organic compounds
Naphthalen-1-ylmethanol
aChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA
*Correspondence e-mail: nazareay@buffalostate.edu
Apart from the OH group, the molecule of the title compound, C11H10O, is almost planar with all carbon atoms located within 0.03 Å of their mean plane. In the crystal, the molecules are linked by O—H⋯O hydrogen bonds, generating infinite chains running parallel to the [100] direction.
Keywords: crystal structure; 1-naphthalenemethanol; hydrogen bond.
CCDC reference: 2051428
Structure description
The title compound, C11H10O, was first prepared by reduction of the corresponding naphthylamide (West, 1920) and by Grignard reaction involving formaldehyde (Ziegler, 1921). It is available commercially.
The title compound (Fig. 1) exhibits standard bond lengths and angles. Apart from the OH group, the molecule is almost planar: all carbon atoms are located within 0.03 Å of their mean plane and all aromatic hydrogen atoms are also within 0.04 Å of the same plane. Atom O1 is displaced from the mean plane of the other non-hydrogen atoms (r.m.s. deviation = 0.029 Å) by −1.260 (1) Å.
In the crystal, the 1-naphthalenemethanol molecules are linked by O1—H1⋯O1i hydrogen bonds (Table 1, Fig. 2), generating infinite C(2) chains propagating parallel to the [100] direction: adjacent molecules in a chain are related by a-glide symmetry. Similar chains were observed in 1-naphthaleneethanol (Garozzo & Nazarenko, 2016). Additional C—H⋯C(ar) contacts involving the H4 hydrogen atom and C5 and C4 carbon atoms of another chain help to assemble the chains into a weakly bound layer lying parallel to the (010) plane (Fig. 2). These layers are held together by forming a molecular crystal.
Difference electron density maps (Fig. 3) show visible positive density at all covalent bonds and at the lone pair area of the oxygen atom. This effect comes from the limitations of the independent atom model; it results, among other shortcomings, in inflated R values and uncertainties of bonding parameters. Application of the Hirshfeld atom with HARt (Fugel et al., 2018) to the same dataset yields a lower R(F) of 0.036 and significantly lower uncertainties for the bond lengths and angles.
Synthesis and crystallization
The title compound is commercially available from Aldrich. Recrystallization from ethanol solution yields needle-like crystals, which were used in the current study.
Refinement
Crystal data, data collection and structure
details are summarized in Table 2Structural data
CCDC reference: 2051428
https://doi.org/10.1107/S2414314620016466/hb4373sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620016466/hb4373Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620016466/hb4373Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314620016466/hb4373Isup4.cml
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H10O | Dx = 1.282 Mg m−3 |
Mr = 158.19 | Melting point: 333 K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9306 (1) Å | Cell parameters from 9897 reflections |
b = 15.7882 (5) Å | θ = 3.2–32.0° |
c = 21.0651 (6) Å | µ = 0.08 mm−1 |
V = 1639.82 (8) Å3 | T = 173 K |
Z = 8 | Needle, colourless |
F(000) = 672 | 0.58 × 0.12 × 0.1 mm |
Bruker PHOTON-100 CMOS diffractometer | 2860 independent reflections |
Radiation source: sealedtube | 2146 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.8 pixels mm-1 | θmax = 32.1°, θmin = 3.2° |
φ and ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −23→23 |
Tmin = 0.797, Tmax = 0.862 | l = −31→31 |
38547 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | All H-atom parameters refined |
wR(F2) = 0.144 | w = 1/[σ2(Fo2) + (0.0706P)2 + 0.4678P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2860 reflections | Δρmax = 0.35 e Å−3 |
149 parameters | Δρmin = −0.14 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.64002 (18) | 0.45528 (6) | 0.27894 (4) | 0.0398 (2) | |
H1 | 0.788 (5) | 0.4551 (11) | 0.2541 (10) | 0.068 (5)* | |
C1 | 0.5128 (2) | 0.39728 (7) | 0.38094 (5) | 0.0288 (2) | |
C2 | 0.3861 (2) | 0.43905 (7) | 0.42978 (5) | 0.0330 (2) | |
H2 | 0.441 (3) | 0.4976 (9) | 0.4386 (7) | 0.041 (4)* | |
C3 | 0.1852 (3) | 0.39961 (8) | 0.46739 (6) | 0.0352 (3) | |
H3 | 0.102 (3) | 0.4281 (10) | 0.5013 (8) | 0.045 (4)* | |
C4 | 0.1114 (2) | 0.31785 (7) | 0.45523 (5) | 0.0325 (2) | |
H4 | −0.027 (3) | 0.2898 (9) | 0.4812 (7) | 0.042 (4)* | |
C5 | 0.2393 (2) | 0.27146 (7) | 0.40600 (5) | 0.0276 (2) | |
C6 | 0.1723 (3) | 0.18527 (7) | 0.39480 (6) | 0.0344 (3) | |
H6 | 0.027 (3) | 0.1588 (9) | 0.4205 (7) | 0.044 (4)* | |
C7 | 0.3045 (3) | 0.13985 (8) | 0.34904 (6) | 0.0388 (3) | |
H7 | 0.259 (4) | 0.0829 (11) | 0.3412 (8) | 0.050 (4)* | |
C8 | 0.5083 (3) | 0.17819 (8) | 0.31230 (6) | 0.0390 (3) | |
H8 | 0.607 (3) | 0.1454 (10) | 0.2784 (8) | 0.050 (4)* | |
C9 | 0.5750 (2) | 0.26132 (8) | 0.32101 (5) | 0.0336 (3) | |
H9 | 0.714 (3) | 0.2873 (10) | 0.2953 (7) | 0.046 (4)* | |
C10 | 0.4438 (2) | 0.31084 (7) | 0.36840 (5) | 0.0268 (2) | |
C11 | 0.7284 (2) | 0.44171 (8) | 0.34298 (6) | 0.0349 (3) | |
H11A | 0.777 (3) | 0.4958 (10) | 0.3634 (7) | 0.041 (4)* | |
H11B | 0.902 (3) | 0.4052 (9) | 0.3427 (7) | 0.039 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0254 (4) | 0.0620 (6) | 0.0319 (4) | −0.0028 (4) | −0.0007 (3) | 0.0145 (4) |
C1 | 0.0253 (5) | 0.0341 (5) | 0.0268 (5) | −0.0015 (4) | −0.0036 (4) | 0.0049 (4) |
C2 | 0.0366 (6) | 0.0322 (5) | 0.0302 (5) | 0.0010 (4) | −0.0043 (4) | 0.0021 (4) |
C3 | 0.0399 (6) | 0.0387 (6) | 0.0270 (5) | 0.0087 (5) | 0.0027 (4) | 0.0012 (4) |
C4 | 0.0319 (5) | 0.0382 (6) | 0.0274 (5) | 0.0040 (4) | 0.0043 (4) | 0.0070 (4) |
C5 | 0.0258 (5) | 0.0323 (5) | 0.0248 (5) | 0.0015 (4) | −0.0012 (4) | 0.0056 (4) |
C6 | 0.0354 (6) | 0.0333 (5) | 0.0343 (6) | −0.0024 (4) | −0.0009 (4) | 0.0059 (4) |
C7 | 0.0451 (7) | 0.0328 (6) | 0.0384 (6) | −0.0006 (5) | −0.0041 (5) | −0.0004 (5) |
C8 | 0.0408 (6) | 0.0422 (6) | 0.0339 (6) | 0.0070 (5) | 0.0014 (5) | −0.0049 (5) |
C9 | 0.0285 (5) | 0.0433 (6) | 0.0290 (5) | 0.0017 (4) | 0.0020 (4) | 0.0011 (4) |
C10 | 0.0231 (4) | 0.0330 (5) | 0.0242 (4) | 0.0014 (4) | −0.0023 (3) | 0.0039 (4) |
C11 | 0.0285 (5) | 0.0441 (6) | 0.0320 (5) | −0.0072 (5) | −0.0046 (4) | 0.0072 (5) |
O1—H1 | 0.90 (2) | C5—C10 | 1.4252 (14) |
O1—C11 | 1.4338 (14) | C6—H6 | 0.989 (17) |
C1—C2 | 1.3724 (16) | C6—C7 | 1.3669 (18) |
C1—C10 | 1.4310 (15) | C7—H7 | 0.940 (17) |
C1—C11 | 1.5039 (16) | C7—C8 | 1.4054 (19) |
C2—H2 | 0.980 (15) | C8—H8 | 1.006 (17) |
C2—C3 | 1.4131 (17) | C8—C9 | 1.3653 (18) |
C3—H3 | 0.939 (16) | C9—H9 | 0.965 (16) |
C3—C4 | 1.3654 (17) | C9—C10 | 1.4232 (16) |
C4—H4 | 0.981 (15) | C11—H11A | 0.986 (16) |
C4—C5 | 1.4174 (15) | C11—H11B | 1.032 (16) |
C5—C6 | 1.4201 (16) | ||
C11—O1—H1 | 107.5 (14) | C6—C7—H7 | 120.8 (11) |
C2—C1—C10 | 119.25 (10) | C6—C7—C8 | 120.22 (11) |
C2—C1—C11 | 119.75 (10) | C8—C7—H7 | 119.0 (11) |
C10—C1—C11 | 120.97 (10) | C7—C8—H8 | 121.0 (9) |
C1—C2—H2 | 118.0 (9) | C9—C8—C7 | 120.80 (11) |
C1—C2—C3 | 121.85 (11) | C9—C8—H8 | 118.2 (9) |
C3—C2—H2 | 120.1 (9) | C8—C9—H9 | 120.3 (9) |
C2—C3—H3 | 121.5 (10) | C8—C9—C10 | 120.87 (11) |
C4—C3—C2 | 119.88 (11) | C10—C9—H9 | 118.8 (10) |
C4—C3—H3 | 118.6 (10) | C5—C10—C1 | 118.78 (10) |
C3—C4—H4 | 120.5 (9) | C9—C10—C1 | 123.06 (10) |
C3—C4—C5 | 120.48 (11) | C9—C10—C5 | 118.14 (10) |
C5—C4—H4 | 119.0 (9) | O1—C11—C1 | 110.79 (9) |
C4—C5—C6 | 120.88 (10) | O1—C11—H11A | 110.7 (9) |
C4—C5—C10 | 119.74 (10) | O1—C11—H11B | 109.3 (8) |
C6—C5—C10 | 119.36 (10) | C1—C11—H11A | 110.1 (9) |
C5—C6—H6 | 118.8 (9) | C1—C11—H11B | 109.2 (9) |
C7—C6—C5 | 120.60 (11) | H11A—C11—H11B | 106.5 (13) |
C7—C6—H6 | 120.6 (9) | ||
C1—C2—C3—C4 | −0.39 (18) | C6—C5—C10—C9 | −0.45 (15) |
C2—C1—C10—C5 | 1.81 (15) | C6—C7—C8—C9 | −0.9 (2) |
C2—C1—C10—C9 | −176.55 (10) | C7—C8—C9—C10 | 1.34 (19) |
C2—C1—C11—O1 | −113.15 (12) | C8—C9—C10—C1 | 177.73 (11) |
C2—C3—C4—C5 | 1.44 (17) | C8—C9—C10—C5 | −0.64 (17) |
C3—C4—C5—C6 | 177.24 (11) | C10—C1—C2—C3 | −1.25 (17) |
C3—C4—C5—C10 | −0.83 (16) | C10—C1—C11—O1 | 69.09 (14) |
C4—C5—C6—C7 | −177.20 (11) | C10—C5—C6—C7 | 0.88 (17) |
C4—C5—C10—C1 | −0.80 (15) | C11—C1—C2—C3 | −179.05 (10) |
C4—C5—C10—C9 | 177.65 (10) | C11—C1—C10—C5 | 179.58 (9) |
C5—C6—C7—C8 | −0.22 (19) | C11—C1—C10—C9 | 1.22 (16) |
C6—C5—C10—C1 | −178.90 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.90 (2) | 1.87 (2) | 2.7504 (8) | 166 (2) |
Symmetry code: (i) x+1/2, y, −z+1/2. |
Acknowledgements
Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.
References
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fugel, M., Jayatilaka, D., Hupf, E., Overgaard, J., Hathwar, V. R., Macchi, P., Turner, M. J., Howard, J. A. K., Dolomanov, O. V., Puschmann, H., Iversen, B. B., Bürgi, H.-B. & Grabowsky, S. (2018). IUCrJ, 5, 32–44. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Garozzo, L. A. & Nazarenko, A. Y. (2016). IUCrData, 1, x160423. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
West, B. L. (1920). J. Am. Chem. Soc. 42, 1656–1669. CrossRef CAS Google Scholar
Ziegler, K. (1921). Ber. Dtsch. Chem. Ges. 54B, 737–740. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.