organic compounds
5,12-Diselena-3,4,13,14-tetraazatricyclo[9.3.0.02,6]tetradeca-3,13-diene
aJohannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The title compound, C8H8N4Se2, crystallizes in a non-symmetrical conformation with a dihedral angle between the heterocycles of 45.0 (3)° and a nearly strain-free tetramethylene tether. The crystal studied was non-merohedrally twinned with a fractional contribution of 0.342 (3) for the minor twin component.
Keywords: crystal structure; heterocycles; medium-sized ring; selenium.
CCDC reference: 2048056
Structure description
1,2,3-Selenadiazoles are synthesized from SeO2-oxdidation of (Yalpani et al., 1971; Al-Smadi & Ratrout, 2004) and are important intermediates for the synthesis of medium-sized (Meier, 1972) heterocyclic (Detert, 2011) and strained cycloalkynes (Bissinger et al., 1988). Bis-selenadiazoles have been used as intermediates for the synthesis of medium-sized cycloalkadiynes (Gleiter et al., 1988).
The selenadiazole rings in the title compound (Fig. 1) are essentially planar and include a torsion angle of N13—C14—C4—N3 = −43.6 (10)°. This torsion angle is significantly smaller than the corresponding torsion angle (58.2°) in a dibenzocycloocta-1,3-diene (Janhsen et al., 2017). In the tetramethylene tether, the dihedral angle at C8—C9—C10—C14 [84.9 (10)°] shows the largest deviation from the ideal value of 60° whereas C6—C7—C8—C9 matches this value nearly perfectly: −59.7 (11)°. Contrary to the formal symmetry, the conformer in the crystal shows neither a C2 axis nor a mirror plane. Two molecules of the title compound fill the and these are related by a center of inversion. One hydrogen atom at C7 points to the center of a selenadiazole of the neighbouring molecule, thus keeping the rings at a distance (Fig. 2).
Synthesis and crystallization
The title compound was prepared from cyclooctanone via oxidation with selenium dioxide to suberil, the formation of bis-semicarbazone and oxidation/cyclization with selenic acid. 5.1 g of bis-semicarbazone in 100 ml of 1,4-dioxane were stirred for 7 d after the addition of 6.6 g of SeO2 in 10 ml of water. The mixture was concentrated to 60 ml, diluted with water (100 ml) and extracted with chloroform (2×). The pooled solutions were dried, concentrated and the residue purified via (SiO2, toluene/ethyl acetate 10/1, Rf = 0.35). Recrystallization from the mixed solvents of chloroform/propanol-2 yielded colorless crystals with m.p. = 453 K (under explosion). 13C NMR data are consistent with data given by Meier (Meier et al., 1981)
1H NMR (CDCl3, 400 MHz) 3.15 (broad s, 4 H, H2C-7, 10); 1.90 (broad s), 4 H, H2C-8,9); 13C NMR: 164.1, 151.9 (C-1,2,6,11), 26.8 (C-7, 10); 25.9 (C-8,9); IR (KBr): 2960, 1480, 1450, 1345, 1304, 1266, 844; 77Se NMR (CDCl3. 73 MHz, SeO2/D2O as reference): 238.9; 15N NMR (CDCl3, CH3NO2 as reference, 40.3 MHz): 87.1, 83.3; UV–vis (EtOH): 212 nm (4.,38), 243 (4.04), 297 (3.53); MS: m/z = 264 (17%, Se2 pattern), 236 (17%, Se2 pattern); 118 (21%, Se pattern), 104 (81%, C8H8); 103 (100%).
Refinement
Crystal data, data collection and structure . The crystal studied was non-merohedrally twinned with a fractional contribution of 0.342 (3) for the minor twin component.
details are summarized in Table 1Structural data
CCDC reference: 2048056
https://doi.org/10.1107/S2414314620015850/bt4104sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620015850/bt4104Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620015850/bt4104Isup3.cml
Data collection: X-AREA WinXpose (Stoe & Cie, 2019); cell
X-AREA Recipe (Stoe & Cie, 2019); data reduction: X-AREA Integrate (Stoe & Cie, 2019); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020).C8H8N4Se2 | Z = 2 |
Mr = 318.10 | F(000) = 304 |
Triclinic, P1 | Dx = 2.220 Mg m−3 |
a = 7.5350 (18) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.6723 (17) Å | Cell parameters from 5222 reflections |
c = 9.372 (2) Å | θ = 3.0–28.6° |
α = 90.136 (18)° | µ = 7.73 mm−1 |
β = 90.773 (19)° | T = 120 K |
γ = 118.555 (17)° | Needle, brown |
V = 475.8 (2) Å3 | 0.45 × 0.23 × 0.22 mm |
Stoe IPDS 2T diffractometer | 6775 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 5946 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.046 |
rotation method scans | θmax = 28.3°, θmin = 3.0° |
Absorption correction: integration | h = −9→9 |
Tmin = 0.093, Tmax = 0.252 | k = −10→10 |
6775 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.217 | w = 1/[σ2(Fo2) + (0.1209P)2 + 3.1505P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
6775 reflections | Δρmax = 1.68 e Å−3 |
128 parameters | Δρmin = −1.50 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C). |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.71557 (14) | 0.29021 (14) | 0.56893 (9) | 0.0299 (3) | |
N2 | 0.4663 (14) | 0.1129 (13) | 0.6483 (9) | 0.0330 (17) | |
N3 | 0.3899 (14) | 0.2082 (12) | 0.7102 (8) | 0.0300 (16) | |
C4 | 0.4967 (13) | 0.4132 (13) | 0.7084 (8) | 0.0219 (15) | |
C5 | 0.6788 (13) | 0.4941 (14) | 0.6393 (8) | 0.0245 (16) | |
C6 | 0.8389 (16) | 0.7040 (16) | 0.6103 (10) | 0.0323 (19) | |
H6A | 0.864929 | 0.714893 | 0.506599 | 0.039* | |
H6B | 0.965074 | 0.725639 | 0.659402 | 0.039* | |
C7 | 0.7975 (16) | 0.8732 (15) | 0.6540 (9) | 0.0309 (18) | |
H7A | 0.653666 | 0.832240 | 0.633311 | 0.037* | |
H7B | 0.879991 | 0.989880 | 0.594356 | 0.037* | |
C8 | 0.8430 (14) | 0.9360 (14) | 0.8119 (9) | 0.0262 (16) | |
H8A | 0.988852 | 0.985256 | 0.831092 | 0.031* | |
H8B | 0.814767 | 1.047758 | 0.828919 | 0.031* | |
C9 | 0.7226 (14) | 0.7718 (14) | 0.9176 (8) | 0.0257 (16) | |
H9A | 0.772439 | 0.673575 | 0.917303 | 0.031* | |
H9B | 0.743231 | 0.829398 | 1.014935 | 0.031* | |
C10 | 0.5016 (13) | 0.6699 (13) | 0.8799 (8) | 0.0222 (15) | |
Se11 | 0.31509 (15) | 0.73496 (15) | 0.95420 (9) | 0.0304 (3) | |
N12 | 0.1178 (13) | 0.5308 (14) | 0.8370 (9) | 0.0327 (16) | |
N13 | 0.1976 (12) | 0.4468 (13) | 0.7656 (8) | 0.0277 (15) | |
C14 | 0.4026 (13) | 0.5159 (14) | 0.7841 (8) | 0.0233 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0262 (5) | 0.0322 (5) | 0.0348 (5) | 0.0169 (4) | 0.0023 (4) | −0.0034 (4) |
N2 | 0.034 (5) | 0.028 (4) | 0.035 (4) | 0.013 (4) | 0.011 (3) | 0.004 (3) |
N3 | 0.033 (4) | 0.026 (4) | 0.027 (3) | 0.011 (4) | 0.005 (3) | 0.000 (3) |
C4 | 0.023 (4) | 0.023 (4) | 0.019 (3) | 0.010 (3) | −0.002 (3) | −0.002 (3) |
C5 | 0.021 (4) | 0.029 (4) | 0.023 (3) | 0.012 (4) | 0.001 (3) | −0.002 (3) |
C6 | 0.030 (5) | 0.033 (5) | 0.032 (4) | 0.014 (4) | 0.009 (4) | −0.001 (4) |
C7 | 0.031 (5) | 0.032 (5) | 0.028 (4) | 0.014 (4) | 0.005 (3) | 0.004 (3) |
C8 | 0.023 (4) | 0.025 (4) | 0.026 (3) | 0.007 (4) | 0.002 (3) | −0.004 (3) |
C9 | 0.020 (4) | 0.031 (4) | 0.020 (3) | 0.008 (4) | 0.003 (3) | −0.002 (3) |
C10 | 0.022 (4) | 0.022 (4) | 0.021 (3) | 0.009 (3) | 0.004 (3) | −0.001 (3) |
Se11 | 0.0275 (5) | 0.0315 (5) | 0.0321 (5) | 0.0138 (4) | 0.0066 (4) | −0.0050 (4) |
N12 | 0.021 (4) | 0.038 (5) | 0.036 (4) | 0.012 (4) | 0.002 (3) | −0.003 (3) |
N13 | 0.019 (4) | 0.034 (4) | 0.027 (3) | 0.011 (3) | 0.003 (3) | 0.001 (3) |
C14 | 0.021 (4) | 0.028 (4) | 0.020 (3) | 0.011 (4) | 0.001 (3) | 0.000 (3) |
Se1—C5 | 1.837 (9) | C7—H7B | 0.9900 |
Se1—N2 | 1.879 (9) | C8—C9 | 1.526 (12) |
N2—N3 | 1.269 (11) | C8—H8A | 0.9900 |
N3—C4 | 1.383 (12) | C8—H8B | 0.9900 |
C4—C5 | 1.378 (13) | C9—C10 | 1.499 (12) |
C4—C14 | 1.473 (11) | C9—H9A | 0.9900 |
C5—C6 | 1.509 (14) | C9—H9B | 0.9900 |
C6—C7 | 1.529 (13) | C10—C14 | 1.376 (12) |
C6—H6A | 0.9900 | C10—Se11 | 1.845 (8) |
C6—H6B | 0.9900 | Se11—N12 | 1.895 (9) |
C7—C8 | 1.538 (12) | N12—N13 | 1.267 (11) |
C7—H7A | 0.9900 | N13—C14 | 1.381 (11) |
C5—Se1—N2 | 87.9 (4) | C9—C8—C7 | 114.7 (8) |
N3—N2—Se1 | 110.2 (7) | C9—C8—H8A | 108.6 |
N2—N3—C4 | 117.8 (8) | C7—C8—H8A | 108.6 |
C5—C4—N3 | 115.8 (8) | C9—C8—H8B | 108.6 |
C5—C4—C14 | 128.7 (8) | C7—C8—H8B | 108.6 |
N3—C4—C14 | 115.5 (8) | H8A—C8—H8B | 107.6 |
C4—C5—C6 | 133.7 (8) | C10—C9—C8 | 111.1 (6) |
C4—C5—Se1 | 108.3 (7) | C10—C9—H9A | 109.4 |
C6—C5—Se1 | 118.0 (6) | C8—C9—H9A | 109.4 |
C5—C6—C7 | 118.1 (8) | C10—C9—H9B | 109.4 |
C5—C6—H6A | 107.8 | C8—C9—H9B | 109.4 |
C7—C6—H6A | 107.8 | H9A—C9—H9B | 108.0 |
C5—C6—H6B | 107.8 | C14—C10—C9 | 126.9 (8) |
C7—C6—H6B | 107.8 | C14—C10—Se11 | 108.1 (6) |
H6A—C6—H6B | 107.1 | C9—C10—Se11 | 125.0 (6) |
C6—C7—C8 | 114.7 (7) | C10—Se11—N12 | 87.4 (4) |
C6—C7—H7A | 108.6 | N13—N12—Se11 | 110.3 (6) |
C8—C7—H7A | 108.6 | N12—N13—C14 | 117.5 (8) |
C6—C7—H7B | 108.6 | C10—C14—N13 | 116.6 (8) |
C8—C7—H7B | 108.6 | C10—C14—C4 | 124.8 (8) |
H7A—C7—H7B | 107.6 | N13—C14—C4 | 118.5 (8) |
C5—Se1—N2—N3 | 0.2 (6) | C8—C9—C10—Se11 | −94.1 (8) |
Se1—N2—N3—C4 | 0.1 (9) | C14—C10—Se11—N12 | 0.0 (6) |
N2—N3—C4—C5 | −0.5 (11) | C9—C10—Se11—N12 | 179.1 (7) |
N2—N3—C4—C14 | −178.9 (7) | C10—Se11—N12—N13 | 0.2 (6) |
N3—C4—C5—C6 | 179.1 (8) | Se11—N12—N13—C14 | −0.4 (10) |
C14—C4—C5—C6 | −2.7 (14) | C9—C10—C14—N13 | −179.3 (7) |
N3—C4—C5—Se1 | 0.6 (8) | Se11—C10—C14—N13 | −0.2 (9) |
C14—C4—C5—Se1 | 178.8 (6) | C9—C10—C14—C4 | 4.8 (13) |
N2—Se1—C5—C4 | −0.4 (6) | Se11—C10—C14—C4 | −176.1 (6) |
N2—Se1—C5—C6 | −179.2 (7) | N12—N13—C14—C10 | 0.4 (11) |
C4—C5—C6—C7 | −5.1 (14) | N12—N13—C14—C4 | 176.6 (7) |
Se1—C5—C6—C7 | 173.2 (6) | C5—C4—C14—C10 | −46.0 (12) |
C5—C6—C7—C8 | 82.6 (11) | N3—C4—C14—C10 | 132.3 (9) |
C6—C7—C8—C9 | −59.7 (11) | C5—C4—C14—N13 | 138.2 (8) |
C7—C8—C9—C10 | −49.6 (10) | N3—C4—C14—N13 | −43.6 (10) |
C8—C9—C10—C14 | 84.9 (10) |
References
Al-Smadi, M. & Ratrout, S. (2004). Molecules, 9, 957–967. Web of Science PubMed CAS Google Scholar
Bissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221–224. CrossRef Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Detert, H. (2011). Targets in Heterocyclic Systems, 15, 1-49. CAS Google Scholar
Gleiter, R., Karcher, M., Jahn, R. & Irngartinger, H. (1988). Chem. Ber. 121, 735–740. CSD CrossRef CAS Google Scholar
Janhsen, B., Daniliuc, C. G. & Studer, A. (2017). Chem. Sci. 8, 3547–3553. CSD CrossRef CAS PubMed Google Scholar
Meier, H. (1972). Synthesis, 1972, 235–253. CrossRef Google Scholar
Meier, H., Zountsas, J. & Zimmer, O. (1981). Z. Naturforsch. Teil B, 36, 1017–1022. CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Yalpani, M., Lalezari, I. & Shafiee, A. (1971). J. Org. Chem. 36, 2836–2838. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.