organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Fluoro-2-({[(2R)-1-hy­dr­oxy-1,1,3-tri­phenyl­propan-2-yl]imino}­meth­yl)phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711, USA
*Correspondence e-mail: adam_johnson@hmc.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 November 2020; accepted 2 December 2020; online 11 December 2020)

The title compound, C28H24FNO2, crystallizes in the ortho­rhom­bic space group P212121. A hydrogen-bonding network between the tertiary alcohol group and the fluoro substituent results in [010] chains in the solid state.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We have synthesized a number of chiral imine diols by Schiff-base condensation of the corresponding salicyl­aldehydes with (S)- or (R)-2-amino-1,1,3-tri­phenyl­propanol (Kang et al., 2004[Kang, Y.-F., Liu, L., Wang, R., Yan, W.-J. & Zhou, Y.-F. (2004). Tetrahedron Asymmetry, 15, 3155-3159.]; Liu et al. 2004[Liu, L., Kang, Y.-F., Wang, R., Zhou, Y.-F., Chen, C., Ni, M. & Gong, M.-Z. (2004). Tetrahedron Asymmetry, 15, 3757-3761.]). These compounds serve as ligands for titanium for the asymmetric intra­molecular hydro­amination of amino­allenes (Sha et al., 2019[Sha, F., Mitchell, B. S., Ye, C. Z., Abelson, C. S., Reinheimer, E. W., LeMagueres, P., Ferrara, J. D., Takase, M. K. & Johnson, A. R. (2019). Dalton Trans. 48, 9603-9616.]). We routinely prepare both enanti­omers of the ligands, and a number of them were examined by single-crystal X-ray diffraction, including the L-enanti­omer of the title compound, in order to compare the structures of the free and bound ligand.

2-Hy­droxy-5-fluoro-benzaldehyde 2S-(1,1,3-tri­phenyl­propanol) imine, C28H24FNO2, crystallizes in the ortho­rhom­bic space group P212121 as shown in Fig. 1[link]. The major structural features of the two enanti­omers are similar, as expected. The L-enanti­omer structure was collected at 100 K while the D-enanti­omer was collected at 293 K. The unit-cell parameters in the current room-temperature structure are slightly larger (average 1.3%), presumably due to the higher temperature of the data collection. The absolute structure parameter of −0.1 (3) has a large uncertainty but the absolute configuration was verified by synthesis and polarimetry.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level. Hydrogen atoms besides H1, H2 and H2A have been omitted for clarity.

The compound has the expected imine–phenol structure as opposed to the iminium–phenoxide tautomer seen in derivatives with less steric bulk. The C23–C28 phenol aromatic ring is close to co-planar with atoms O2 [deviation from the ring plane = 0.040 (2) Å], C22 [–0.061 (2) Å], N1 [–0.034 (2) Å] and C2 [–0.039 (2) Å]. These four atoms exhibit less deviation from the plane than the enanti­omer. The C22—N1—C2—C1 torsion angle is 110.2 (2)°, which places atom O1 1.555 (2) Å above the plane of the ring. This deviation is 0.166 Å larger than that for the enanti­omer at 100 K, although the torsion angle is almost identical.

The bonds between C27—C28, C23—C28 and C23—C24 are long at 1.39–1.41 Å while those between C24—C25, C25—C26 and C26—C27 are shorter at 1.36–1.37 Å. In contrast, the aromatic rings on the benzyl and phenyl substituents have typical C—C bond distances ranging from 1.37–1.39 Å. The aromatic C28—O2 bond at 1.349 (3) Å is substanti­ally shorter than the aliphatic C1—O1 bond [1.439 (3) Å]. This bonding motif has been seen in related structures (Sha et al., 2019[Sha, F., Mitchell, B. S., Ye, C. Z., Abelson, C. S., Reinheimer, E. W., LeMagueres, P., Ferrara, J. D., Takase, M. K. & Johnson, A. R. (2019). Dalton Trans. 48, 9603-9616.]).

There is an intra­molecular O2—H2⋯N1 hydrogen bond (Table 1[link]) between the salicyl­aldehyde alcohol group and the imine nitro­gen atom, which closes an S(6) ring and a long-range inter­molecular hydrogen bond between the tertiary alcohol O1—H1 and the F1 atom of an adjacent mol­ecule as shown in Fig. 2[link]: the H⋯F and O⋯F distances are 2.94 and 3.720 (3) Å, respectively. Weak inter­molecular C—H⋯F and C—H⋯O contacts are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.86 2.583 (3) 147
O1—H1⋯F1i 0.82 2.94 3.720 (3) 160
C9—H9⋯F1ii 0.93 2.54 3.467 (3) 175
C14—H14⋯O2iii 0.93 2.58 3.369 (3) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the inter- and intra­molecular hydrogen-bonding network along the b axis.

Synthesis and crystallization

Preparative details of the material have been reported previously (Sha et al., 2019[Sha, F., Mitchell, B. S., Ye, C. Z., Abelson, C. S., Reinheimer, E. W., LeMagueres, P., Ferrara, J. D., Takase, M. K. & Johnson, A. R. (2019). Dalton Trans. 48, 9603-9616.]). Crystals in the form of light-yellow blocks were obtained by slow evaporation from the mixed solvents of hexa­ne/ethyl acetate.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H24FNO2
Mr 425.48
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 6.0147 (2), 18.8172 (4), 20.4530 (5)
V3) 2314.87 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.29 × 0.27 × 0.23
 
Data collection
Diffractometer Rigaku XtaLAB Mini II
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]); ABSPACK (Rigaku OD, 2017[Rigaku OD (2017). SCALE3 ABSPACK. Rigaku Oxford Diffraction, Yarnton, England.])]
Tmin, Tmax 0.995, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 73250, 5721, 4529
Rint 0.044
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.03
No. of reflections 5721
No. of parameters 291
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.15
Absolute structure Flack x determined using 1550 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.1 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and CrystalMaker (Palmer, 2020[Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and CrystalMaker (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-Fluoro-2-({[(2R)-1-hydroxy-1,1,3-triphenylpropan-2-yl]imino}methyl)phenol top
Crystal data top
C28H24FNO2Dx = 1.221 Mg m3
Mr = 425.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 20629 reflections
a = 6.0147 (2) Åθ = 2.0–22.8°
b = 18.8172 (4) ŵ = 0.08 mm1
c = 20.4530 (5) ÅT = 293 K
V = 2314.87 (11) Å3Block, clear light yellow
Z = 40.29 × 0.27 × 0.23 mm
F(000) = 896
Data collection top
Rigaku XtaLAB Mini II
diffractometer
5721 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source4529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10.0000 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω scansh = 88
Absorption correction: analytical
[CrysAlisPro (Rigaku OD, 2019); ABSPACK (Rigaku OD, 2017)]
k = 2525
Tmin = 0.995, Tmax = 0.996l = 2727
73250 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.2813P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.14 e Å3
5721 reflectionsΔρmin = 0.15 e Å3
291 parametersAbsolute structure: Flack x determined using 1550 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.1 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.9178 (3)0.82714 (9)0.12710 (9)0.0962 (6)
O10.2298 (2)0.51725 (9)0.34826 (8)0.0552 (4)
H10.2036110.4748460.3431810.083*
O20.2834 (3)0.62611 (10)0.17459 (9)0.0684 (5)
H20.3286610.5960340.2003640.103*
N10.5550 (3)0.56695 (9)0.25587 (8)0.0413 (4)
C10.4599 (3)0.52649 (11)0.36563 (10)0.0398 (4)
C20.6059 (3)0.51204 (10)0.30374 (9)0.0386 (4)
H2A0.7634050.5150180.3157030.046*
C30.5589 (4)0.43882 (11)0.27290 (10)0.0505 (5)
H3A0.5813510.4023220.3057400.061*
H3B0.4043590.4369680.2594450.061*
C40.7040 (4)0.42272 (10)0.21473 (10)0.0488 (5)
C50.6403 (5)0.44232 (13)0.15197 (12)0.0639 (7)
H50.5054600.4654380.1454490.077*
C60.7771 (7)0.42755 (14)0.09884 (13)0.0835 (10)
H60.7331480.4410410.0570530.100*
C70.9761 (7)0.39330 (17)0.10751 (18)0.0886 (11)
H71.0670320.3836520.0718240.106*
C81.0393 (6)0.37362 (18)0.1685 (2)0.0909 (10)
H81.1738140.3501530.1745530.109*
C90.9049 (5)0.38825 (15)0.22170 (14)0.0712 (7)
H90.9511950.3744980.2631940.085*
C100.5143 (3)0.47796 (10)0.42366 (9)0.0402 (4)
C110.7181 (4)0.44477 (12)0.43239 (11)0.0495 (5)
H110.8279050.4494480.4006750.059*
C120.7598 (5)0.40449 (12)0.48822 (11)0.0594 (6)
H120.8968770.3823160.4934280.071*
C130.5999 (5)0.39739 (13)0.53549 (12)0.0657 (7)
H130.6284930.3707470.5728540.079*
C140.3965 (5)0.42993 (14)0.52737 (11)0.0652 (7)
H140.2870220.4249370.5591550.078*
C150.3550 (4)0.46988 (12)0.47220 (11)0.0520 (6)
H150.2175250.4918730.4674010.062*
C160.4910 (4)0.60386 (11)0.38657 (10)0.0450 (5)
C170.6909 (5)0.62610 (12)0.41351 (12)0.0576 (6)
H170.8033480.5931110.4207580.069*
C180.7254 (6)0.69653 (14)0.42975 (14)0.0764 (8)
H180.8605740.7105540.4476620.092*
C190.5618 (7)0.74562 (15)0.41960 (19)0.0930 (11)
H190.5843470.7928850.4311000.112*
C200.3641 (7)0.72472 (17)0.3923 (2)0.1065 (13)
H200.2536170.7582010.3843930.128*
C210.3279 (5)0.65428 (15)0.37652 (17)0.0797 (9)
H210.1919200.6406680.3588860.096*
C220.6980 (4)0.61408 (10)0.24233 (9)0.0405 (4)
H220.8370320.6120550.2621270.049*
C230.6501 (4)0.67165 (10)0.19634 (10)0.0415 (5)
C240.8092 (4)0.72373 (12)0.18420 (11)0.0534 (6)
H240.9447240.7232850.2061120.064*
C250.7621 (5)0.77581 (12)0.13918 (11)0.0600 (6)
C260.5670 (5)0.77790 (13)0.10519 (12)0.0649 (7)
H260.5421300.8131510.0741700.078*
C270.4081 (5)0.72738 (13)0.11734 (12)0.0643 (7)
H270.2743280.7286100.0945740.077*
C280.4451 (4)0.67427 (11)0.16341 (11)0.0494 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1196 (15)0.0738 (10)0.0954 (12)0.0342 (10)0.0053 (12)0.0365 (9)
O10.0371 (8)0.0709 (10)0.0577 (9)0.0053 (8)0.0042 (7)0.0022 (8)
O20.0602 (11)0.0715 (11)0.0735 (12)0.0102 (9)0.0239 (9)0.0191 (9)
N10.0450 (10)0.0434 (9)0.0355 (8)0.0008 (8)0.0026 (7)0.0031 (7)
C10.0344 (10)0.0472 (11)0.0379 (10)0.0011 (9)0.0006 (9)0.0030 (8)
C20.0407 (11)0.0398 (10)0.0354 (9)0.0013 (8)0.0003 (9)0.0055 (8)
C30.0633 (15)0.0433 (11)0.0447 (11)0.0084 (11)0.0065 (11)0.0011 (9)
C40.0647 (15)0.0364 (10)0.0451 (12)0.0073 (10)0.0022 (11)0.0033 (8)
C50.0920 (19)0.0495 (12)0.0503 (14)0.0007 (14)0.0024 (14)0.0016 (11)
C60.144 (3)0.0599 (15)0.0463 (14)0.013 (2)0.0211 (18)0.0026 (11)
C70.108 (3)0.0727 (19)0.085 (2)0.018 (2)0.041 (2)0.0203 (17)
C80.073 (2)0.090 (2)0.109 (3)0.0033 (18)0.013 (2)0.035 (2)
C90.0765 (19)0.0720 (16)0.0652 (16)0.0083 (15)0.0036 (15)0.0167 (13)
C100.0460 (12)0.0388 (10)0.0358 (10)0.0093 (9)0.0003 (9)0.0010 (8)
C110.0504 (13)0.0506 (11)0.0476 (12)0.0049 (11)0.0025 (10)0.0081 (9)
C120.0697 (17)0.0526 (13)0.0557 (14)0.0031 (12)0.0173 (14)0.0105 (11)
C130.099 (2)0.0578 (14)0.0406 (12)0.0197 (15)0.0153 (14)0.0125 (11)
C140.089 (2)0.0683 (15)0.0383 (12)0.0223 (15)0.0110 (13)0.0044 (11)
C150.0564 (14)0.0538 (12)0.0458 (12)0.0077 (11)0.0086 (11)0.0009 (10)
C160.0505 (13)0.0439 (11)0.0408 (10)0.0046 (10)0.0119 (10)0.0044 (9)
C170.0706 (17)0.0487 (12)0.0537 (13)0.0050 (12)0.0038 (12)0.0010 (10)
C180.098 (2)0.0607 (15)0.0702 (17)0.0204 (17)0.0091 (17)0.0113 (13)
C190.122 (3)0.0468 (15)0.110 (3)0.0052 (19)0.050 (2)0.0141 (16)
C200.103 (3)0.0553 (17)0.162 (4)0.0271 (19)0.033 (3)0.001 (2)
C210.0665 (19)0.0636 (16)0.109 (2)0.0174 (15)0.0101 (17)0.0004 (16)
C220.0433 (11)0.0440 (10)0.0342 (9)0.0007 (9)0.0013 (9)0.0033 (8)
C230.0537 (13)0.0385 (10)0.0323 (9)0.0028 (9)0.0016 (9)0.0003 (8)
C240.0629 (15)0.0514 (12)0.0458 (12)0.0055 (11)0.0026 (11)0.0075 (10)
C250.0844 (18)0.0432 (12)0.0522 (13)0.0071 (12)0.0050 (14)0.0087 (10)
C260.096 (2)0.0462 (12)0.0527 (14)0.0142 (14)0.0048 (15)0.0117 (10)
C270.0745 (18)0.0602 (14)0.0581 (14)0.0113 (14)0.0164 (14)0.0101 (12)
C280.0578 (14)0.0465 (11)0.0439 (11)0.0045 (11)0.0071 (11)0.0011 (9)
Geometric parameters (Å, º) top
F1—C251.368 (3)C12—H120.9300
O1—H10.8200C12—C131.370 (4)
O1—C11.439 (3)C13—H130.9300
O2—H20.8200C13—C141.378 (4)
O2—C281.349 (3)C14—H140.9300
N1—C21.456 (2)C14—C151.379 (3)
N1—C221.266 (3)C15—H150.9300
C1—C21.564 (3)C16—C171.387 (3)
C1—C101.533 (3)C16—C211.380 (3)
C1—C161.529 (3)C17—H170.9300
C2—H2A0.9800C17—C181.382 (3)
C2—C31.541 (3)C18—H180.9300
C3—H3A0.9700C18—C191.365 (5)
C3—H3B0.9700C19—H190.9300
C3—C41.506 (3)C19—C201.371 (5)
C4—C51.389 (3)C20—H200.9300
C4—C91.379 (4)C20—C211.382 (5)
C5—H50.9300C21—H210.9300
C5—C61.391 (4)C22—H220.9300
C6—H60.9300C22—C231.463 (3)
C6—C71.371 (5)C23—C241.392 (3)
C7—H70.9300C23—C281.406 (3)
C7—C81.355 (5)C24—H240.9300
C8—H80.9300C24—C251.374 (3)
C8—C91.384 (4)C25—C261.364 (4)
C9—H90.9300C26—H260.9300
C10—C111.387 (3)C26—C271.371 (4)
C10—C151.388 (3)C27—H270.9300
C11—H110.9300C27—C281.391 (3)
C11—C121.393 (3)
C1—O1—H1109.5C12—C13—H13120.2
C28—O2—H2109.5C12—C13—C14119.7 (2)
C22—N1—C2120.07 (17)C14—C13—H13120.2
O1—C1—C2108.61 (16)C13—C14—H14120.0
O1—C1—C10108.93 (16)C13—C14—C15120.1 (2)
O1—C1—C16107.55 (17)C15—C14—H14120.0
C10—C1—C2113.77 (16)C10—C15—H15119.3
C16—C1—C2108.88 (15)C14—C15—C10121.4 (2)
C16—C1—C10108.92 (16)C14—C15—H15119.3
N1—C2—C1107.61 (15)C17—C16—C1120.29 (19)
N1—C2—H2A109.3C21—C16—C1121.7 (2)
N1—C2—C3108.70 (16)C21—C16—C17117.9 (2)
C1—C2—H2A109.3C16—C17—H17119.5
C3—C2—C1112.55 (16)C18—C17—C16121.0 (3)
C3—C2—H2A109.3C18—C17—H17119.5
C2—C3—H3A108.9C17—C18—H18119.9
C2—C3—H3B108.9C19—C18—C17120.3 (3)
H3A—C3—H3B107.7C19—C18—H18119.9
C4—C3—C2113.37 (18)C18—C19—H19120.2
C4—C3—H3A108.9C18—C19—C20119.5 (3)
C4—C3—H3B108.9C20—C19—H19120.2
C5—C4—C3121.1 (2)C19—C20—H20119.8
C9—C4—C3121.4 (2)C19—C20—C21120.5 (3)
C9—C4—C5117.5 (2)C21—C20—H20119.8
C4—C5—H5119.8C16—C21—C20120.9 (3)
C4—C5—C6120.4 (3)C16—C21—H21119.6
C6—C5—H5119.8C20—C21—H21119.6
C5—C6—H6119.7N1—C22—H22119.2
C7—C6—C5120.6 (3)N1—C22—C23121.70 (19)
C7—C6—H6119.7C23—C22—H22119.2
C6—C7—H7120.2C24—C23—C22120.0 (2)
C8—C7—C6119.5 (3)C24—C23—C28119.53 (19)
C8—C7—H7120.2C28—C23—C22120.43 (19)
C7—C8—H8119.8C23—C24—H24120.7
C7—C8—C9120.4 (3)C25—C24—C23118.6 (2)
C9—C8—H8119.8C25—C24—H24120.7
C4—C9—C8121.6 (3)F1—C25—C24118.9 (3)
C4—C9—H9119.2C26—C25—F1118.5 (2)
C8—C9—H9119.2C26—C25—C24122.6 (2)
C11—C10—C1123.82 (18)C25—C26—H26120.4
C11—C10—C15117.93 (19)C25—C26—C27119.2 (2)
C15—C10—C1118.15 (19)C27—C26—H26120.4
C10—C11—H11119.7C26—C27—H27119.7
C10—C11—C12120.6 (2)C26—C27—C28120.6 (2)
C12—C11—H11119.7C28—C27—H27119.7
C11—C12—H12119.8O2—C28—C23121.85 (19)
C13—C12—C11120.3 (3)O2—C28—C27118.8 (2)
C13—C12—H12119.8C27—C28—C23119.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.862.583 (3)147
O1—H1···F1i0.822.943.720 (3)160
C9—H9···F1ii0.932.543.467 (3)175
C14—H14···O2iii0.932.583.369 (3)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors wish to thank Eric W. Reinheimer for technical support.

Funding information

Funding for this research was provided by: Harvey Mudd College.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKang, Y.-F., Liu, L., Wang, R., Yan, W.-J. & Zhou, Y.-F. (2004). Tetrahedron Asymmetry, 15, 3155–3159.  Web of Science CrossRef CAS Google Scholar
First citationLiu, L., Kang, Y.-F., Wang, R., Zhou, Y.-F., Chen, C., Ni, M. & Gong, M.-Z. (2004). Tetrahedron Asymmetry, 15, 3757–3761.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2017). SCALE3 ABSPACK. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSha, F., Mitchell, B. S., Ye, C. Z., Abelson, C. S., Reinheimer, E. W., LeMagueres, P., Ferrara, J. D., Takase, M. K. & Johnson, A. R. (2019). Dalton Trans. 48, 9603–9616.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds