organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Naphthalen-1-yl­methanol

CROSSMARK_Color_square_no_text.svg

aChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 December 2020; accepted 19 December 2020; online 22 December 2020)

Apart from the OH group, the mol­ecule of the title compound, C11H10O, is almost planar with all carbon atoms located within 0.03 Å of their mean plane. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds, generating infinite chains running parallel to the [100] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C11H10O, was first prepared by reduction of the corresponding naphthyl­amide (West, 1920[West, B. L. (1920). J. Am. Chem. Soc. 42, 1656-1669.]) and by Grignard reaction involving formaldehyde (Ziegler, 1921[Ziegler, K. (1921). Ber. Dtsch. Chem. Ges. 54B, 737-740.]). It is available commercially.

The title compound (Fig. 1[link]) exhibits standard bond lengths and angles. Apart from the OH group, the mol­ecule is almost planar: all carbon atoms are located within 0.03 Å of their mean plane and all aromatic hydrogen atoms are also within 0.04 Å of the same plane. Atom O1 is displaced from the mean plane of the other non-hydrogen atoms (r.m.s. deviation = 0.029 Å) by −1.260 (1) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with 50% displacement elipsoids.

In the crystal, the 1-naphthalene­methanol mol­ecules are linked by O1—H1⋯O1i hydrogen bonds (Table 1[link], Fig. 2[link]), generating infinite C(2) chains propagating parallel to the [100] direction: adjacent mol­ecules in a chain are related by a-glide symmetry. Similar chains were observed in 1-naphthalene­ethanol (Garozzo & Naza­renko, 2016[Garozzo, L. A. & Nazarenko, A. Y. (2016). IUCrData, 1, x160423.]). Additional C—H⋯C(ar) contacts involving the H4 hydrogen atom and C5 and C4 carbon atoms of another chain help to assemble the chains into a weakly bound layer lying parallel to the (010) plane (Fig. 2[link]). These layers are held together by van der Waals forces, forming a mol­ecular crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.90 (2) 1.87 (2) 2.7504 (8) 166 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of 1-naphthalene­methanol mol­ecules viewed along the [010] vector. Hydrogen bonds are red, contacts shorter than sum of van der Waals radii are blue. Highlighted hydrogen atoms: H1 (pale blue), H4 (yellow), H8 (green).

Difference electron density maps (Fig. 3[link]) show visible positive density at all covalent bonds and at the lone pair area of the oxygen atom. This effect comes from the limitations of the independent atom model; it results, among other shortcomings, in inflated R values and uncertainties of bonding parameters. Application of the Hirshfeld atom refinement with HARt (Fugel et al., 2018[Fugel, M., Jayatilaka, D., Hupf, E., Overgaard, J., Hathwar, V. R., Macchi, P., Turner, M. J., Howard, J. A. K., Dolomanov, O. V., Puschmann, H., Iversen, B. B., Bürgi, H.-B. & Grabowsky, S. (2018). IUCrJ, 5, 32-44.]) to the same dataset yields a lower R(F) of 0.036 and significantly lower uncertainties for the bond lengths and angles.

[Figure 3]
Figure 3
Difference map in the plane of the naphthalene ring system (left lower corner: lone pair area of hydroxyl group).

Synthesis and crystallization

The title compound is commercially available from Aldrich. Recrystallization from ethanol solution yields needle-like crystals, which were used in the current study.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]

Table 2
Experimental details

Crystal data
Chemical formula C11H10O
Mr 158.19
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 4.9306 (1), 15.7882 (5), 21.0651 (6)
V3) 1639.82 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.58 × 0.12 × 0.1
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.797, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 38547, 2860, 2146
Rint 0.045
(sin θ/λ)max−1) 0.747
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.144, 1.04
No. of reflections 2860
No. of parameters 149
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.35, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Naphthalen-1-ylmethanol top
Crystal data top
C11H10ODx = 1.282 Mg m3
Mr = 158.19Melting point: 333 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 4.9306 (1) ÅCell parameters from 9897 reflections
b = 15.7882 (5) Åθ = 3.2–32.0°
c = 21.0651 (6) ŵ = 0.08 mm1
V = 1639.82 (8) Å3T = 173 K
Z = 8Needle, colourless
F(000) = 6720.58 × 0.12 × 0.1 mm
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
2860 independent reflections
Radiation source: sealedtube2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.8 pixels mm-1θmax = 32.1°, θmin = 3.2°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2323
Tmin = 0.797, Tmax = 0.862l = 3131
38547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051All H-atom parameters refined
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.4678P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2860 reflectionsΔρmax = 0.35 e Å3
149 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64002 (18)0.45528 (6)0.27894 (4)0.0398 (2)
H10.788 (5)0.4551 (11)0.2541 (10)0.068 (5)*
C10.5128 (2)0.39728 (7)0.38094 (5)0.0288 (2)
C20.3861 (2)0.43905 (7)0.42978 (5)0.0330 (2)
H20.441 (3)0.4976 (9)0.4386 (7)0.041 (4)*
C30.1852 (3)0.39961 (8)0.46739 (6)0.0352 (3)
H30.102 (3)0.4281 (10)0.5013 (8)0.045 (4)*
C40.1114 (2)0.31785 (7)0.45523 (5)0.0325 (2)
H40.027 (3)0.2898 (9)0.4812 (7)0.042 (4)*
C50.2393 (2)0.27146 (7)0.40600 (5)0.0276 (2)
C60.1723 (3)0.18527 (7)0.39480 (6)0.0344 (3)
H60.027 (3)0.1588 (9)0.4205 (7)0.044 (4)*
C70.3045 (3)0.13985 (8)0.34904 (6)0.0388 (3)
H70.259 (4)0.0829 (11)0.3412 (8)0.050 (4)*
C80.5083 (3)0.17819 (8)0.31230 (6)0.0390 (3)
H80.607 (3)0.1454 (10)0.2784 (8)0.050 (4)*
C90.5750 (2)0.26132 (8)0.32101 (5)0.0336 (3)
H90.714 (3)0.2873 (10)0.2953 (7)0.046 (4)*
C100.4438 (2)0.31084 (7)0.36840 (5)0.0268 (2)
C110.7284 (2)0.44171 (8)0.34298 (6)0.0349 (3)
H11A0.777 (3)0.4958 (10)0.3634 (7)0.041 (4)*
H11B0.902 (3)0.4052 (9)0.3427 (7)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (4)0.0620 (6)0.0319 (4)0.0028 (4)0.0007 (3)0.0145 (4)
C10.0253 (5)0.0341 (5)0.0268 (5)0.0015 (4)0.0036 (4)0.0049 (4)
C20.0366 (6)0.0322 (5)0.0302 (5)0.0010 (4)0.0043 (4)0.0021 (4)
C30.0399 (6)0.0387 (6)0.0270 (5)0.0087 (5)0.0027 (4)0.0012 (4)
C40.0319 (5)0.0382 (6)0.0274 (5)0.0040 (4)0.0043 (4)0.0070 (4)
C50.0258 (5)0.0323 (5)0.0248 (5)0.0015 (4)0.0012 (4)0.0056 (4)
C60.0354 (6)0.0333 (5)0.0343 (6)0.0024 (4)0.0009 (4)0.0059 (4)
C70.0451 (7)0.0328 (6)0.0384 (6)0.0006 (5)0.0041 (5)0.0004 (5)
C80.0408 (6)0.0422 (6)0.0339 (6)0.0070 (5)0.0014 (5)0.0049 (5)
C90.0285 (5)0.0433 (6)0.0290 (5)0.0017 (4)0.0020 (4)0.0011 (4)
C100.0231 (4)0.0330 (5)0.0242 (4)0.0014 (4)0.0023 (3)0.0039 (4)
C110.0285 (5)0.0441 (6)0.0320 (5)0.0072 (5)0.0046 (4)0.0072 (5)
Geometric parameters (Å, º) top
O1—H10.90 (2)C5—C101.4252 (14)
O1—C111.4338 (14)C6—H60.989 (17)
C1—C21.3724 (16)C6—C71.3669 (18)
C1—C101.4310 (15)C7—H70.940 (17)
C1—C111.5039 (16)C7—C81.4054 (19)
C2—H20.980 (15)C8—H81.006 (17)
C2—C31.4131 (17)C8—C91.3653 (18)
C3—H30.939 (16)C9—H90.965 (16)
C3—C41.3654 (17)C9—C101.4232 (16)
C4—H40.981 (15)C11—H11A0.986 (16)
C4—C51.4174 (15)C11—H11B1.032 (16)
C5—C61.4201 (16)
C11—O1—H1107.5 (14)C6—C7—H7120.8 (11)
C2—C1—C10119.25 (10)C6—C7—C8120.22 (11)
C2—C1—C11119.75 (10)C8—C7—H7119.0 (11)
C10—C1—C11120.97 (10)C7—C8—H8121.0 (9)
C1—C2—H2118.0 (9)C9—C8—C7120.80 (11)
C1—C2—C3121.85 (11)C9—C8—H8118.2 (9)
C3—C2—H2120.1 (9)C8—C9—H9120.3 (9)
C2—C3—H3121.5 (10)C8—C9—C10120.87 (11)
C4—C3—C2119.88 (11)C10—C9—H9118.8 (10)
C4—C3—H3118.6 (10)C5—C10—C1118.78 (10)
C3—C4—H4120.5 (9)C9—C10—C1123.06 (10)
C3—C4—C5120.48 (11)C9—C10—C5118.14 (10)
C5—C4—H4119.0 (9)O1—C11—C1110.79 (9)
C4—C5—C6120.88 (10)O1—C11—H11A110.7 (9)
C4—C5—C10119.74 (10)O1—C11—H11B109.3 (8)
C6—C5—C10119.36 (10)C1—C11—H11A110.1 (9)
C5—C6—H6118.8 (9)C1—C11—H11B109.2 (9)
C7—C6—C5120.60 (11)H11A—C11—H11B106.5 (13)
C7—C6—H6120.6 (9)
C1—C2—C3—C40.39 (18)C6—C5—C10—C90.45 (15)
C2—C1—C10—C51.81 (15)C6—C7—C8—C90.9 (2)
C2—C1—C10—C9176.55 (10)C7—C8—C9—C101.34 (19)
C2—C1—C11—O1113.15 (12)C8—C9—C10—C1177.73 (11)
C2—C3—C4—C51.44 (17)C8—C9—C10—C50.64 (17)
C3—C4—C5—C6177.24 (11)C10—C1—C2—C31.25 (17)
C3—C4—C5—C100.83 (16)C10—C1—C11—O169.09 (14)
C4—C5—C6—C7177.20 (11)C10—C5—C6—C70.88 (17)
C4—C5—C10—C10.80 (15)C11—C1—C2—C3179.05 (10)
C4—C5—C10—C9177.65 (10)C11—C1—C10—C5179.58 (9)
C5—C6—C7—C80.22 (19)C11—C1—C10—C91.22 (16)
C6—C5—C10—C1178.90 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.90 (2)1.87 (2)2.7504 (8)166 (2)
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFugel, M., Jayatilaka, D., Hupf, E., Overgaard, J., Hathwar, V. R., Macchi, P., Turner, M. J., Howard, J. A. K., Dolomanov, O. V., Puschmann, H., Iversen, B. B., Bürgi, H.-B. & Grabowsky, S. (2018). IUCrJ, 5, 32–44.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationGarozzo, L. A. & Nazarenko, A. Y. (2016). IUCrData, 1, x160423.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWest, B. L. (1920). J. Am. Chem. Soc. 42, 1656–1669.  CrossRef CAS Google Scholar
First citationZiegler, K. (1921). Ber. Dtsch. Chem. Ges. 54B, 737–740.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds