organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,7,7-Tri­methyl-3-(naphthalen-2-ylcarbon­yl)bi­cyclo­[2.2.1]heptan-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Rédox (LEIMCR), Faculté de Technologie, Université Ferhat Abbas-Sétif-1, Sétif, 19000 , Algeria, bUniversité Cadi Ayyad Faculté des Sciences Semlalia, Departement de Chimie, BP 2390, 40001, Marrakech, Morocco, and cChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by R. J. Butcher, Howard University, USA (Received 17 December 2020; accepted 22 December 2020; online 24 December 2020)

The title compound, C21H22O2, crystallizes in its keto form. The mol­ecules are connected via weak C—H⋯O inter­actions, forming infinite chains perpendic­ular to the [001] axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chiral β-diketonato ligands are used in catalysis and spectroscopy; chiral naphthyl derivatives have recently been prepared (Clark et al., 2013[Clark, I. R., Wenzel, B. T. & Wenzel, T. J. (2013). Tetrahedron Asymmetry, 24, 297-304.]). However, no naphthyl-substituted β-diketones were found in the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) in November 2020.

The title compound, C21H22O2, crystallizes in its keto-form (Fig. 1[link]). The shape of both the camphor and naphthyl fragments is essentially the same as in their parent mol­ecules.

[Figure 1]
Figure 1
Numbering scheme of the title compound with 50% probability displacement ellipsoids.

There are no strong inter­molecular inter­actions in this structure. The mol­ecules are connected via weak C—H⋯O bonds (Table 1[link]), forming infinite chains perpendicular to the [001] axis (Fig. 2[link]). The hydrogen atoms of the naphthyl ring system and atoms H9B, H9C, and H10B of the methyl groups of the camphor fragment help to assemble these chains in the crystal via van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.57 3.296 (3) 134
C16—H16⋯O2ii 0.95 2.57 3.458 (3) 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 4}}]; (ii) [x, y-1, z].
[Figure 2]
Figure 2
Packing diagram of the title compound showing C—H⋯O hydrogen bonding; the view along the [001] vector, which is parallel to the 41 screw axis. Only one layer of mol­ecules is shown; the screw-axis symmetry operation rotates each subsequent layer by 90° and moves by c/4.

Synthesis and crystallization

The title compound was prepared by a procedure reported earlier (Clark et al., 2013[Clark, I. R., Wenzel, B. T. & Wenzel, T. J. (2013). Tetrahedron Asymmetry, 24, 297-304.]) and was purified by recrystallization from hexane solution (m.p. 399 K). Elemental analysis for C21H22O2, calculated C 82.30, H 7.24; found C 82.23, H 7.15. 1H NMR: (DMSO-d6, δ p.p.m.): 12.50 (s, OH), 9.00–7.40 (m, HAr), 2.80–0.80 (m, HCamphor); 13C NMR: (DMSO-d6, δ p.p.m.): 212–194 (C=O), 135–115 (CAr), 64–9 (CCamphor). UV–vis in aceto­nitrile (λmax (nm), [ɛ] (l mol−1 cm−1)): 272 [10197], 283 [12668], 292 [10352], 325 [8294]. Single crystals were grown by slow evaporation of a methanol solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H22O2
Mr 306.38
Crystal system, space group Tetragonal, P41212
Temperature (K) 173
a, c (Å) 9.5637 (3), 36.3395 (10)
V3) 3323.8 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.60
Crystal size (mm) 0.41 × 0.33 × 0.17
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.922, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27362, 3363, 3123
Rint 0.034
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.05
No. of reflections 3363
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.16
Absolute structure Flack x determined using 1176 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.04 (10)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); VESTA (Momma & Izumi, 2011); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(1R,3S,4R)-1,7,7-Trimethyl-3-(naphthalen-2-ylcarbonyl)bicyclo[2.2.1]heptan-2-one top
Crystal data top
C21H22O2Melting point: 399 K
Mr = 306.38Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P41212Cell parameters from 9853 reflections
a = 9.5637 (3) Åθ = 4.6–74.7°
c = 36.3395 (10) ŵ = 0.60 mm1
V = 3323.8 (2) Å3T = 173 K
Z = 8Block, colourless
F(000) = 13120.41 × 0.33 × 0.17 mm
Dx = 1.225 Mg m3
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
3363 independent reflections
Radiation source: sealedtube3123 reflections with I > 2σ(I)
Detector resolution: 10.8 pixels mm-1Rint = 0.034
φ and ω scansθmax = 75.2°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 119
Tmin = 0.922, Tmax = 1.000k = 1110
27362 measured reflectionsl = 4345
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.9139P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3363 reflectionsΔρmax = 0.33 e Å3
211 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack x determined using 1176 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.04 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70347 (19)0.6575 (2)0.64361 (5)0.0464 (4)
O20.5159 (2)0.51669 (19)0.69923 (4)0.0496 (5)
C10.6066 (2)0.5955 (2)0.62993 (5)0.0332 (5)
C120.5164 (2)0.2695 (3)0.69118 (6)0.0365 (5)
C200.4639 (2)0.1076 (3)0.74128 (6)0.0352 (5)
C20.5645 (2)0.4436 (2)0.63805 (6)0.0322 (5)
H20.6413920.3794300.6301230.039*
C110.5318 (2)0.4187 (2)0.67846 (6)0.0361 (5)
C40.4804 (2)0.5150 (2)0.57811 (6)0.0353 (5)
C210.4779 (2)0.2461 (3)0.72708 (6)0.0377 (5)
H210.4601930.3236270.7427610.045*
C50.5053 (2)0.6502 (2)0.60124 (6)0.0367 (5)
C30.4366 (2)0.4255 (2)0.61188 (6)0.0332 (5)
H30.4131050.3261340.6059390.040*
C70.3144 (2)0.5104 (3)0.62806 (6)0.0409 (5)
H7A0.2998280.4882960.6543940.049*
H7B0.2265580.4928470.6144090.049*
C150.4932 (2)0.0064 (3)0.71753 (6)0.0394 (5)
C130.5416 (2)0.1533 (3)0.66742 (6)0.0387 (5)
H130.5659840.1686610.6423970.046*
C140.5307 (2)0.0201 (3)0.68070 (7)0.0408 (5)
H140.5488780.0564670.6647250.049*
C80.3638 (3)0.5307 (3)0.54932 (7)0.0499 (6)
H8A0.2820510.5747680.5607140.075*
H8B0.3378120.4381970.5399250.075*
H8C0.3971170.5890210.5289610.075*
C90.6120 (3)0.4631 (3)0.55838 (6)0.0426 (6)
H9A0.6408850.5321330.5399570.064*
H9B0.5919510.3738840.5462030.064*
H9C0.6872760.4500520.5763400.064*
C190.4206 (3)0.0829 (3)0.77769 (7)0.0438 (6)
H190.4004200.1593000.7935430.053*
C160.4805 (3)0.1453 (3)0.73169 (8)0.0496 (6)
H160.5016860.2230710.7164250.060*
C60.3646 (3)0.6628 (3)0.62289 (7)0.0442 (6)
H6A0.3795420.7086160.6470000.053*
H6B0.2952740.7176160.6087030.053*
C100.5525 (3)0.7813 (3)0.58164 (7)0.0523 (7)
H10A0.5658960.8564960.5996280.078*
H10B0.4813380.8094120.5637030.078*
H10C0.6409350.7631220.5688790.078*
C170.4383 (3)0.1660 (3)0.76687 (8)0.0537 (7)
H170.4292410.2586250.7760090.064*
C180.4076 (3)0.0513 (3)0.79021 (7)0.0513 (7)
H180.3777410.0677750.8147590.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0456 (10)0.0561 (11)0.0375 (8)0.0160 (8)0.0059 (7)0.0023 (8)
O20.0678 (12)0.0467 (10)0.0343 (8)0.0024 (8)0.0081 (8)0.0006 (7)
C10.0344 (11)0.0380 (12)0.0273 (9)0.0036 (9)0.0034 (8)0.0012 (8)
C120.0288 (11)0.0459 (13)0.0350 (10)0.0010 (9)0.0009 (9)0.0071 (9)
C200.0255 (10)0.0455 (13)0.0345 (10)0.0012 (9)0.0056 (8)0.0008 (9)
C20.0295 (10)0.0364 (11)0.0308 (10)0.0007 (9)0.0018 (8)0.0020 (8)
C110.0370 (12)0.0401 (12)0.0311 (10)0.0025 (9)0.0002 (9)0.0040 (9)
C40.0310 (11)0.0442 (13)0.0306 (10)0.0031 (9)0.0019 (8)0.0020 (9)
C210.0352 (11)0.0427 (13)0.0353 (10)0.0021 (10)0.0015 (9)0.0014 (10)
C50.0369 (12)0.0385 (12)0.0347 (10)0.0005 (10)0.0007 (9)0.0052 (9)
C30.0290 (11)0.0370 (11)0.0337 (10)0.0032 (9)0.0015 (8)0.0005 (9)
C70.0301 (11)0.0519 (15)0.0406 (11)0.0001 (10)0.0035 (9)0.0008 (10)
C150.0283 (11)0.0460 (13)0.0439 (11)0.0014 (9)0.0072 (9)0.0020 (10)
C130.0353 (12)0.0439 (13)0.0370 (11)0.0023 (10)0.0012 (9)0.0007 (10)
C140.0351 (12)0.0441 (13)0.0432 (11)0.0052 (10)0.0010 (10)0.0066 (10)
C80.0410 (14)0.0705 (18)0.0381 (12)0.0032 (13)0.0088 (10)0.0036 (12)
C90.0380 (12)0.0572 (15)0.0324 (10)0.0050 (11)0.0045 (9)0.0035 (10)
C190.0396 (13)0.0527 (15)0.0390 (11)0.0023 (11)0.0045 (10)0.0055 (11)
C160.0442 (14)0.0422 (14)0.0625 (16)0.0025 (11)0.0117 (12)0.0047 (12)
C60.0416 (13)0.0442 (13)0.0467 (13)0.0101 (11)0.0013 (11)0.0008 (11)
C100.0639 (18)0.0459 (15)0.0471 (13)0.0080 (13)0.0071 (12)0.0129 (11)
C170.0502 (16)0.0447 (14)0.0662 (16)0.0085 (12)0.0135 (13)0.0198 (13)
C180.0438 (14)0.0618 (17)0.0482 (13)0.0051 (12)0.0043 (11)0.0181 (12)
Geometric parameters (Å, º) top
O1—C11.207 (3)C7—C61.545 (4)
O2—C111.213 (3)C15—C141.409 (3)
C1—C21.535 (3)C15—C161.430 (4)
C1—C51.516 (3)C13—H130.9500
C12—C111.507 (3)C13—C141.367 (4)
C12—C211.374 (3)C14—H140.9500
C12—C131.428 (3)C8—H8A0.9800
C20—C211.428 (3)C8—H8B0.9800
C20—C151.418 (3)C8—H8C0.9800
C20—C191.406 (3)C9—H9A0.9800
C2—H21.0000C9—H9B0.9800
C2—C111.521 (3)C9—H9C0.9800
C2—C31.559 (3)C19—H190.9500
C4—C51.560 (3)C19—C181.367 (4)
C4—C31.554 (3)C16—H160.9500
C4—C81.537 (3)C16—C171.355 (4)
C4—C91.531 (3)C6—H6A0.9900
C21—H210.9500C6—H6B0.9900
C5—C61.564 (3)C10—H10A0.9800
C5—C101.511 (3)C10—H10B0.9800
C3—H31.0000C10—H10C0.9800
C3—C71.540 (3)C17—H170.9500
C7—H7A0.9900C17—C181.418 (4)
C7—H7B0.9900C18—H180.9500
O1—C1—C2125.9 (2)C20—C15—C16118.6 (2)
O1—C1—C5127.1 (2)C14—C15—C20119.4 (2)
C5—C1—C2106.96 (18)C14—C15—C16122.0 (2)
C21—C12—C11118.1 (2)C12—C13—H13120.0
C21—C12—C13119.5 (2)C14—C13—C12120.0 (2)
C13—C12—C11122.31 (19)C14—C13—H13120.0
C15—C20—C21118.3 (2)C15—C14—H14119.3
C19—C20—C21121.5 (2)C13—C14—C15121.5 (2)
C19—C20—C15120.1 (2)C13—C14—H14119.3
C1—C2—H2109.5C4—C8—H8A109.5
C1—C2—C3101.15 (16)C4—C8—H8B109.5
C11—C2—C1112.83 (18)C4—C8—H8C109.5
C11—C2—H2109.5H8A—C8—H8B109.5
C11—C2—C3114.20 (17)H8A—C8—H8C109.5
C3—C2—H2109.5H8B—C8—H8C109.5
O2—C11—C12121.90 (19)C4—C9—H9A109.5
O2—C11—C2120.4 (2)C4—C9—H9B109.5
C12—C11—C2117.72 (19)C4—C9—H9C109.5
C3—C4—C594.14 (16)H9A—C9—H9B109.5
C8—C4—C5113.4 (2)H9A—C9—H9C109.5
C8—C4—C3113.29 (19)H9B—C9—H9C109.5
C9—C4—C5113.31 (19)C20—C19—H19120.1
C9—C4—C3114.39 (19)C18—C19—C20119.8 (3)
C9—C4—C8108.02 (19)C18—C19—H19120.1
C12—C21—C20121.3 (2)C15—C16—H16120.0
C12—C21—H21119.4C17—C16—C15120.1 (3)
C20—C21—H21119.4C17—C16—H16120.0
C1—C5—C4100.46 (18)C5—C6—H6A110.8
C1—C5—C6103.31 (18)C5—C6—H6B110.8
C4—C5—C6101.74 (18)C7—C6—C5104.83 (19)
C10—C5—C1114.8 (2)C7—C6—H6A110.8
C10—C5—C4118.64 (19)C7—C6—H6B110.8
C10—C5—C6115.5 (2)H6A—C6—H6B108.9
C2—C3—H3114.4C5—C10—H10A109.5
C4—C3—C2102.03 (16)C5—C10—H10B109.5
C4—C3—H3114.4C5—C10—H10C109.5
C7—C3—C2107.70 (17)H10A—C10—H10B109.5
C7—C3—C4102.45 (18)H10A—C10—H10C109.5
C7—C3—H3114.4H10B—C10—H10C109.5
C3—C7—H7A111.3C16—C17—H17119.6
C3—C7—H7B111.3C16—C17—C18120.8 (3)
C3—C7—C6102.44 (18)C18—C17—H17119.6
H7A—C7—H7B109.2C19—C18—C17120.6 (2)
C6—C7—H7A111.3C19—C18—H18119.7
C6—C7—H7B111.3C17—C18—H18119.7
O1—C1—C2—C1158.5 (3)C5—C4—C3—C255.30 (19)
O1—C1—C2—C3179.1 (2)C5—C4—C3—C756.14 (19)
O1—C1—C5—C4144.2 (2)C3—C2—C11—O2101.7 (3)
O1—C1—C5—C6110.9 (3)C3—C2—C11—C1276.7 (3)
O1—C1—C5—C1015.7 (3)C3—C4—C5—C154.17 (19)
C1—C2—C11—O213.1 (3)C3—C4—C5—C651.94 (19)
C1—C2—C11—C12168.51 (19)C3—C4—C5—C10179.9 (2)
C1—C2—C3—C435.2 (2)C3—C7—C6—C54.6 (2)
C1—C2—C3—C772.2 (2)C15—C20—C21—C121.1 (3)
C1—C5—C6—C773.3 (2)C15—C20—C19—C180.4 (3)
C12—C13—C14—C150.8 (4)C15—C16—C17—C180.6 (4)
C20—C15—C14—C131.0 (3)C13—C12—C11—O2176.8 (2)
C20—C15—C16—C171.4 (4)C13—C12—C11—C24.8 (3)
C20—C19—C18—C170.4 (4)C13—C12—C21—C200.6 (3)
C2—C1—C5—C434.7 (2)C14—C15—C16—C17177.2 (2)
C2—C1—C5—C670.1 (2)C8—C4—C5—C1171.77 (19)
C2—C1—C5—C10163.2 (2)C8—C4—C5—C665.7 (2)
C2—C3—C7—C668.6 (2)C8—C4—C5—C1062.3 (3)
C11—C12—C21—C20178.8 (2)C8—C4—C3—C2172.96 (19)
C11—C12—C13—C14177.8 (2)C8—C4—C3—C761.5 (2)
C11—C2—C3—C4156.71 (18)C9—C4—C5—C164.6 (2)
C11—C2—C3—C749.3 (2)C9—C4—C5—C6170.76 (18)
C4—C5—C6—C730.5 (2)C9—C4—C5—C1061.3 (3)
C4—C3—C7—C638.6 (2)C9—C4—C3—C262.6 (2)
C21—C12—C11—O22.6 (3)C9—C4—C3—C7174.07 (19)
C21—C12—C11—C2175.8 (2)C19—C20—C21—C12178.1 (2)
C21—C12—C13—C141.6 (3)C19—C20—C15—C14177.3 (2)
C21—C20—C15—C141.9 (3)C19—C20—C15—C161.3 (3)
C21—C20—C15—C16179.5 (2)C16—C15—C14—C13179.6 (2)
C21—C20—C19—C18179.6 (2)C16—C17—C18—C190.3 (4)
C5—C1—C2—C11122.51 (19)C10—C5—C6—C7160.4 (2)
C5—C1—C2—C30.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.573.296 (3)134
C16—H16···O2ii0.952.573.458 (3)156
Symmetry codes: (i) x+3/2, y1/2, z+5/4; (ii) x, y1, z.
 

Acknowledgements

Help from the CLAC Laboratory at Chemistry Institute of the University of Strasbourg is gratefully acknowledged.

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, I. R., Wenzel, B. T. & Wenzel, T. J. (2013). Tetrahedron Asymmetry, 24, 297–304.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds