metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(benzo[h]quinolin-10-olato-κ2N,O)bromidomanganese(III)

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: kathrin.junge@catalysis.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 November 2020; accepted 30 November 2020; online 4 December 2020)

The title compound, [MnBr(C13H8NO)2], consists of a manganese(III) atom, which is coordinated by one bromido and two benzo[h]quinolin-10-olato ligands. The MnIII complex exhibits a distorted square-pyramidal coordination geometry with the Br ligand in the apical position. Neighbouring complexes are held together by ππ inter­actions and weak C—H⋯Br hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, we described the chemoselective reduction of quinolines and related N-heterocycles by mol­ecular hydrogen, using a simple MnI complex [Mn(CO)5Br] (Papa et al., 2020[Papa, V., Cao, Y., Spannenberg, A., Junge, K. & Beller, M. (2020). Nat. Catal. 3, 135-142.]). During the mechanistic studies of this catalytic reaction, several manganese compounds starting from [Mn(CO)5Br] and different N-heteroarenes were prepared and characterized by spectroscopic methods. In this context, the title compound was synthesized and structurally determined by single-crystal X-ray diffraction. The mol­ecular structure consists of a manganese(III) atom coordinated by one bromido and two bidentate benzo[h]quinolin-10-olato ligands (Fig. 1[link]). The coordination environment around the MnIII atom is best described as distorted square-pyramidal with the Br ligand in the apical position (τ = 0.35, with τ = 0 for an ideal square pyramid and τ = 1 for an ideal trigonal bypramid; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The deviation from planarity in the strained benzo[h]quinolin-10-olato ligands can be derived from the torsion angles N1—C13—C12—C11 of 10.0 (3)° and N2—C26—C25—C24 of 11.0 (3)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal structure, ππ stacking inter­actions along the crystallographic b axis are observed between N1/C1–C4/C13 and between the C7–C12 rings, respectively (Fig. 2[link]), with centroid-to-centroid distances Cg(N1/C1–C4/C13)⋯Cgi(N1/C1–C4/C13) = 3.6804 (14) Å [symmetry code: (i) 1 − x, 2 − y, 1 − z], ring slippage = 1.42 Å, and Cg(C7–C12)⋯Cgii(C7–C12) = 3.6194 (16) Å [symmetry code: (ii) = 2 − x, 1 − y, 1 − z], ring slippage 1.33 Å. Neighbouring mol­ecules are also linked along the a axis by ππ stacking inter­actions between the aromatic ring systems N2/C14–C20/C25/C26 (Fig. 2[link]) with centroid-to-centroid distances Cg(N2/C14–C20/C25/C26)⋯Cgiii(N2/C14–C20/C25/C26) = 3.6310 (11) Å [symmetry code: (iii) =1 − x, 1 − y, 2 − z], ring slippage = 1.06 Å, and Cg(N2/C14–C20/C25/C26)⋯Cgiv(N2/C14–C20/C25/C26) = 3.8165 (11) Å, [symmetry code: (iv) 2 − x, 1 − y, 2 − z], ring slippage 1.85 Å. Additionally, in the solid state weak inter­molecular C—H⋯Br inter­actions are observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.95 3.03 3.674 (2) 126
C2—H2⋯Br1i 0.95 2.96 3.626 (3) 128
Symmetry code: (i) [x-1, y, z].
[Figure 2]
Figure 2
Packing diagram of the title compound along the a axis. Displacement ellipsoids are drawn at the 50% probability level. For clarity H atoms have been omitted. The alternating pattern of ππ stacking inter­actions between N1/C1–C4/C13 rings as well as between C7–C12 rings is shown with dotted lines.

The crystal structure of a dimeric indium complex containing two benzo[h]quinolin-10-olato units has been reported by Wu et al. (1999[Wu, X.-S., Pan, Y., Sun, X.-Z. & Zhu, Y. (1999). Chin. J. Struct. Chem. 18, 418-422.]). In addition, the crystal structure of 10-hy­droxy­benzo[h]quinoline has been described by Kubicki et al. (1995[Kubicki, M., Borowiak, T. & Antkowiak, W. Z. (1995). Acta Cryst. C51, 1173-1175.]).

Synthesis and crystallization

A mixture of solutions containing [Mn(CO)5Br] (0.02 mmol) and 10-hy­droxy­benzo[h]quinoline (0.5 mmol) in dry THF (2 ml) was stirred at 393 K for 18 h. The solvent was slowly removed in air giving dark-brown crystals after two weeks. Oxidation from MnI in the starting material to MnIII in the product was mediated by atmospheric oxygen. Yield: 5.23 mg (50%); LCMS (m/z, pos): calculated for [C26H16BrMnN2O2] 521; found [M − Br]+ 443.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Seven outlier reflections were ignored during the refinement using the OMIT instruction.

Table 2
Experimental details

Crystal data
Chemical formula [MnBr(C13H8NO)2]
Mr 523.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.3303 (5), 10.5266 (7), 13.8432 (10)
α, β, γ (°) 76.9612 (18), 78.8220 (18), 72.0364 (18)
V3) 980.97 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.74
Crystal size (mm) 0.41 × 0.23 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.40, 0.72
No. of measured, independent and observed [I > 2σ(I)] reflections 42556, 6093, 5110
Rint 0.036
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.10
No. of reflections 6093
No. of parameters 289
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.44
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2015) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(benzo[h]quinolin-10-olato-κ2N,O)bromidomanganese(III) top
Crystal data top
[MnBr(C13H8NO)2]Z = 2
Mr = 523.26F(000) = 524
Triclinic, P1Dx = 1.771 Mg m3
a = 7.3303 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5266 (7) ÅCell parameters from 9946 reflections
c = 13.8432 (10) Åθ = 2.3–30.7°
α = 76.9612 (18)°µ = 2.74 mm1
β = 78.8220 (18)°T = 150 K
γ = 72.0364 (18)°Prism, brown
V = 980.97 (12) Å30.41 × 0.23 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
6093 independent reflections
Radiation source: fine-focus sealed tube5110 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.036
ω scansθmax = 30.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1010
Tmin = 0.40, Tmax = 0.72k = 1515
42556 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.8212P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
6093 reflectionsΔρmax = 0.96 e Å3
289 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.86544 (3)0.86413 (2)0.75405 (2)0.02263 (8)
C10.3671 (3)0.8124 (2)0.63030 (17)0.0194 (4)
H10.3002220.8008880.6962780.023*
C20.2593 (4)0.8771 (3)0.55156 (18)0.0217 (5)
H20.1219770.9056780.5633900.026*
C30.3551 (4)0.8984 (3)0.45723 (18)0.0217 (5)
H30.2848700.9455800.4028620.026*
C40.5574 (4)0.8506 (2)0.44051 (17)0.0192 (4)
C50.6605 (4)0.8746 (3)0.34209 (18)0.0239 (5)
H50.5915140.9241630.2877060.029*
C60.8552 (4)0.8272 (3)0.32630 (18)0.0245 (5)
H60.9220960.8488630.2615380.029*
C70.9628 (4)0.7450 (2)0.40491 (17)0.0206 (4)
C81.1609 (4)0.6838 (3)0.38329 (19)0.0239 (5)
H81.2252620.7040000.3176270.029*
C91.2636 (4)0.5947 (3)0.45581 (19)0.0256 (5)
H91.3972470.5516300.4396270.031*
C101.1717 (4)0.5675 (3)0.55334 (18)0.0230 (5)
H101.2439390.5061700.6031240.028*
C110.9763 (3)0.6288 (2)0.57866 (17)0.0179 (4)
C120.8661 (3)0.7198 (2)0.50432 (16)0.0172 (4)
C130.6599 (3)0.7784 (2)0.52252 (16)0.0163 (4)
C140.8677 (3)0.4264 (2)0.85999 (17)0.0185 (4)
H140.9058360.4096180.7933970.022*
C150.9360 (3)0.3231 (2)0.93801 (18)0.0200 (4)
H151.0154140.2368710.9249090.024*
C160.8865 (3)0.3481 (2)1.03367 (17)0.0193 (4)
H160.9357330.2801831.0875640.023*
C170.7636 (3)0.4735 (2)1.05221 (16)0.0171 (4)
C180.7158 (3)0.5039 (3)1.15135 (17)0.0209 (4)
H180.7660230.4372821.2056650.025*
C190.6004 (4)0.6261 (3)1.16818 (17)0.0216 (4)
H190.5765320.6460901.2338200.026*
C200.5124 (3)0.7270 (2)1.08935 (17)0.0188 (4)
C210.3829 (4)0.8493 (3)1.11064 (18)0.0225 (5)
H210.3605030.8683221.1765270.027*
C220.2875 (4)0.9428 (3)1.03660 (19)0.0245 (5)
H220.1994031.0255251.0517510.029*
C230.3201 (4)0.9160 (2)0.93963 (18)0.0221 (5)
H230.2513840.9797920.8895500.027*
C240.4518 (3)0.7971 (2)0.91527 (16)0.0171 (4)
C250.5548 (3)0.7003 (2)0.98981 (16)0.0160 (4)
C260.6900 (3)0.5732 (2)0.97060 (16)0.0155 (4)
Mn10.69313 (5)0.69516 (4)0.74703 (2)0.01740 (9)
N10.5603 (3)0.76591 (19)0.61740 (14)0.0166 (3)
N20.7511 (3)0.54816 (19)0.87462 (14)0.0162 (3)
O10.8970 (3)0.59267 (18)0.67213 (12)0.0215 (3)
O20.4684 (2)0.77507 (17)0.82180 (12)0.0196 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02412 (13)0.02379 (13)0.01929 (12)0.00630 (9)0.00649 (9)0.00014 (9)
C10.0198 (10)0.0235 (11)0.0154 (10)0.0071 (9)0.0062 (8)0.0002 (8)
C20.0196 (11)0.0251 (11)0.0206 (11)0.0057 (9)0.0080 (9)0.0009 (9)
C30.0240 (11)0.0238 (11)0.0179 (10)0.0060 (9)0.0109 (9)0.0014 (8)
C40.0260 (11)0.0174 (10)0.0149 (10)0.0062 (8)0.0074 (8)0.0002 (8)
C50.0315 (13)0.0254 (11)0.0140 (10)0.0077 (10)0.0073 (9)0.0017 (9)
C60.0321 (13)0.0264 (12)0.0135 (10)0.0085 (10)0.0031 (9)0.0001 (9)
C70.0258 (11)0.0211 (10)0.0168 (10)0.0088 (9)0.0027 (9)0.0039 (8)
C80.0248 (12)0.0286 (12)0.0188 (11)0.0091 (10)0.0004 (9)0.0058 (9)
C90.0205 (11)0.0316 (13)0.0232 (12)0.0049 (10)0.0001 (9)0.0076 (10)
C100.0226 (11)0.0250 (11)0.0191 (11)0.0008 (9)0.0052 (9)0.0052 (9)
C110.0204 (10)0.0177 (10)0.0153 (9)0.0026 (8)0.0039 (8)0.0045 (8)
C120.0211 (10)0.0150 (9)0.0154 (10)0.0049 (8)0.0035 (8)0.0019 (7)
C130.0205 (10)0.0144 (9)0.0141 (9)0.0052 (8)0.0043 (8)0.0006 (7)
C140.0206 (10)0.0173 (10)0.0168 (10)0.0056 (8)0.0044 (8)0.0006 (8)
C150.0185 (10)0.0157 (10)0.0230 (11)0.0042 (8)0.0044 (8)0.0028 (8)
C160.0169 (10)0.0203 (10)0.0183 (10)0.0057 (8)0.0064 (8)0.0055 (8)
C170.0143 (9)0.0209 (10)0.0159 (9)0.0074 (8)0.0044 (8)0.0027 (8)
C180.0191 (10)0.0284 (12)0.0147 (10)0.0092 (9)0.0055 (8)0.0036 (8)
C190.0202 (10)0.0308 (12)0.0143 (10)0.0086 (9)0.0031 (8)0.0022 (9)
C200.0184 (10)0.0234 (11)0.0164 (10)0.0083 (8)0.0037 (8)0.0026 (8)
C210.0251 (11)0.0253 (11)0.0184 (10)0.0088 (9)0.0006 (9)0.0056 (9)
C220.0277 (12)0.0185 (11)0.0233 (12)0.0034 (9)0.0016 (9)0.0040 (9)
C230.0240 (11)0.0183 (10)0.0187 (11)0.0025 (9)0.0008 (9)0.0009 (8)
C240.0156 (9)0.0187 (10)0.0149 (9)0.0049 (8)0.0008 (8)0.0005 (8)
C250.0136 (9)0.0184 (10)0.0154 (9)0.0049 (8)0.0027 (7)0.0003 (8)
C260.0135 (9)0.0194 (10)0.0146 (9)0.0074 (8)0.0044 (7)0.0011 (8)
Mn10.01791 (17)0.01906 (17)0.01235 (16)0.00190 (13)0.00333 (12)0.00042 (12)
N10.0190 (9)0.0171 (8)0.0132 (8)0.0050 (7)0.0057 (7)0.0013 (6)
N20.0171 (8)0.0163 (8)0.0151 (8)0.0049 (7)0.0052 (7)0.0002 (7)
O10.0232 (8)0.0224 (8)0.0126 (7)0.0019 (6)0.0026 (6)0.0018 (6)
O20.0177 (7)0.0226 (8)0.0134 (7)0.0006 (6)0.0018 (6)0.0003 (6)
Geometric parameters (Å, º) top
Br1—Mn12.5060 (5)C14—H140.9500
C1—N11.338 (3)C15—C161.366 (3)
C1—C21.394 (3)C15—H150.9500
C1—H10.9500C16—C171.397 (3)
C2—C31.363 (3)C16—H160.9500
C2—H20.9500C17—C261.422 (3)
C3—C41.401 (3)C17—C181.432 (3)
C3—H30.9500C18—C191.346 (4)
C4—C131.421 (3)C18—H180.9500
C4—C51.433 (3)C19—C201.436 (3)
C5—C61.350 (4)C19—H190.9500
C5—H50.9500C20—C211.398 (3)
C6—C71.429 (3)C20—C251.424 (3)
C6—H60.9500C21—C221.381 (4)
C7—C81.398 (4)C21—H210.9500
C7—C121.428 (3)C22—C231.394 (4)
C8—C91.373 (4)C22—H220.9500
C8—H80.9500C23—C241.389 (3)
C9—C101.397 (4)C23—H230.9500
C9—H90.9500C24—O21.341 (3)
C10—C111.388 (3)C24—C251.424 (3)
C10—H100.9500C25—C261.444 (3)
C11—O11.334 (3)C26—N21.375 (3)
C11—C121.425 (3)Mn1—O21.8356 (17)
C12—C131.441 (3)Mn1—O11.8389 (17)
C13—N11.373 (3)Mn1—N22.0849 (19)
C14—N21.337 (3)Mn1—N12.0858 (18)
C14—C151.394 (3)
N1—C1—C2123.1 (2)C16—C17—C26119.1 (2)
N1—C1—H1118.4C16—C17—C18120.9 (2)
C2—C1—H1118.4C26—C17—C18119.9 (2)
C3—C2—C1118.6 (2)C19—C18—C17120.5 (2)
C3—C2—H2120.7C19—C18—H18119.7
C1—C2—H2120.7C17—C18—H18119.7
C2—C3—C4120.0 (2)C18—C19—C20121.6 (2)
C2—C3—H3120.0C18—C19—H19119.2
C4—C3—H3120.0C20—C19—H19119.2
C3—C4—C13119.2 (2)C21—C20—C25120.3 (2)
C3—C4—C5120.6 (2)C21—C20—C19120.2 (2)
C13—C4—C5120.1 (2)C25—C20—C19119.5 (2)
C6—C5—C4120.3 (2)C22—C21—C20120.5 (2)
C6—C5—H5119.8C22—C21—H21119.8
C4—C5—H5119.8C20—C21—H21119.8
C5—C6—C7121.4 (2)C21—C22—C23120.1 (2)
C5—C6—H6119.3C21—C22—H22119.9
C7—C6—H6119.3C23—C22—H22119.9
C8—C7—C12120.1 (2)C24—C23—C22120.9 (2)
C8—C7—C6119.8 (2)C24—C23—H23119.6
C12—C7—C6120.0 (2)C22—C23—H23119.6
C9—C8—C7120.8 (2)O2—C24—C23117.5 (2)
C9—C8—H8119.6O2—C24—C25122.3 (2)
C7—C8—H8119.6C23—C24—C25120.1 (2)
C8—C9—C10120.0 (2)C24—C25—C20118.0 (2)
C8—C9—H9120.0C24—C25—C26123.1 (2)
C10—C9—H9120.0C20—C25—C26118.7 (2)
C11—C10—C9121.0 (2)N2—C26—C17119.6 (2)
C11—C10—H10119.5N2—C26—C25121.04 (19)
C9—C10—H10119.5C17—C26—C25119.4 (2)
O1—C11—C10117.4 (2)O2—Mn1—O1170.00 (9)
O1—C11—C12122.6 (2)O2—Mn1—N286.73 (7)
C10—C11—C12119.9 (2)O1—Mn1—N290.35 (8)
C11—C12—C7118.1 (2)O2—Mn1—N190.70 (8)
C11—C12—C13123.2 (2)O1—Mn1—N186.90 (8)
C7—C12—C13118.5 (2)N2—Mn1—N1149.10 (8)
N1—C13—C4119.3 (2)O2—Mn1—Br195.03 (6)
N1—C13—C12121.41 (19)O1—Mn1—Br194.96 (6)
C4—C13—C12119.3 (2)N2—Mn1—Br1104.39 (5)
N2—C14—C15123.0 (2)N1—Mn1—Br1106.51 (6)
N2—C14—H14118.5C1—N1—C13119.53 (19)
C15—C14—H14118.5C1—N1—Mn1116.41 (15)
C16—C15—C14118.7 (2)C13—N1—Mn1123.77 (15)
C16—C15—H15120.6C14—N2—C26119.37 (19)
C14—C15—H15120.6C14—N2—Mn1116.60 (15)
C15—C16—C17120.0 (2)C26—N2—Mn1123.79 (15)
C15—C16—H16120.0C11—O1—Mn1128.18 (15)
C17—C16—H16120.0C24—O2—Mn1126.02 (15)
N1—C1—C2—C32.4 (4)C20—C21—C22—C230.2 (4)
C1—C2—C3—C42.6 (4)C21—C22—C23—C241.6 (4)
C2—C3—C4—C130.9 (4)C22—C23—C24—O2176.7 (2)
C2—C3—C4—C5178.7 (2)C22—C23—C24—C250.4 (4)
C3—C4—C5—C6179.4 (2)O2—C24—C25—C20173.6 (2)
C13—C4—C5—C61.0 (4)C23—C24—C25—C202.5 (3)
C4—C5—C6—C74.0 (4)O2—C24—C25—C262.2 (3)
C5—C6—C7—C8172.1 (3)C23—C24—C25—C26178.4 (2)
C5—C6—C7—C124.7 (4)C21—C20—C25—C244.3 (3)
C12—C7—C8—C92.6 (4)C19—C20—C25—C24174.4 (2)
C6—C7—C8—C9174.1 (2)C21—C20—C25—C26179.7 (2)
C7—C8—C9—C102.0 (4)C19—C20—C25—C261.6 (3)
C8—C9—C10—C110.3 (4)C16—C17—C26—N24.5 (3)
C9—C10—C11—O1176.9 (2)C18—C17—C26—N2173.8 (2)
C9—C10—C11—C120.7 (4)C16—C17—C26—C25176.7 (2)
O1—C11—C12—C7176.1 (2)C18—C17—C26—C255.0 (3)
C10—C11—C12—C70.0 (3)C24—C25—C26—N211.0 (3)
O1—C11—C12—C131.5 (3)C20—C25—C26—N2173.3 (2)
C10—C11—C12—C13174.6 (2)C24—C25—C26—C17170.3 (2)
C8—C7—C12—C111.6 (3)C20—C25—C26—C175.5 (3)
C6—C7—C12—C11175.1 (2)C2—C1—N1—C131.6 (3)
C8—C7—C12—C13176.4 (2)C2—C1—N1—Mn1172.44 (19)
C6—C7—C12—C130.3 (3)C4—C13—N1—C15.2 (3)
C3—C4—C13—N14.9 (3)C12—C13—N1—C1174.8 (2)
C5—C4—C13—N1174.7 (2)C4—C13—N1—Mn1168.38 (16)
C3—C4—C13—C12175.1 (2)C12—C13—N1—Mn111.6 (3)
C5—C4—C13—C125.3 (3)C15—C14—N2—C261.8 (3)
C11—C12—C13—N110.0 (3)C15—C14—N2—Mn1172.88 (18)
C7—C12—C13—N1175.5 (2)C17—C26—N2—C145.0 (3)
C11—C12—C13—C4170.0 (2)C25—C26—N2—C14176.2 (2)
C7—C12—C13—C44.5 (3)C17—C26—N2—Mn1169.30 (15)
N2—C14—C15—C162.0 (4)C25—C26—N2—Mn19.5 (3)
C14—C15—C16—C172.5 (3)C10—C11—O1—Mn1150.17 (19)
C15—C16—C17—C260.7 (3)C12—C11—O1—Mn133.7 (3)
C15—C16—C17—C18177.5 (2)N2—Mn1—O1—C11169.3 (2)
C16—C17—C18—C19178.6 (2)N1—Mn1—O1—C1141.5 (2)
C26—C17—C18—C190.4 (3)Br1—Mn1—O1—C1164.8 (2)
C17—C18—C19—C203.6 (4)C23—C24—O2—Mn1143.34 (18)
C18—C19—C20—C21175.7 (2)C25—C24—O2—Mn140.4 (3)
C18—C19—C20—C253.0 (3)N2—Mn1—O2—C2445.79 (18)
C25—C20—C21—C223.2 (4)N1—Mn1—O2—C24165.02 (18)
C19—C20—C21—C22175.5 (2)Br1—Mn1—O2—C2458.38 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.953.033.674 (2)126
C2—H2···Br1i0.952.963.626 (3)128
Symmetry code: (i) x1, y, z.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKubicki, M., Borowiak, T. & Antkowiak, W. Z. (1995). Acta Cryst. C51, 1173–1175.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPapa, V., Cao, Y., Spannenberg, A., Junge, K. & Beller, M. (2020). Nat. Catal. 3, 135–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X.-S., Pan, Y., Sun, X.-Z. & Zhu, Y. (1999). Chin. J. Struct. Chem. 18, 418–422.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds