organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

13-Benzyl-4,11-dihy­dr­oxy-1,8-diphen­yl-2,9-di­thia-13-aza­di­spiro­[4.1.4.3]tetra­decan-6-one

CROSSMARK_Color_square_no_text.svg

aPostgraduate and Research Department of Physics, National College (Autonomous), Tiruchirappalli-620001, Tamil Nadu, India, and bDepartment of Physics, Shrimati Indira Gandhi College, Tiruchirappalli-620002, Tamil Nadu, India
*Correspondence e-mail: sunvag@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 5 February 2021; accepted 23 February 2021; online 26 February 2021)

In the title compound, C30H31NO3S2, the piperidine ring adopts a distorted chair conformation. The thio­phene rings have twisted conformations about the C—C bonds. The mean plane of the piperidine ring makes a near orthogonal conformation with the toluene ring. Two of the phenyl rings in the structure are positionally disordered over two sets of sites with occupancies of 0.56 (2)/0.44 (2) and 0.672 (16)/0.328 (16). A region of disordered electron density was corrected for using the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] routine in PLATON. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule. In the crystal, O—H⋯O hydrogen bonds are observed along with intra­molecular S⋯H, O⋯H, C⋯H and H⋯H contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many substituted piperidine derivatives possess a wide range of bioactivities (Pati & Banerjee, 2012[Pati, B. & Banerjee, S. (2012). J. Pharm. Res. 5, 5493-5509.]). They find significant applications in drug development and their properties depend on the nature of the side groups and their orientations (Viswanathan et al., 2015[Viswanathan, V., Bharkavi, S., Perumal, S. & Velmurugan, D. (2015). Acta Cryst. E71, 1516-1520.]). As part of our studies in this area, we herein report the crystal structure of the title compound.

The mol­ecular structure of the title compound with atom numbering is shown in Fig. 1[link]. The piperidine ring adopts a distorted chair conformation as observed in a similar related structure, 2 {13-benzyl-4,11-dihy­droxy-1,8-bis­(4-methyl­phen­yl)-2,9-di­thia-13-aza­dispiro­[4.1.47.35]tetra­decan-6-one; Viswanathan et al., 2015[Viswanathan, V., Bharkavi, S., Perumal, S. & Velmurugan, D. (2015). Acta Cryst. E71, 1516-1520.]}. However, both the thio­phene rings (rings D S2/C16/C15/C13/C17 and E: S1/C7/C10/C9/C8) have twisted conformations about the C—C bonds (C10—C9 in D and C13—C15 in E). In 2, ring D adopts an envelope conformation and ring E a twisted conformation about the C13—C17 bond, indicating the influence of substitutional effects on the ring conformations. The mean plane of the piperidine ring A is nearly orthogonal [88.5 (3)°] to the toluene ring F. This angle is reported to be 75.09 (1)° in 2 (Viswanathan et al., 2015[Viswanathan, V., Bharkavi, S., Perumal, S. & Velmurugan, D. (2015). Acta Cryst. E71, 1516-1520.]). In addition, the dihedral angles between the mean planes of rings D and B and between E and C are 54.07 (14) and 40.5 (4)°, respectively, differing significantly from the values reported for 2. An overlay analysis of the title compound (with major conformer only) for non-H atoms with the corresponding atoms in 2 has an r.m.s. deviation of 1.12 Å (Fig. 2[link]). A similar analysis for a compound closely related to 2 (with a methyl rather than a benzyl substituent on the N atom of the central piperidine ring), the r.m.s. deviation is found to be 1.03 Å, indicating the conformational preservation of the five rings (A to E) in these structures. An intra­molecular O—H⋯O contact (Table 1[link]) is observed. The phenyl rings attached to rings D and E are both positionally disordered over two sets of sites with occupancies of 0.56 (2)/0.44 (2) and 0.672 (16)/0.328 (16), respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 2.31 3.058 (3) 152
O3—H3⋯O3i 0.82 2.05 2.851 (3) 167
Symmetry code: (i) [y-1, -x+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as circles of arbitrary radii. The minor conformations of the two disordered phenyl rings are not shown here for clarity.
[Figure 2]
Figure 2
An overlay of similar atoms of the title mol­ecule (green) and the related compound 2 (yellow), excluding H atoms, indicating their nearly identical conformations.

In the crystal, an O—H⋯O inter­actions forms an R44(8) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). This pattern is stacked along the c-axis direction, forming hollow square frames parallel to c (Fig. 3[link]).

[Figure 3]
Figure 3
An O—H⋯O inter­action between atoms O3 and O1 of a symmetry-related mol­ecule (at 1 − x, −1 + y and 1 − z) leading to an R44(8) ring motif.

The two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the mol­ecule, created using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) for the contacts contributing to the Hirshfeld surface, are shown in Figs. 4[link]–6[link][link]. The analysis reveals that H⋯H contacts (68.2%) and C⋯H contacts (14.3%) are the main contributors to the crystal packing, followed by S⋯H (8.4%) and O⋯H (7.1%) contacts.

[Figure 4]
Figure 4
The two-dimensional fingerprint plot for the title compound depicting the overall contribution by the various contacts.
[Figure 5]
Figure 5
The two-dimensional fingerprint plot for the title compound depicting the contribution percentage of O⋯H contacts.
[Figure 6]
Figure 6
The two-dimensional fingerprint plot for the title compound depicting the contribution percentage of S⋯H contacts.

Synthesis and crystallization

A mixture of (3E,5E)-1-benzyl-3,5-di­benzyl­idenepiperidin-4-one (1 mmol), 1,4-di­thiane-2,5-diol (1 mmol and tri­ethyl­amine (0.25 eq) in di­chloro­methane (6 ml) was heated under reflux for 3 h. After completion of the reaction (TLC), the solvent was removed and the product was purified by flash column using a petroleum ether–ethyl acetate mixture (4:1 v/v) as eluent (yield 74%, m.p. 476 K). Chloro­form was used as the solvent to harvest crystals for experiment.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A region of disordered electron density (48 e Å−3) located near a symmetry element (0.0 0.5 − 0.018) was corrected for using the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) routine in PLATON. Two phenyl rings in the modelled structure are found to be positionally disordered over two sets of sites with occupancies of 0.56 (2)/0.44 (2) and 0.672 (16)/0.328 (16). Hence, disorder treatment was applied with the rigid-bond restraints SIMU and DELU for completing the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C30H31NO3S2
Mr 517.68
Crystal system, space group Tetragonal, P[\overline{4}]21c
Temperature (K) 293
a, c (Å) 25.3750 (4), 8.6456 (2)
V3) 5566.8 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.28 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.685, 0.742
No. of measured, independent and observed [I > 2σ(I)] reflections 30401, 6899, 5681
Rint 0.033
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.03
No. of reflections 6899
No. of parameters 389
No. of restraints 408
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.15
Absolute structure Flack x determined using 2151 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.04 (2)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])'.

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) and PLATON (Spek, 2020)'.

13-Benzyl-4,11-dihydroxy-1,8-diphenyl-2,9-dithia-13-azadispiro[4.1.4.3]tetradecan-6-one top
Crystal data top
C30H31NO3S2Melting point: 476.15 K
Mr = 517.68Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 6903 reflections
a = 25.3750 (4) Åθ = 1.1–28.3°
c = 8.6456 (2) ŵ = 0.22 mm1
V = 5566.8 (2) Å3T = 293 K
Z = 8Block, colourless
F(000) = 21920.28 × 0.24 × 0.20 mm
Dx = 1.235 Mg m3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5681 reflections with I > 2σ(I)
ω and φ scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.3°, θmin = 1.8°
Tmin = 0.685, Tmax = 0.742h = 3323
30401 measured reflectionsk = 3327
6899 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.1922P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6899 reflectionsΔρmax = 0.27 e Å3
389 parametersΔρmin = 0.15 e Å3
408 restraintsAbsolute structure: Flack x determined using 2151 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydroxy H atoms were refined as riding: O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O)·. The C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 Å, and with 1.2Ueq(C) for H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.19875 (3)0.80219 (4)0.82727 (10)0.0581 (2)
S20.07519 (3)0.97740 (3)0.14696 (9)0.04708 (19)
N0.13618 (9)0.81533 (8)0.3251 (2)0.0365 (5)
O10.10182 (9)0.88166 (9)0.7697 (2)0.0528 (5)
H10.0839270.9032370.7225510.079*
O20.17096 (8)0.94891 (7)0.5606 (2)0.0440 (5)
O30.05248 (7)0.94022 (8)0.4969 (2)0.0414 (4)
H30.0205310.9391590.5107860.062*
C10.2681 (4)0.8548 (5)0.6236 (10)0.043 (3)0.44 (2)
C20.3011 (6)0.8117 (5)0.6461 (15)0.051 (2)0.44 (2)
H2A0.2897870.7834220.7059440.061*0.44 (2)
C30.3509 (6)0.8109 (5)0.5791 (16)0.065 (2)0.44 (2)
H3A0.3728920.7820490.5941520.078*0.44 (2)
C40.3677 (4)0.8532 (5)0.4897 (13)0.074 (2)0.44 (2)
H4A0.4010380.8526160.4448620.089*0.44 (2)
C50.3348 (5)0.8963 (5)0.4672 (18)0.067 (2)0.44 (2)
H5A0.3460800.9245560.4073630.081*0.44 (2)
C60.2850 (4)0.8971 (5)0.5342 (17)0.057 (2)0.44 (2)
H6A0.2629740.9259310.5191550.068*0.44 (2)
C1A0.2679 (3)0.8540 (4)0.6274 (8)0.0401 (19)0.56 (2)
C2A0.2951 (4)0.8070 (3)0.6069 (13)0.0478 (18)0.56 (2)
H2AA0.2790470.7751470.6319210.057*0.56 (2)
C3A0.3462 (4)0.8075 (3)0.5489 (12)0.066 (2)0.56 (2)
H3AA0.3643290.7760200.5352250.079*0.56 (2)
C4A0.3701 (3)0.8551 (4)0.5115 (11)0.079 (2)0.56 (2)
H4AA0.4043020.8554440.4727470.094*0.56 (2)
C5A0.3430 (4)0.9022 (4)0.5320 (17)0.072 (2)0.56 (2)
H5AA0.3589930.9339960.5069640.087*0.56 (2)
C6A0.2919 (3)0.9016 (3)0.5899 (14)0.0524 (18)0.56 (2)
H6AA0.2737110.9331240.6036600.063*0.56 (2)
C70.21172 (10)0.85613 (11)0.6917 (3)0.0370 (6)
H70.2081630.8891840.7493870.044*
C80.13063 (12)0.79323 (13)0.7676 (4)0.0495 (7)
H8A0.1268730.7609350.7086000.059*
H8B0.1077570.7912980.8573220.059*
C90.11644 (10)0.84041 (10)0.6689 (3)0.0381 (6)
H90.0869700.8315990.6003580.046*
C100.16622 (10)0.85436 (10)0.5712 (3)0.0319 (5)
C110.17586 (11)0.81241 (10)0.4471 (3)0.0380 (6)
H11A0.2105650.8174500.4024540.046*
H11B0.1749080.7777340.4942230.046*
C120.14383 (11)0.86442 (10)0.2399 (3)0.0381 (6)
H12A0.1230680.8639100.1456870.046*
H12B0.1806340.8682700.2118070.046*
C130.12668 (9)0.91073 (9)0.3422 (3)0.0314 (5)
C140.15673 (9)0.90880 (10)0.4977 (3)0.0315 (5)
C150.06627 (10)0.90622 (10)0.3714 (3)0.0352 (5)
H150.0572080.8697490.3975430.042*
C160.03912 (11)0.92192 (12)0.2229 (4)0.0457 (7)
H16A0.0027800.9316430.2428980.055*
H16B0.0395380.8929390.1497580.055*
C170.13408 (10)0.96560 (10)0.2640 (3)0.0350 (5)
H170.1337540.9918420.3471270.042*
C180.18491 (10)0.97408 (9)0.1735 (3)0.0374 (5)
C190.22921 (12)0.99325 (12)0.2497 (4)0.0505 (7)
H190.2279040.9988130.3559360.061*
C200.27490 (14)1.00411 (13)0.1705 (5)0.0645 (9)
H200.3041601.0167100.2236580.077*
C210.27770 (16)0.99650 (13)0.0129 (5)0.0681 (10)
H210.3085181.0041570.0407640.082*
C220.23375 (16)0.97718 (14)0.0645 (4)0.0664 (10)
H220.2351720.9720660.1709560.080*
C230.18816 (13)0.96554 (12)0.0146 (3)0.0499 (7)
H230.1593200.9518880.0383610.060*
C240.13841 (13)0.76884 (11)0.2234 (3)0.0473 (7)
H24A0.1741110.7641420.1856640.057*
H24B0.1155470.7742370.1348570.057*
C250.1210 (3)0.71931 (18)0.3115 (8)0.0449 (15)0.672 (16)
C260.0695 (2)0.7125 (3)0.3626 (11)0.0587 (17)0.672 (16)
H26A0.0443910.7384010.3433790.070*0.672 (16)
C270.0556 (2)0.6671 (3)0.4425 (10)0.086 (2)0.672 (16)
H27A0.0211070.6625410.4766610.103*0.672 (16)
C280.0931 (4)0.6284 (2)0.4712 (9)0.097 (2)0.672 (16)
H28A0.0837650.5979970.5246300.116*0.672 (16)
C290.1446 (3)0.6352 (2)0.4201 (10)0.089 (2)0.672 (16)
H29A0.1697080.6093120.4393170.106*0.672 (16)
C300.1585 (3)0.6806 (2)0.3402 (9)0.0669 (17)0.672 (16)
H30A0.1929930.6851720.3060330.080*0.672 (16)
C25A0.1208 (6)0.7211 (4)0.2988 (18)0.048 (3)0.328 (16)
C26A0.0731 (6)0.7254 (5)0.377 (2)0.054 (3)0.328 (16)
H26B0.0562430.7578230.3837670.065*0.328 (16)
C27A0.0508 (5)0.6812 (6)0.446 (2)0.080 (3)0.328 (16)
H27B0.0189550.6841080.4987500.096*0.328 (16)
C28A0.0761 (6)0.6327 (5)0.4366 (19)0.089 (3)0.328 (16)
H28B0.0611290.6031720.4827180.106*0.328 (16)
C29A0.1237 (7)0.6284 (4)0.358 (2)0.086 (3)0.328 (16)
H29B0.1405920.5959500.3517040.103*0.328 (16)
C30A0.1460 (5)0.6726 (5)0.2892 (19)0.069 (3)0.328 (16)
H30B0.1778820.6696650.2367200.083*0.328 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0511 (4)0.0731 (5)0.0502 (4)0.0028 (4)0.0115 (4)0.0292 (4)
S20.0453 (4)0.0521 (4)0.0438 (4)0.0018 (3)0.0063 (3)0.0186 (3)
N0.0486 (12)0.0305 (10)0.0305 (11)0.0012 (9)0.0034 (10)0.0029 (9)
O10.0582 (13)0.0577 (13)0.0424 (11)0.0094 (10)0.0105 (10)0.0008 (10)
O20.0581 (12)0.0362 (10)0.0377 (10)0.0013 (8)0.0104 (9)0.0039 (8)
O30.0374 (10)0.0483 (11)0.0386 (10)0.0014 (8)0.0034 (8)0.0008 (9)
C10.039 (5)0.044 (5)0.046 (5)0.005 (4)0.009 (4)0.001 (4)
C20.046 (4)0.045 (4)0.060 (5)0.002 (3)0.010 (4)0.003 (4)
C30.047 (4)0.065 (4)0.084 (5)0.011 (4)0.000 (4)0.004 (4)
C40.051 (4)0.080 (5)0.091 (5)0.006 (4)0.016 (4)0.000 (4)
C50.054 (4)0.072 (4)0.076 (6)0.002 (3)0.009 (5)0.009 (5)
C60.049 (4)0.053 (4)0.068 (6)0.005 (3)0.006 (4)0.013 (4)
C1A0.037 (4)0.043 (4)0.040 (4)0.002 (3)0.006 (3)0.002 (3)
C2A0.043 (3)0.049 (3)0.051 (4)0.002 (2)0.013 (3)0.008 (3)
C3A0.050 (3)0.065 (4)0.081 (4)0.016 (3)0.005 (3)0.012 (3)
C4A0.049 (4)0.084 (4)0.102 (5)0.007 (3)0.019 (4)0.004 (4)
C5A0.052 (4)0.072 (4)0.092 (6)0.001 (3)0.014 (4)0.016 (4)
C6A0.047 (3)0.048 (3)0.062 (5)0.009 (3)0.003 (3)0.010 (3)
C70.0398 (13)0.0405 (13)0.0308 (13)0.0000 (11)0.0042 (10)0.0058 (11)
C80.0467 (16)0.0555 (17)0.0464 (16)0.0029 (13)0.0034 (13)0.0175 (14)
C90.0404 (13)0.0428 (13)0.0310 (13)0.0013 (11)0.0000 (11)0.0049 (12)
C100.0346 (12)0.0328 (12)0.0282 (12)0.0003 (9)0.0023 (10)0.0027 (10)
C110.0426 (14)0.0332 (13)0.0382 (13)0.0037 (10)0.0015 (11)0.0006 (11)
C120.0484 (15)0.0357 (13)0.0302 (12)0.0013 (11)0.0003 (12)0.0004 (11)
C130.0350 (12)0.0318 (11)0.0272 (11)0.0003 (9)0.0006 (10)0.0029 (10)
C140.0319 (12)0.0372 (13)0.0254 (11)0.0021 (10)0.0012 (10)0.0013 (10)
C150.0355 (13)0.0378 (13)0.0324 (13)0.0028 (10)0.0025 (11)0.0040 (11)
C160.0442 (15)0.0496 (16)0.0432 (16)0.0022 (12)0.0107 (12)0.0070 (13)
C170.0396 (13)0.0340 (12)0.0313 (12)0.0015 (10)0.0037 (11)0.0042 (10)
C180.0454 (14)0.0285 (12)0.0383 (13)0.0009 (10)0.0030 (11)0.0043 (11)
C190.0462 (16)0.0539 (17)0.0514 (17)0.0058 (13)0.0004 (14)0.0103 (15)
C200.0486 (18)0.061 (2)0.084 (3)0.0088 (15)0.0008 (19)0.0099 (19)
C210.066 (2)0.0541 (19)0.085 (3)0.0054 (16)0.038 (2)0.0046 (19)
C220.089 (3)0.0534 (19)0.057 (2)0.0153 (18)0.031 (2)0.0065 (17)
C230.0624 (18)0.0438 (15)0.0436 (16)0.0117 (13)0.0110 (14)0.0027 (13)
C240.0670 (19)0.0379 (14)0.0370 (15)0.0026 (13)0.0065 (14)0.0078 (12)
C250.053 (3)0.034 (3)0.047 (3)0.006 (2)0.001 (3)0.007 (2)
C260.054 (3)0.042 (3)0.081 (4)0.009 (3)0.001 (3)0.001 (3)
C270.089 (4)0.060 (5)0.110 (4)0.021 (3)0.024 (4)0.008 (4)
C280.127 (5)0.055 (3)0.109 (5)0.014 (4)0.004 (4)0.023 (3)
C290.109 (5)0.045 (3)0.112 (5)0.014 (3)0.017 (4)0.005 (3)
C300.071 (3)0.041 (3)0.089 (4)0.004 (2)0.003 (3)0.009 (3)
C25A0.055 (5)0.033 (5)0.056 (5)0.003 (5)0.005 (5)0.009 (5)
C26A0.061 (5)0.033 (5)0.070 (5)0.018 (4)0.004 (4)0.008 (5)
C27A0.089 (5)0.046 (6)0.106 (6)0.014 (4)0.016 (5)0.005 (5)
C28A0.105 (6)0.050 (5)0.111 (6)0.012 (5)0.007 (5)0.024 (5)
C29A0.102 (6)0.038 (4)0.117 (7)0.006 (5)0.007 (6)0.008 (5)
C30A0.073 (5)0.036 (4)0.098 (6)0.002 (4)0.002 (5)0.011 (5)
Geometric parameters (Å, º) top
S1—C81.818 (3)C12—H12A0.9700
S1—C71.832 (3)C12—H12B0.9700
S2—C161.803 (3)C13—C141.546 (3)
S2—C171.829 (3)C13—C151.558 (3)
N—C111.460 (3)C13—C171.559 (3)
N—C121.460 (3)C15—C161.511 (4)
N—C241.473 (3)C15—H150.9800
O1—C91.412 (3)C16—H16A0.9700
O1—H10.8200C16—H16B0.9700
O2—C141.209 (3)C17—C181.524 (4)
O3—C151.430 (3)C17—H170.9800
O3—H30.8200C18—C191.390 (4)
C1—C21.3900C18—C231.394 (4)
C1—C61.3900C19—C201.374 (5)
C1—C71.548 (10)C19—H190.9300
C2—C31.3900C20—C211.377 (6)
C2—H2A0.9300C20—H200.9300
C3—C41.3900C21—C221.390 (6)
C3—H3A0.9300C21—H210.9300
C4—C51.3900C22—C231.376 (5)
C4—H4A0.9300C22—H220.9300
C5—C61.3900C23—H230.9300
C5—H5A0.9300C24—C25A1.448 (10)
C6—H6A0.9300C24—C251.535 (6)
C1A—C2A1.3900C24—H24A0.9700
C1A—C6A1.3900C24—H24B0.9700
C1A—C71.532 (8)C25—C261.3900
C2A—C3A1.3900C25—C301.3900
C2A—H2AA0.9300C26—C271.3900
C3A—C4A1.3900C26—H26A0.9300
C3A—H3AA0.9300C27—C281.3900
C4A—C5A1.3900C27—H27A0.9300
C4A—H4AA0.9300C28—C291.3900
C5A—C6A1.3900C28—H28A0.9300
C5A—H5AA0.9300C29—C301.3900
C6A—H6AA0.9300C29—H29A0.9300
C7—C101.556 (3)C30—H30A0.9300
C7—H70.9800C25A—C26A1.3900
C8—C91.514 (4)C25A—C30A1.3900
C8—H8A0.9700C26A—C27A1.3900
C8—H8B0.9700C26A—H26B0.9300
C9—C101.560 (4)C27A—C28A1.3900
C9—H90.9800C27A—H27B0.9300
C10—C111.531 (3)C28A—C29A1.3900
C10—C141.540 (3)C28A—H28B0.9300
C11—H11A0.9700C29A—C30A1.3900
C11—H11B0.9700C29A—H29B0.9300
C12—C131.534 (4)C30A—H30B0.9300
C8—S1—C794.74 (12)C14—C13—C17110.24 (19)
C16—S2—C1794.91 (12)C15—C13—C17104.74 (19)
C11—N—C12108.4 (2)O2—C14—C10121.5 (2)
C11—N—C24111.4 (2)O2—C14—C13120.8 (2)
C12—N—C24112.1 (2)C10—C14—C13117.7 (2)
C9—O1—H1109.5O3—C15—C16112.0 (2)
C15—O3—H3109.5O3—C15—C13108.7 (2)
C2—C1—C6120.0C16—C15—C13106.9 (2)
C2—C1—C7121.3 (8)O3—C15—H15109.7
C6—C1—C7118.6 (8)C16—C15—H15109.7
C3—C2—C1120.0C13—C15—H15109.7
C3—C2—H2A120.0C15—C16—S2106.49 (19)
C1—C2—H2A120.0C15—C16—H16A110.4
C4—C3—C2120.0S2—C16—H16A110.4
C4—C3—H3A120.0C15—C16—H16B110.4
C2—C3—H3A120.0S2—C16—H16B110.4
C3—C4—C5120.0H16A—C16—H16B108.6
C3—C4—H4A120.0C18—C17—C13116.8 (2)
C5—C4—H4A120.0C18—C17—S2112.63 (18)
C6—C5—C4120.0C13—C17—S2106.71 (16)
C6—C5—H5A120.0C18—C17—H17106.7
C4—C5—H5A120.0C13—C17—H17106.7
C5—C6—C1120.0S2—C17—H17106.7
C5—C6—H6A120.0C19—C18—C23118.3 (3)
C1—C6—H6A120.0C19—C18—C17119.4 (2)
C2A—C1A—C6A120.0C23—C18—C17122.3 (3)
C2A—C1A—C7122.5 (6)C20—C19—C18121.1 (3)
C6A—C1A—C7117.5 (6)C20—C19—H19119.5
C1A—C2A—C3A120.0C18—C19—H19119.5
C1A—C2A—H2AA120.0C19—C20—C21120.5 (3)
C3A—C2A—H2AA120.0C19—C20—H20119.7
C4A—C3A—C2A120.0C21—C20—H20119.7
C4A—C3A—H3AA120.0C20—C21—C22119.0 (3)
C2A—C3A—H3AA120.0C20—C21—H21120.5
C3A—C4A—C5A120.0C22—C21—H21120.5
C3A—C4A—H4AA120.0C23—C22—C21120.7 (3)
C5A—C4A—H4AA120.0C23—C22—H22119.6
C4A—C5A—C6A120.0C21—C22—H22119.6
C4A—C5A—H5AA120.0C22—C23—C18120.4 (3)
C6A—C5A—H5AA120.0C22—C23—H23119.8
C5A—C6A—C1A120.0C18—C23—H23119.8
C5A—C6A—H6AA120.0C25A—C24—N112.9 (6)
C1A—C6A—H6AA120.0N—C24—C25110.4 (3)
C1A—C7—C10116.6 (3)N—C24—H24A109.6
C1—C7—C10115.5 (4)C25—C24—H24A109.6
C1A—C7—S1111.9 (4)N—C24—H24B109.6
C1—C7—S1113.1 (5)C25—C24—H24B109.6
C10—C7—S1105.87 (16)H24A—C24—H24B108.1
C1—C7—H7107.3C26—C25—C30120.0
C10—C7—H7107.3C26—C25—C24122.0 (4)
S1—C7—H7107.3C30—C25—C24118.0 (4)
C9—C8—S1106.7 (2)C27—C26—C25120.0
C9—C8—H8A110.4C27—C26—H26A120.0
S1—C8—H8A110.4C25—C26—H26A120.0
C9—C8—H8B110.4C26—C27—C28120.0
S1—C8—H8B110.4C26—C27—H27A120.0
H8A—C8—H8B108.6C28—C27—H27A120.0
O1—C9—C8107.5 (2)C27—C28—C29120.0
O1—C9—C10112.3 (2)C27—C28—H28A120.0
C8—C9—C10107.0 (2)C29—C28—H28A120.0
O1—C9—H9110.0C30—C29—C28120.0
C8—C9—H9110.0C30—C29—H29A120.0
C10—C9—H9110.0C28—C29—H29A120.0
C11—C10—C14111.0 (2)C29—C30—C25120.0
C11—C10—C7111.8 (2)C29—C30—H30A120.0
C14—C10—C7111.51 (19)C25—C30—H30A120.0
C11—C10—C9110.5 (2)C26A—C25A—C30A120.0
C14—C10—C9107.49 (19)C26A—C25A—C24115.0 (10)
C7—C10—C9104.2 (2)C30A—C25A—C24124.9 (10)
N—C11—C10111.2 (2)C25A—C26A—C27A120.0
N—C11—H11A109.4C25A—C26A—H26B120.0
C10—C11—H11A109.4C27A—C26A—H26B120.0
N—C11—H11B109.4C26A—C27A—C28A120.0
C10—C11—H11B109.4C26A—C27A—H27B120.0
H11A—C11—H11B108.0C28A—C27A—H27B120.0
N—C12—C13109.0 (2)C29A—C28A—C27A120.0
N—C12—H12A109.9C29A—C28A—H28B120.0
C13—C12—H12A109.9C27A—C28A—H28B120.0
N—C12—H12B109.9C28A—C29A—C30A120.0
C13—C12—H12B109.9C28A—C29A—H29B120.0
H12A—C12—H12B108.3C30A—C29A—H29B120.0
C12—C13—C14109.70 (19)C29A—C30A—C25A120.0
C12—C13—C15108.5 (2)C29A—C30A—H30B120.0
C14—C13—C15109.98 (19)C25A—C30A—H30B120.0
C12—C13—C17113.6 (2)
C6—C1—C2—C30.0C9—C10—C14—C1385.9 (2)
C7—C1—C2—C3177.8 (7)C12—C13—C14—O2143.1 (2)
C1—C2—C3—C40.0C15—C13—C14—O297.7 (3)
C2—C3—C4—C50.0C17—C13—C14—O217.3 (3)
C3—C4—C5—C60.0C12—C13—C14—C1038.7 (3)
C4—C5—C6—C10.0C15—C13—C14—C1080.5 (2)
C2—C1—C6—C50.0C17—C13—C14—C10164.5 (2)
C7—C1—C6—C5177.8 (7)C12—C13—C15—O3165.0 (2)
C6A—C1A—C2A—C3A0.0C14—C13—C15—O345.1 (3)
C7—C1A—C2A—C3A179.6 (6)C17—C13—C15—O373.4 (2)
C1A—C2A—C3A—C4A0.0C12—C13—C15—C1674.0 (3)
C2A—C3A—C4A—C5A0.0C14—C13—C15—C16166.1 (2)
C3A—C4A—C5A—C6A0.0C17—C13—C15—C1647.6 (3)
C4A—C5A—C6A—C1A0.0O3—C15—C16—S278.5 (2)
C2A—C1A—C6A—C5A0.0C13—C15—C16—S240.4 (3)
C7—C1A—C6A—C5A179.6 (5)C17—S2—C16—C1517.7 (2)
C2A—C1A—C7—C1091.3 (6)C12—C13—C17—C1842.0 (3)
C6A—C1A—C7—C1089.1 (6)C14—C13—C17—C1881.6 (3)
C2A—C1A—C7—S130.8 (6)C15—C13—C17—C18160.2 (2)
C6A—C1A—C7—S1148.8 (6)C12—C13—C17—S285.0 (2)
C2—C1—C7—C10112.3 (8)C14—C13—C17—S2151.45 (16)
C6—C1—C7—C1065.5 (9)C15—C13—C17—S233.2 (2)
C2—C1—C7—S110.0 (9)C16—S2—C17—C18139.0 (2)
C6—C1—C7—S1172.2 (7)C16—S2—C17—C139.6 (2)
C8—S1—C7—C1A143.9 (3)C13—C17—C18—C1988.8 (3)
C8—S1—C7—C1143.4 (4)S2—C17—C18—C19147.2 (2)
C8—S1—C7—C1015.9 (2)C13—C17—C18—C2394.2 (3)
C7—S1—C8—C912.3 (2)S2—C17—C18—C2329.8 (3)
S1—C8—C9—O183.4 (2)C23—C18—C19—C200.7 (4)
S1—C8—C9—C1037.3 (3)C17—C18—C19—C20176.4 (3)
C1A—C7—C10—C1144.5 (5)C18—C19—C20—C210.4 (5)
C1—C7—C10—C1145.3 (6)C19—C20—C21—C220.6 (5)
S1—C7—C10—C1180.7 (2)C20—C21—C22—C230.3 (6)
C1A—C7—C10—C1480.5 (5)C21—C22—C23—C181.5 (5)
C1—C7—C10—C1479.6 (6)C19—C18—C23—C221.6 (5)
S1—C7—C10—C14154.29 (17)C17—C18—C23—C22175.4 (3)
C1A—C7—C10—C9163.8 (4)C11—N—C24—C25A69.8 (7)
C1—C7—C10—C9164.7 (6)C12—N—C24—C25A168.5 (7)
S1—C7—C10—C938.6 (2)C11—N—C24—C2567.9 (4)
O1—C9—C10—C11171.5 (2)C12—N—C24—C25170.4 (3)
C8—C9—C10—C1170.8 (3)N—C24—C25—C2666.9 (5)
O1—C9—C10—C1450.2 (3)N—C24—C25—C30112.9 (5)
C8—C9—C10—C14167.9 (2)C30—C25—C26—C270.0
O1—C9—C10—C768.2 (3)C24—C25—C26—C27179.8 (5)
C8—C9—C10—C749.5 (3)C25—C26—C27—C280.0
C12—N—C11—C1068.0 (3)C26—C27—C28—C290.0
C24—N—C11—C10168.2 (2)C27—C28—C29—C300.0
C14—C10—C11—N48.1 (3)C28—C29—C30—C250.0
C7—C10—C11—N173.3 (2)C26—C25—C30—C290.0
C9—C10—C11—N71.1 (3)C24—C25—C30—C29179.8 (5)
C11—N—C12—C1371.5 (3)N—C24—C25A—C26A48.5 (9)
C24—N—C12—C13165.1 (2)N—C24—C25A—C30A135.6 (10)
N—C12—C13—C1455.1 (3)C30A—C25A—C26A—C27A0.0
N—C12—C13—C1565.1 (3)C24—C25A—C26A—C27A176.1 (11)
N—C12—C13—C17178.9 (2)C25A—C26A—C27A—C28A0.0
C11—C10—C14—O2146.7 (2)C26A—C27A—C28A—C29A0.0
C7—C10—C14—O221.3 (3)C27A—C28A—C29A—C30A0.0
C9—C10—C14—O292.3 (3)C28A—C29A—C30A—C25A0.0
C11—C10—C14—C1335.2 (3)C26A—C25A—C30A—C29A0.0
C7—C10—C14—C13160.5 (2)C24—C25A—C30A—C29A175.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.822.313.058 (3)152
O3—H3···O3i0.822.052.851 (3)167
Symmetry code: (i) y1, x+1, z+1.
 

Acknowledgements

The authors thank Dr Christian Barathi for providing the sample for analysis and Dr V. Viswanathan of University of Madras for the help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPati, B. & Banerjee, S. (2012). J. Pharm. Res. 5, 5493–5509.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationViswanathan, V., Bharkavi, S., Perumal, S. & Velmurugan, D. (2015). Acta Cryst. E71, 1516–1520.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds