)
O12—N9—C4119.71 (13)C21—C19—H19120.4
C17—N10—C21116.36 (14)C5—C19—H19120.4
O2—C11—C5112.04 (13)N10—C21—C19123.92 (15)
O2—C11—C18108.06 (12)N10—C21—H21118.0
C5—C11—C18108.88 (11)C19—C21—H21118.0
O2—C11—H11109.3H1A—O1—H1B106 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.80 (2)2.01 (2)2.801 (3)173 (2)
O1—H1B···N10ii0.86 (3)2.00 (3)2.841 (3)166.1 (19)
O2—H2···O1iii0.821.852.666 (3)175
C17—H17···O20iv0.932.533.226 (4)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2.
 

Funding information

This work was supported by General Program of National Natural Science Foundation of China (51772002, 21805001, 51432001), Anhui Province Postdoctoral Sustentation Fund (2017B159), the PhD Research Startup Foundation of Anhui Jianzhu University (2016QD109), Anhui Province University Natural Science Research Project (KJ2017A008) and the Anhui Provincial Natural Science Foundation (1808085ME55).

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H., Li, Y., Zhang, H., Xu, G., Zhang, Y., Liu, X., Zhou, H., Yang, X., Zhang, X. & Tian, Y. (2017). Chem. Commun. 53, 13245–13248.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J., Zhu, X., Zhang, J., Wang, H., Liu, G., Bu, Y., Yu, J., Tian, Y. & Zhou, H. (2020). Appl. Mater. Interfaces, 12, 1988–1996.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds