metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[2,3-bis­­(pyridin-2-yl)pyrazine-κ2N2,N3]palladium(II) dinitrate aceto­nitrile monosolvate

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 21 January 2021; accepted 9 February 2021; online 12 February 2021)

The title compound, [Pd(C14H10N4)2](NO3)2·CH3CN, consists of a cationic PdII complex, two anions and one lattice solvent mol­ecule, all in general positions. In the complex, the PdII cation is four-coordinated in a slightly distorted square-planar geometry defined by the four N atoms of two bidentate 2,3-di-2-pyridyl­pyrazine ligands. The complex, anions and solvent mol­ecule are linked by weak C—H⋯O inter­molecular hydrogen bonds. In the crystal, the complex mol­ecules are stacked in columns along the a axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title compound, [Pd(dpp)2](NO3)2·CH3CN (dpp = 2,3-di-2-pyridyl­pyrazine), the crystal structures of related dpp-PdII complexes [PdX2(dpp)] have been determined previously [X = Cl (Ha, 2011a[Ha, K. (2011a). Acta Cryst. E67, m1615.],b[Ha, K. (2011b). Acta Cryst. E67, m1634.]); X = Br (Ha, 2011c[Ha, K. (2011c). Acta Cryst. E67, m1896.]); X = I (Ha, 2011d[Ha, K. (2011d). Acta Cryst. E67, m1626.]); X = SCN (Ha, 2012[Ha, K. (2012). Acta Cryst. E68, m144.])], and a heterometallic complex has been also reported, namely [Ru(bipy)2(μ2-dpp)PdCl2](PF6)2, where bipy is 2,2′-bi­pyridine (Yam et al., 1994[Yam, V. W.-W., Lee, V. W.-M. & Cheung, K.-K. (1994). J. Chem. Soc. Chem. Commun. pp. 2075-2076.]).

The title compound consists of a cationic PdII complex [Pd(dpp)2]2+, two NO3 anions and one solvent CH3CN mol­ecule (Fig. 1[link]). In the complex, the central PdII cation is four-coordinated in a slightly distorted square-planar geometry defined by the pyridyl N3, N4, N7 and N8 atoms of the two bidentate dpp ligands. The tight N—Pd—N chelating angles of N3—Pd1—N4 = 86.99 (7)° and N7—Pd1—N8 = 85.98 (7)° contribute to the distortion of the square-plane. The Pd—N bond lengths are almost equal [2.0170 (18) to 2.0286 (19) Å]. In the crystal, the pyridine rings are considerably inclined to the least-squares plane of the [PdN4] unit [maximum deviation = 0.0204 (7) Å], with dihedral angles of 70.56 (7) (ring N3⋯C9), 67.63 (6) (ring N4⋯C14), 71.32 (6) (ring N7⋯C23) and 71.64 (7)° (ring N8⋯C28). The nearly planar pyrazine rings [maximum deviation = 0.027 (2) Å] are fairly perpendicular to the [PdN4] unit plane, with dihedral angles of 82.07 (7) (ring N1⋯C4) and 84.20 (7)° (ring N5⋯C18).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms.

In the crystal structure (Fig. 2[link]), the complex, anions and solvent mol­ecules form inter­molecular weak C—H⋯O hydrogen bonds (Table 1[link]). The complex mol­ecules are stacked in columns along the a axis. In the columns, numerous intra- and inter­molecular ππ inter­actions between adjacent six-membered rings are present. For Cg1 (the centroid of ring N4⋯C14) and Cg1i [symmetry code: (i) −x + 2, −y + 2, −z + 1), the centroid-to-centroid separation is 3.688 (2) Å and the planes are parallel and shifted by 1.683 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.94 2.43 3.344 (3) 164
C4—H4⋯O1 0.94 2.51 3.330 (4) 146
C9—H9⋯O2ii 0.94 2.40 3.113 (4) 133
C14—H14⋯O5iii 0.94 2.43 3.257 (3) 147
C17—H17⋯O6i 0.94 2.43 3.343 (3) 164
C22—H22⋯O3iv 0.94 2.45 3.273 (5) 146
C23—H23⋯O2ii 0.94 2.54 3.275 (4) 136
C29—H29A⋯O1 0.97 2.58 3.405 (5) 144
C29—H29C⋯O4 0.97 2.51 3.459 (4) 167
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) [-x+1, -y+1, -z].
[Figure 2]
Figure 2
The packing in the crystal structure of the title compound, viewed approximately along the a axis. Hydrogen-bonding inter­actions are drawn as dashed lines.

Synthesis and crystallization

To a solution of 2,3-di-2-pyridyl­pyrazine (0.303 g, 1.293 mmol) in acetone (30 ml) was added Pd(NO3)2·2H2O (0.170 g, 0.637 mmol) and stirred for 1 h at room temperature. The formed precipitate was recrystallized from MeOH/ether, washed with ether, and dried under vacuum, to give a white powder (0.378 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of a MeOH/CH3CN solution, at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The highest peak (0.89 e Å−3) and the deepest hole (−0.49 e Å−3) in the last difference-Fourier map are located 1.02 and 0.97 Å, respectively, from atom O3.

Table 2
Experimental details

Crystal data
Chemical formula [Pd(C14H10N4)2](NO3)2·C2H3N
Mr 739.99
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 10.2013 (4), 11.6159 (5), 14.2762 (6)
α, β, γ (°) 90.9753 (16), 109.2479 (14), 109.9435 (14)
V3) 1485.28 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.69
Crystal size (mm) 0.22 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker APEX2, PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.699, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 38859, 5889, 5399
Rint 0.032
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.06
No. of reflections 5889
No. of parameters 434
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.49
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

Bis[2,3-bis(pyridin-2-yl)pyrazine-κ2N2,N3]palladium(II) dinitrate acetonitrile monosolvate top
Crystal data top
[Pd(C14H10N4)2](NO3)2·C2H3NZ = 2
Mr = 739.99F(000) = 748
Triclinic, P1Dx = 1.655 Mg m3
a = 10.2013 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6159 (5) ÅCell parameters from 9802 reflections
c = 14.2762 (6) Åθ = 2.3–28.3°
α = 90.9753 (16)°µ = 0.69 mm1
β = 109.2479 (14)°T = 223 K
γ = 109.9435 (14)°Block, colorless
V = 1485.28 (11) Å30.22 × 0.15 × 0.09 mm
Data collection top
Bruker APEX2, PHOTON 100 detector
diffractometer
5399 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.032
φ and ω scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.699, Tmax = 0.745k = 1414
38859 measured reflectionsl = 1717
5889 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.030P)2 + 1.3932P]
where P = (Fo2 + 2Fc2)/3
5889 reflections(Δ/σ)max = 0.001
434 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Refinement. Hydrogen atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.94 or 0.97 Å, with isotropic displacements Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.85573 (2)0.80002 (2)0.21420 (2)0.02031 (6)
N10.8010 (2)0.47002 (17)0.32663 (14)0.0296 (4)
N21.1007 (2)0.62333 (18)0.41615 (14)0.0300 (4)
N30.70063 (19)0.72337 (16)0.27734 (14)0.0243 (4)
N41.00126 (19)0.87763 (16)0.35473 (13)0.0226 (4)
N50.8194 (2)0.46396 (17)0.07565 (15)0.0318 (4)
N61.1185 (2)0.61800 (19)0.15483 (15)0.0316 (4)
N70.71597 (19)0.71968 (16)0.07375 (13)0.0249 (4)
N81.01151 (19)0.87359 (16)0.15207 (13)0.0243 (4)
C10.8420 (2)0.59294 (19)0.34974 (15)0.0228 (4)
C20.9924 (2)0.6705 (2)0.39218 (15)0.0232 (4)
C31.0584 (3)0.5018 (2)0.39210 (18)0.0342 (5)
H31.13170.46620.40750.041*
C40.9105 (3)0.4261 (2)0.34529 (18)0.0336 (5)
H40.88640.34150.32610.040*
C50.7133 (2)0.6331 (2)0.33404 (16)0.0259 (5)
C60.6064 (3)0.5744 (2)0.3748 (2)0.0380 (6)
H60.61460.50960.41210.046*
C70.4865 (3)0.6125 (3)0.3599 (2)0.0478 (7)
H70.41320.57430.38740.057*
C80.4767 (3)0.7063 (3)0.3047 (2)0.0470 (7)
H80.39770.73440.29500.056*
C90.5843 (2)0.7592 (2)0.2632 (2)0.0350 (6)
H90.57570.82230.22390.042*
C101.0482 (2)0.8070 (2)0.42188 (16)0.0233 (4)
C111.1519 (2)0.8600 (2)0.51676 (17)0.0308 (5)
H111.18210.80970.56350.037*
C121.2106 (3)0.9870 (2)0.54251 (19)0.0364 (6)
H121.28241.02400.60640.044*
C131.1629 (3)1.0586 (2)0.47366 (19)0.0342 (5)
H131.20221.14530.48950.041*
C141.0563 (2)1.0014 (2)0.38061 (18)0.0287 (5)
H141.02131.05030.33420.034*
C150.8605 (2)0.58748 (19)0.07894 (15)0.0237 (4)
C161.0115 (2)0.6651 (2)0.11952 (15)0.0238 (4)
C171.0748 (3)0.4960 (2)0.15386 (19)0.0367 (6)
H171.14730.46080.18030.044*
C180.9262 (3)0.4196 (2)0.11519 (19)0.0359 (6)
H180.90000.33410.11690.043*
C190.7352 (2)0.6281 (2)0.02701 (16)0.0255 (5)
C200.6387 (3)0.5709 (2)0.06908 (18)0.0372 (6)
H200.65030.50480.10000.045*
C210.5258 (3)0.6114 (3)0.11883 (19)0.0451 (7)
H210.46100.57430.18440.054*
C220.5088 (3)0.7067 (3)0.0719 (2)0.0423 (7)
H220.43290.73600.10500.051*
C230.6045 (2)0.7585 (2)0.02450 (19)0.0333 (5)
H230.59190.82280.05700.040*
C241.0708 (2)0.8015 (2)0.11849 (16)0.0250 (4)
C251.1870 (3)0.8527 (2)0.08430 (19)0.0367 (6)
H251.22850.80190.06190.044*
C261.2419 (3)0.9791 (3)0.0832 (2)0.0444 (7)
H261.32181.01510.06090.053*
C271.1782 (3)1.0513 (2)0.1153 (2)0.0409 (6)
H271.21321.13720.11430.049*
C281.0624 (3)0.9964 (2)0.14890 (18)0.0329 (5)
H281.01801.04560.17010.039*
N90.7053 (3)0.0811 (2)0.17671 (19)0.0425 (5)
O10.6818 (3)0.1389 (3)0.23751 (18)0.0810 (8)
O20.7579 (3)0.0012 (2)0.1979 (3)0.1035 (12)
O30.6834 (5)0.1134 (4)0.0945 (2)0.1297 (15)
N100.2051 (3)0.3037 (2)0.3109 (2)0.0463 (6)
O40.2775 (3)0.3406 (2)0.40190 (18)0.0636 (6)
O50.0679 (2)0.25210 (19)0.2792 (2)0.0688 (7)
O60.2740 (3)0.3221 (2)0.2514 (2)0.0695 (7)
N110.3636 (4)0.0592 (4)0.3507 (3)0.0822 (10)
C290.4999 (4)0.1768 (4)0.3903 (4)0.0813 (12)
H29A0.55250.20460.34450.122*
H29B0.57070.19880.45870.122*
H29C0.42780.21630.38280.122*
C300.4232 (4)0.0439 (4)0.3679 (3)0.0623 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01659 (9)0.01646 (9)0.02448 (9)0.00547 (6)0.00380 (6)0.00146 (6)
N10.0380 (11)0.0216 (9)0.0258 (10)0.0080 (8)0.0102 (8)0.0027 (7)
N20.0320 (10)0.0327 (11)0.0268 (10)0.0149 (9)0.0090 (8)0.0052 (8)
N30.0180 (8)0.0207 (9)0.0288 (9)0.0041 (7)0.0052 (7)0.0062 (7)
N40.0180 (8)0.0204 (9)0.0275 (9)0.0045 (7)0.0087 (7)0.0026 (7)
N50.0367 (11)0.0227 (10)0.0338 (11)0.0063 (8)0.0145 (9)0.0021 (8)
N60.0303 (10)0.0342 (11)0.0344 (11)0.0151 (9)0.0132 (9)0.0068 (9)
N70.0195 (9)0.0219 (9)0.0266 (9)0.0043 (7)0.0034 (7)0.0074 (7)
N80.0222 (9)0.0218 (9)0.0230 (9)0.0048 (7)0.0041 (7)0.0042 (7)
C10.0288 (11)0.0206 (10)0.0178 (10)0.0072 (9)0.0088 (8)0.0019 (8)
C20.0267 (11)0.0248 (11)0.0172 (10)0.0080 (9)0.0083 (8)0.0019 (8)
C30.0437 (14)0.0345 (13)0.0334 (13)0.0228 (11)0.0158 (11)0.0110 (10)
C40.0504 (15)0.0231 (11)0.0302 (12)0.0167 (11)0.0144 (11)0.0075 (9)
C50.0227 (10)0.0209 (10)0.0273 (11)0.0011 (8)0.0079 (9)0.0064 (9)
C60.0346 (13)0.0308 (13)0.0443 (15)0.0004 (10)0.0210 (11)0.0030 (11)
C70.0325 (14)0.0420 (16)0.0607 (18)0.0029 (12)0.0246 (13)0.0120 (14)
C80.0197 (12)0.0479 (16)0.0647 (19)0.0058 (11)0.0126 (12)0.0196 (14)
C90.0212 (11)0.0314 (13)0.0450 (14)0.0087 (10)0.0042 (10)0.0107 (11)
C100.0178 (10)0.0246 (11)0.0265 (11)0.0056 (8)0.0090 (8)0.0013 (9)
C110.0244 (11)0.0354 (13)0.0266 (11)0.0074 (10)0.0058 (9)0.0034 (10)
C120.0239 (11)0.0386 (14)0.0344 (13)0.0028 (10)0.0050 (10)0.0142 (11)
C130.0261 (12)0.0242 (11)0.0454 (14)0.0001 (9)0.0146 (11)0.0131 (10)
C140.0247 (11)0.0201 (11)0.0405 (13)0.0044 (9)0.0149 (10)0.0029 (9)
C150.0280 (11)0.0210 (10)0.0204 (10)0.0057 (9)0.0102 (9)0.0017 (8)
C160.0268 (11)0.0255 (11)0.0194 (10)0.0083 (9)0.0103 (9)0.0033 (8)
C170.0438 (14)0.0375 (14)0.0409 (14)0.0238 (12)0.0208 (12)0.0103 (11)
C180.0488 (15)0.0243 (12)0.0417 (14)0.0159 (11)0.0224 (12)0.0051 (10)
C190.0217 (10)0.0218 (10)0.0234 (11)0.0001 (8)0.0047 (9)0.0039 (8)
C200.0319 (13)0.0374 (14)0.0262 (12)0.0010 (11)0.0048 (10)0.0002 (10)
C210.0296 (13)0.0485 (16)0.0281 (13)0.0054 (12)0.0055 (10)0.0073 (12)
C220.0210 (12)0.0460 (15)0.0435 (15)0.0036 (11)0.0006 (11)0.0237 (13)
C230.0238 (11)0.0300 (12)0.0419 (14)0.0092 (10)0.0067 (10)0.0152 (10)
C240.0236 (10)0.0242 (11)0.0206 (10)0.0035 (9)0.0052 (8)0.0024 (8)
C250.0375 (13)0.0353 (13)0.0361 (13)0.0060 (11)0.0195 (11)0.0033 (11)
C260.0458 (15)0.0380 (14)0.0452 (15)0.0009 (12)0.0280 (13)0.0082 (12)
C270.0478 (15)0.0254 (12)0.0403 (14)0.0003 (11)0.0176 (12)0.0103 (11)
C280.0362 (13)0.0222 (11)0.0325 (12)0.0061 (10)0.0074 (10)0.0061 (9)
N90.0446 (13)0.0276 (11)0.0576 (15)0.0164 (10)0.0179 (11)0.0038 (10)
O10.0879 (19)0.124 (2)0.0508 (14)0.0659 (18)0.0220 (13)0.0027 (15)
O20.0523 (14)0.0291 (11)0.209 (4)0.0242 (11)0.0119 (18)0.0110 (16)
O30.202 (4)0.184 (4)0.071 (2)0.125 (4)0.075 (2)0.043 (2)
N100.0505 (15)0.0224 (11)0.0667 (17)0.0219 (10)0.0132 (13)0.0075 (11)
O40.0732 (16)0.0563 (14)0.0582 (14)0.0345 (12)0.0090 (12)0.0004 (11)
O50.0470 (13)0.0366 (11)0.110 (2)0.0152 (10)0.0123 (13)0.0097 (12)
O60.0829 (17)0.0708 (16)0.0788 (17)0.0431 (14)0.0430 (15)0.0216 (13)
N110.093 (3)0.092 (3)0.079 (2)0.052 (2)0.034 (2)0.008 (2)
C290.060 (2)0.084 (3)0.115 (3)0.046 (2)0.030 (2)0.015 (2)
C300.061 (2)0.087 (3)0.059 (2)0.052 (2)0.0209 (17)0.008 (2)
Geometric parameters (Å, º) top
Pd1—N72.0170 (18)C12—H120.9400
Pd1—N82.0178 (18)C13—C141.383 (3)
Pd1—N42.0257 (17)C13—H130.9400
Pd1—N32.0286 (19)C14—H140.9400
N1—C41.333 (3)C15—C161.403 (3)
N1—C11.345 (3)C15—C191.485 (3)
N2—C31.329 (3)C16—C241.493 (3)
N2—C21.344 (3)C17—C181.380 (4)
N3—C91.344 (3)C17—H170.9400
N3—C51.351 (3)C18—H180.9400
N4—C141.347 (3)C19—C201.388 (3)
N4—C101.347 (3)C20—C211.376 (4)
N5—C181.325 (3)C20—H200.9400
N5—C151.346 (3)C21—C221.373 (4)
N6—C171.331 (3)C21—H210.9400
N6—C161.341 (3)C22—C231.376 (4)
N7—C191.349 (3)C22—H220.9400
N7—C231.350 (3)C23—H230.9400
N8—C241.349 (3)C24—C251.381 (3)
N8—C281.349 (3)C25—C261.384 (4)
C1—C21.400 (3)C25—H250.9400
C1—C51.490 (3)C26—C271.375 (4)
C2—C101.490 (3)C26—H260.9400
C3—C41.381 (4)C27—C281.380 (4)
C3—H30.9400C27—H270.9400
C4—H40.9400C28—H280.9400
C5—C61.385 (3)N9—O31.211 (4)
C6—C71.392 (4)N9—O21.218 (3)
C6—H60.9400N9—O11.219 (3)
C7—C81.367 (4)N10—O51.235 (3)
C7—H70.9400N10—O41.245 (3)
C8—C91.383 (4)N10—O61.248 (3)
C8—H80.9400N11—C301.123 (5)
C9—H90.9400C29—C301.446 (6)
C10—C111.384 (3)C29—H29A0.9700
C11—C121.380 (3)C29—H29B0.9700
C11—H110.9400C29—H29C0.9700
C12—C131.372 (4)
N7—Pd1—N885.98 (7)C14—C13—H13120.4
N7—Pd1—N4177.88 (7)N4—C14—C13121.8 (2)
N8—Pd1—N492.86 (7)N4—C14—H14119.1
N7—Pd1—N394.14 (7)C13—C14—H14119.1
N8—Pd1—N3178.89 (7)N5—C15—C16120.7 (2)
N4—Pd1—N386.99 (7)N5—C15—C19113.75 (19)
C4—N1—C1116.7 (2)C16—C15—C19125.20 (19)
C3—N2—C2116.9 (2)N6—C16—C15120.9 (2)
C9—N3—C5119.0 (2)N6—C16—C24113.55 (19)
C9—N3—Pd1121.60 (17)C15—C16—C24125.26 (19)
C5—N3—Pd1119.40 (14)N6—C17—C18121.9 (2)
C14—N4—C10119.34 (19)N6—C17—H17119.0
C14—N4—Pd1119.98 (15)C18—C17—H17119.0
C10—N4—Pd1120.63 (14)N5—C18—C17121.6 (2)
C18—N5—C15117.5 (2)N5—C18—H18119.2
C17—N6—C16117.2 (2)C17—C18—H18119.2
C19—N7—C23119.2 (2)N7—C19—C20120.7 (2)
C19—N7—Pd1120.11 (14)N7—C19—C15119.79 (18)
C23—N7—Pd1120.68 (17)C20—C19—C15119.5 (2)
C24—N8—C28119.8 (2)C21—C20—C19119.6 (3)
C24—N8—Pd1120.24 (14)C21—C20—H20120.2
C28—N8—Pd1119.90 (16)C19—C20—H20120.2
N1—C1—C2121.4 (2)C22—C21—C20119.5 (2)
N1—C1—C5113.28 (19)C22—C21—H21120.3
C2—C1—C5125.07 (19)C20—C21—H21120.3
N2—C2—C1120.8 (2)C21—C22—C23119.0 (2)
N2—C2—C10113.82 (18)C21—C22—H22120.5
C1—C2—C10125.21 (19)C23—C22—H22120.5
N2—C3—C4122.2 (2)N7—C23—C22122.0 (2)
N2—C3—H3118.9N7—C23—H23119.0
C4—C3—H3118.9C22—C23—H23119.0
N1—C4—C3121.7 (2)N8—C24—C25120.7 (2)
N1—C4—H4119.2N8—C24—C16119.67 (19)
C3—C4—H4119.2C25—C24—C16119.6 (2)
N3—C5—C6121.3 (2)C24—C25—C26119.7 (2)
N3—C5—C1119.16 (19)C24—C25—H25120.2
C6—C5—C1119.5 (2)C26—C25—H25120.2
C5—C6—C7119.1 (3)C27—C26—C25119.1 (2)
C5—C6—H6120.4C27—C26—H26120.4
C7—C6—H6120.4C25—C26—H26120.4
C8—C7—C6119.2 (3)C26—C27—C28119.3 (2)
C8—C7—H7120.4C26—C27—H27120.3
C6—C7—H7120.4C28—C27—H27120.3
C7—C8—C9119.3 (3)N8—C28—C27121.3 (2)
C7—C8—H8120.4N8—C28—H28119.3
C9—C8—H8120.4C27—C28—H28119.3
N3—C9—C8122.1 (3)O3—N9—O2120.7 (3)
N3—C9—H9119.0O3—N9—O1116.2 (3)
C8—C9—H9119.0O2—N9—O1122.9 (3)
N4—C10—C11120.8 (2)O5—N10—O4121.2 (3)
N4—C10—C2119.52 (18)O5—N10—O6120.2 (3)
C11—C10—C2119.6 (2)O4—N10—O6118.6 (3)
C12—C11—C10119.8 (2)C30—C29—H29A109.5
C12—C11—H11120.1C30—C29—H29B109.5
C10—C11—H11120.1H29A—C29—H29B109.5
C13—C12—C11119.1 (2)C30—C29—H29C109.5
C13—C12—H12120.4H29A—C29—H29C109.5
C11—C12—H12120.4H29B—C29—H29C109.5
C12—C13—C14119.1 (2)N11—C30—C29179.9 (5)
C12—C13—H13120.4
C4—N1—C1—C20.6 (3)C18—N5—C15—C162.3 (3)
C4—N1—C1—C5175.51 (19)C18—N5—C15—C19176.1 (2)
C3—N2—C2—C13.9 (3)C17—N6—C16—C153.0 (3)
C3—N2—C2—C10179.72 (19)C17—N6—C16—C24177.0 (2)
N1—C1—C2—N23.6 (3)N5—C15—C16—N60.8 (3)
C5—C1—C2—N2170.7 (2)C19—C15—C16—N6172.3 (2)
N1—C1—C2—C10178.84 (19)N5—C15—C16—C24174.0 (2)
C5—C1—C2—C104.5 (3)C19—C15—C16—C241.0 (3)
C2—N2—C3—C40.4 (3)C16—N6—C17—C182.1 (4)
C1—N1—C4—C34.1 (3)C15—N5—C18—C173.2 (4)
N2—C3—C4—N13.8 (4)N6—C17—C18—N51.0 (4)
C9—N3—C5—C62.2 (3)C23—N7—C19—C202.4 (3)
Pd1—N3—C5—C6177.06 (17)Pd1—N7—C19—C20179.11 (16)
C9—N3—C5—C1179.91 (19)C23—N7—C19—C15177.89 (19)
Pd1—N3—C5—C10.7 (3)Pd1—N7—C19—C150.6 (3)
N1—C1—C5—N3127.1 (2)N5—C15—C19—N7131.2 (2)
C2—C1—C5—N358.2 (3)C16—C15—C19—N755.3 (3)
N1—C1—C5—C650.6 (3)N5—C15—C19—C2048.5 (3)
C2—C1—C5—C6124.1 (2)C16—C15—C19—C20125.0 (2)
N3—C5—C6—C72.3 (3)N7—C19—C20—C212.7 (3)
C1—C5—C6—C7179.9 (2)C15—C19—C20—C21177.6 (2)
C5—C6—C7—C80.5 (4)C19—C20—C21—C221.1 (4)
C6—C7—C8—C91.3 (4)C20—C21—C22—C230.6 (4)
C5—N3—C9—C80.2 (3)C19—N7—C23—C220.6 (3)
Pd1—N3—C9—C8179.01 (18)Pd1—N7—C23—C22179.05 (17)
C7—C8—C9—N31.6 (4)C21—C22—C23—N70.9 (4)
C14—N4—C10—C110.1 (3)C28—N8—C24—C252.4 (3)
Pd1—N4—C10—C11177.58 (16)Pd1—N8—C24—C25174.04 (17)
C14—N4—C10—C2177.47 (19)C28—N8—C24—C16178.37 (19)
Pd1—N4—C10—C20.0 (3)Pd1—N8—C24—C165.2 (3)
N2—C2—C10—N4131.5 (2)N6—C16—C24—N8134.9 (2)
C1—C2—C10—N452.9 (3)C15—C16—C24—N851.4 (3)
N2—C2—C10—C1146.0 (3)N6—C16—C24—C2544.3 (3)
C1—C2—C10—C11129.5 (2)C15—C16—C24—C25129.4 (2)
N4—C10—C11—C121.5 (3)N8—C24—C25—C260.9 (4)
C2—C10—C11—C12176.1 (2)C16—C24—C25—C26179.9 (2)
C10—C11—C12—C131.1 (4)C24—C25—C26—C270.8 (4)
C11—C12—C13—C140.5 (4)C25—C26—C27—C280.8 (4)
C10—N4—C14—C131.7 (3)C24—N8—C28—C272.4 (3)
Pd1—N4—C14—C13175.86 (17)Pd1—N8—C28—C27174.09 (18)
C12—C13—C14—N42.0 (3)C26—C27—C28—N80.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.942.433.344 (3)164
C4—H4···O10.942.513.330 (4)146
C9—H9···O2ii0.942.403.113 (4)133
C14—H14···O5iii0.942.433.257 (3)147
C17—H17···O6i0.942.433.343 (3)164
C22—H22···O3iv0.942.453.273 (5)146
C23—H23···O2ii0.942.543.275 (4)136
C29—H29A···O10.972.583.405 (5)144
C29—H29C···O40.972.513.459 (4)167
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHa, K. (2011a). Acta Cryst. E67, m1615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011b). Acta Cryst. E67, m1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011c). Acta Cryst. E67, m1896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011d). Acta Cryst. E67, m1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, m144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYam, V. W.-W., Lee, V. W.-M. & Cheung, K.-K. (1994). J. Chem. Soc. Chem. Commun. pp. 2075–2076.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds