organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,12-Diselena-3,4,13,14-tetra­aza­tri­cyclo[9.3.0.02,6]tetra­deca-3,13-diene

aJohannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 25 November 2020; accepted 3 December 2020; online 11 December 2020)

The title compound, C8H8N4Se2, crystallizes in a non-symmetrical conformation with a dihedral angle between the heterocycles of 45.0 (3)° and a nearly strain-free tetra­methyl­ene tether. The crystal studied was non-merohedrally twinned with a fractional contribution of 0.342 (3) for the minor twin component.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,3-Selena­diazo­les are synthesized from SeO2-oxdidation of semicarbazones (Yalpani et al., 1971[Yalpani, M., Lalezari, I. & Shafiee, A. (1971). J. Org. Chem. 36, 2836-2838.]; Al-Smadi & Ratrout, 2004[Al-Smadi, M. & Ratrout, S. (2004). Molecules, 9, 957-967.]) and are important inter­mediates for the synthesis of medium-sized (Meier, 1972[Meier, H. (1972). Synthesis, 1972, 235-253.]) heterocyclic (Detert, 2011[Detert, H. (2011). Targets in Heterocyclic Systems, 15, 1-49.]) and strained cyclo­alkynes (Bissinger et al., 1988[Bissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221-224.]). Bis-selena­diazo­les have been used as inter­mediates for the synthesis of medium-sized cyclo­alkadiynes (Gleiter et al., 1988[Gleiter, R., Karcher, M., Jahn, R. & Irngartinger, H. (1988). Chem. Ber. 121, 735-740.]).

The selena­diazole rings in the title compound (Fig. 1[link]) are essentially planar and include a torsion angle of N13—C14—C4—N3 = −43.6 (10)°. This torsion angle is significantly smaller than the corresponding torsion angle (58.2°) in a dibenzo­cyclo­octa-1,3-diene (Janhsen et al., 2017[Janhsen, B., Daniliuc, C. G. & Studer, A. (2017). Chem. Sci. 8, 3547-3553.]). In the tetra­methyl­ene tether, the dihedral angle at C8—C9—C10—C14 [84.9 (10)°] shows the largest deviation from the ideal value of 60° whereas C6—C7—C8—C9 matches this value nearly perfectly: −59.7 (11)°. Contrary to the formal symmetry, the conformer in the crystal shows neither a C2 axis nor a mirror plane. Two mol­ecules of the title compound fill the unit cell, and these are related by a center of inversion. One hydrogen atom at C7 points to the center of a selena­diazole of the neighbouring mol­ecule, thus keeping the rings at a distance (Fig. 2[link]).

[Figure 1]
Figure 1
Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Partial packing diagram of the title compound. View is along the b axis.

Synthesis and crystallization

The title compound was prepared from cyclo­octa­none via oxidation with selenium dioxide to suberil, the formation of bis-semicarbazone and oxidation/cyclization with selenic acid. 5.1 g of bis-semicarbazone in 100 ml of 1,4-dioxane were stirred for 7 d after the addition of 6.6 g of SeO2 in 10 ml of water. The mixture was concentrated to 60 ml, diluted with water (100 ml) and extracted with chloro­form (2×). The pooled solutions were dried, concentrated and the residue purified via chromatography (SiO2, toluene/ethyl acetate 10/1, Rf = 0.35). Recrystallization from the mixed solvents of chloro­form/propanol-2 yielded colorless crystals with m.p. = 453 K (under explosion). 13C NMR data are consistent with data given by Meier (Meier et al., 1981[Meier, H., Zountsas, J. & Zimmer, O. (1981). Z. Naturforsch. Teil B, 36, 1017-1022.])

1H NMR (CDCl3, 400 MHz) 3.15 (broad s, 4 H, H2C-7, 10); 1.90 (broad s), 4 H, H2C-8,9); 13C NMR: 164.1, 151.9 (C-1,2,6,11), 26.8 (C-7, 10); 25.9 (C-8,9); IR (KBr): 2960, 1480, 1450, 1345, 1304, 1266, 844; 77Se NMR (CDCl3. 73 MHz, SeO2/D2O as reference): 238.9; 15N NMR (CDCl3, CH3NO2 as reference, 40.3 MHz): 87.1, 83.3; UV–vis (EtOH): 212 nm (4.,38), 243 (4.04), 297 (3.53); MS: m/z = 264 (17%, Se2 pattern), 236 (17%, Se2 pattern); 118 (21%, Se pattern), 104 (81%, C8H8); 103 (100%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal studied was non-merohedrally twinned with a fractional contribution of 0.342 (3) for the minor twin component.

Table 1
Experimental details

Crystal data
Chemical formula C8H8N4Se2
Mr 318.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.5350 (18), 7.6723 (17), 9.372 (2)
α, β, γ (°) 90.136 (18), 90.773 (19), 118.555 (17)
V3) 475.8 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.73
Crystal size (mm) 0.45 × 0.23 × 0.22
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration
Tmin, Tmax 0.093, 0.252
No. of measured, independent and observed [I > 2σ(I)] reflections 6775, 6775, 5946
Rint 0.046
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.217, 1.12
No. of reflections 6775
No. of parameters 128
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.68, −1.50
Computer programs: X-AREA WinXpose, Recipe and X-AREA Integrate (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-AREA WinXpose (Stoe & Cie, 2019); cell refinement: X-AREA Recipe (Stoe & Cie, 2019); data reduction: X-AREA Integrate (Stoe & Cie, 2019); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020).

5,12-Diselena-3,4,13,14-tetraazatricyclo[9.3.0.02,6]tetradeca-3,13-diene top
Crystal data top
C8H8N4Se2Z = 2
Mr = 318.10F(000) = 304
Triclinic, P1Dx = 2.220 Mg m3
a = 7.5350 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6723 (17) ÅCell parameters from 5222 reflections
c = 9.372 (2) Åθ = 3.0–28.6°
α = 90.136 (18)°µ = 7.73 mm1
β = 90.773 (19)°T = 120 K
γ = 118.555 (17)°Needle, brown
V = 475.8 (2) Å30.45 × 0.23 × 0.22 mm
Data collection top
Stoe IPDS 2T
diffractometer
6775 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5946 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.046
rotation method scansθmax = 28.3°, θmin = 3.0°
Absorption correction: integrationh = 99
Tmin = 0.093, Tmax = 0.252k = 1010
6775 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.1209P)2 + 3.1505P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
6775 reflectionsΔρmax = 1.68 e Å3
128 parametersΔρmin = 1.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.71557 (14)0.29021 (14)0.56893 (9)0.0299 (3)
N20.4663 (14)0.1129 (13)0.6483 (9)0.0330 (17)
N30.3899 (14)0.2082 (12)0.7102 (8)0.0300 (16)
C40.4967 (13)0.4132 (13)0.7084 (8)0.0219 (15)
C50.6788 (13)0.4941 (14)0.6393 (8)0.0245 (16)
C60.8389 (16)0.7040 (16)0.6103 (10)0.0323 (19)
H6A0.8649290.7148930.5065990.039*
H6B0.9650740.7256390.6594020.039*
C70.7975 (16)0.8732 (15)0.6540 (9)0.0309 (18)
H7A0.6536660.8322400.6333110.037*
H7B0.8799910.9898800.5943560.037*
C80.8430 (14)0.9360 (14)0.8119 (9)0.0262 (16)
H8A0.9888520.9852560.8310920.031*
H8B0.8147671.0477580.8289190.031*
C90.7226 (14)0.7718 (14)0.9176 (8)0.0257 (16)
H9A0.7724390.6735750.9173030.031*
H9B0.7432310.8293981.0149350.031*
C100.5016 (13)0.6699 (13)0.8799 (8)0.0222 (15)
Se110.31509 (15)0.73496 (15)0.95420 (9)0.0304 (3)
N120.1178 (13)0.5308 (14)0.8370 (9)0.0327 (16)
N130.1976 (12)0.4468 (13)0.7656 (8)0.0277 (15)
C140.4026 (13)0.5159 (14)0.7841 (8)0.0233 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0262 (5)0.0322 (5)0.0348 (5)0.0169 (4)0.0023 (4)0.0034 (4)
N20.034 (5)0.028 (4)0.035 (4)0.013 (4)0.011 (3)0.004 (3)
N30.033 (4)0.026 (4)0.027 (3)0.011 (4)0.005 (3)0.000 (3)
C40.023 (4)0.023 (4)0.019 (3)0.010 (3)0.002 (3)0.002 (3)
C50.021 (4)0.029 (4)0.023 (3)0.012 (4)0.001 (3)0.002 (3)
C60.030 (5)0.033 (5)0.032 (4)0.014 (4)0.009 (4)0.001 (4)
C70.031 (5)0.032 (5)0.028 (4)0.014 (4)0.005 (3)0.004 (3)
C80.023 (4)0.025 (4)0.026 (3)0.007 (4)0.002 (3)0.004 (3)
C90.020 (4)0.031 (4)0.020 (3)0.008 (4)0.003 (3)0.002 (3)
C100.022 (4)0.022 (4)0.021 (3)0.009 (3)0.004 (3)0.001 (3)
Se110.0275 (5)0.0315 (5)0.0321 (5)0.0138 (4)0.0066 (4)0.0050 (4)
N120.021 (4)0.038 (5)0.036 (4)0.012 (4)0.002 (3)0.003 (3)
N130.019 (4)0.034 (4)0.027 (3)0.011 (3)0.003 (3)0.001 (3)
C140.021 (4)0.028 (4)0.020 (3)0.011 (4)0.001 (3)0.000 (3)
Geometric parameters (Å, º) top
Se1—C51.837 (9)C7—H7B0.9900
Se1—N21.879 (9)C8—C91.526 (12)
N2—N31.269 (11)C8—H8A0.9900
N3—C41.383 (12)C8—H8B0.9900
C4—C51.378 (13)C9—C101.499 (12)
C4—C141.473 (11)C9—H9A0.9900
C5—C61.509 (14)C9—H9B0.9900
C6—C71.529 (13)C10—C141.376 (12)
C6—H6A0.9900C10—Se111.845 (8)
C6—H6B0.9900Se11—N121.895 (9)
C7—C81.538 (12)N12—N131.267 (11)
C7—H7A0.9900N13—C141.381 (11)
C5—Se1—N287.9 (4)C9—C8—C7114.7 (8)
N3—N2—Se1110.2 (7)C9—C8—H8A108.6
N2—N3—C4117.8 (8)C7—C8—H8A108.6
C5—C4—N3115.8 (8)C9—C8—H8B108.6
C5—C4—C14128.7 (8)C7—C8—H8B108.6
N3—C4—C14115.5 (8)H8A—C8—H8B107.6
C4—C5—C6133.7 (8)C10—C9—C8111.1 (6)
C4—C5—Se1108.3 (7)C10—C9—H9A109.4
C6—C5—Se1118.0 (6)C8—C9—H9A109.4
C5—C6—C7118.1 (8)C10—C9—H9B109.4
C5—C6—H6A107.8C8—C9—H9B109.4
C7—C6—H6A107.8H9A—C9—H9B108.0
C5—C6—H6B107.8C14—C10—C9126.9 (8)
C7—C6—H6B107.8C14—C10—Se11108.1 (6)
H6A—C6—H6B107.1C9—C10—Se11125.0 (6)
C6—C7—C8114.7 (7)C10—Se11—N1287.4 (4)
C6—C7—H7A108.6N13—N12—Se11110.3 (6)
C8—C7—H7A108.6N12—N13—C14117.5 (8)
C6—C7—H7B108.6C10—C14—N13116.6 (8)
C8—C7—H7B108.6C10—C14—C4124.8 (8)
H7A—C7—H7B107.6N13—C14—C4118.5 (8)
C5—Se1—N2—N30.2 (6)C8—C9—C10—Se1194.1 (8)
Se1—N2—N3—C40.1 (9)C14—C10—Se11—N120.0 (6)
N2—N3—C4—C50.5 (11)C9—C10—Se11—N12179.1 (7)
N2—N3—C4—C14178.9 (7)C10—Se11—N12—N130.2 (6)
N3—C4—C5—C6179.1 (8)Se11—N12—N13—C140.4 (10)
C14—C4—C5—C62.7 (14)C9—C10—C14—N13179.3 (7)
N3—C4—C5—Se10.6 (8)Se11—C10—C14—N130.2 (9)
C14—C4—C5—Se1178.8 (6)C9—C10—C14—C44.8 (13)
N2—Se1—C5—C40.4 (6)Se11—C10—C14—C4176.1 (6)
N2—Se1—C5—C6179.2 (7)N12—N13—C14—C100.4 (11)
C4—C5—C6—C75.1 (14)N12—N13—C14—C4176.6 (7)
Se1—C5—C6—C7173.2 (6)C5—C4—C14—C1046.0 (12)
C5—C6—C7—C882.6 (11)N3—C4—C14—C10132.3 (9)
C6—C7—C8—C959.7 (11)C5—C4—C14—N13138.2 (8)
C7—C8—C9—C1049.6 (10)N3—C4—C14—N1343.6 (10)
C8—C9—C10—C1484.9 (10)
 

References

First citationAl-Smadi, M. & Ratrout, S. (2004). Molecules, 9, 957–967.  Web of Science PubMed CAS Google Scholar
First citationBissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221–224.  CrossRef Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDetert, H. (2011). Targets in Heterocyclic Systems, 15, 1-49.  CAS Google Scholar
First citationGleiter, R., Karcher, M., Jahn, R. & Irngartinger, H. (1988). Chem. Ber. 121, 735–740.  CSD CrossRef CAS Google Scholar
First citationJanhsen, B., Daniliuc, C. G. & Studer, A. (2017). Chem. Sci. 8, 3547–3553.  CSD CrossRef CAS PubMed Google Scholar
First citationMeier, H. (1972). Synthesis, 1972, 235–253.  CrossRef Google Scholar
First citationMeier, H., Zountsas, J. & Zimmer, O. (1981). Z. Naturforsch. Teil B, 36, 1017–1022.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYalpani, M., Lalezari, I. & Shafiee, A. (1971). J. Org. Chem. 36, 2836–2838.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds