organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2-Hy­dr­oxy­phen­yl)(4,2′:4′,4′′-terpyridin-6′-yl)methanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore-560 056, Karnataka, India, and bGraduate Program for Biomedical and Materials Science, Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung-40704, Taiwan
*Correspondence e-mail: noorsb05@gmail.com, kiran@thu.edu.tw

Edited by O. Blacque, University of Zürich, Switzerland (Received 27 May 2020; accepted 25 June 2020; online 10 July 2020)

The title compound, C22H15N3O2, can be described as a ketone with a phenol substituent and a terpyridine ligand coordinated to the carbonyl group. The three six-membered rings of the terpyridine ligand are not coplanar. The dihedral angles between the mean planes of the central ring and the external pyridine ligands are 22.77 (9) and 26.77 (7)°. The central ring of the terpyridine ligand is also not coplanar with the o-hy­droxy phenyl ring, the dihedral angle being 39.72 (5)°. An intra­molecular O—H⋯O hydrogen bond occurs. The crystal structure of the title compound is consolidated by C—H⋯O and C—H⋯N hydrogen bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine and derivatives play critical roles in the biochemical field. The hydrazone derivatives of benzoyl­pyridines exhibit cytotoxic activity towards tumor cell lines (Santos et al., 2018[Santos, A. F., Ferreira, I. P., Pinheiro, C. B., Santos, V. G., Lopes, M. T. P., Teixeira, L. R., Rocha, W. R., Rodrigues, G. L. S. & Beraldo, H. (2018). ACS Omega, 3, 7027-7035.]) and show excellent anti­proliferative activity (Kalinowski et al., 2007[Kalinowski, D. S., Yu, Y., Sharpe, P. C., Islam, M., Liao, Y.-T., Lovejoy, D. B., Kumar, N., Bernhardt, P. V. & Richardson, D. R. (2007). J. Med. Chem. 50, 3716-3729.]). The quest for an efficient method for the preparation of such pyridine derivatives is ongoing. Herein, we report a novel method for the preparation of a 2-benzoyl­pyridine derivative in a one-pot reaction of 3-amino­coumarin with 4-acetyl­pyridine. The structural elucidation of the compound by spectroscopic investigation and single-crystal analysis has been performed.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. It crystallizes in the ortho­rhom­bic crystal system in P212121 space group with one mol­ecule in the asymmetric unit. The compound can be described as a ketone with a phenol substituent and a terpyridine ligand coordinated to the carbonyl group. The dihedral angle between the mean planes of the central ring of the terpyridine ligand and the o-hy­droxy phenyl ring is 39.72 (5)°. The three six-membered rings of the terpyridine ligand are not coplanar. The dihedral angles between the mean planes of the central ring and the external pyridine ligands are 22.77 (9) and 26.77 (7)° (for C13–C17/N2 and C18–C22/N3, respectively). A strong intra­molecular O—H⋯O hydrogen bond (O2—H2′⋯O1) exists between the O1 and O2 atoms of the phenol ring (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2′⋯O1 0.87 (4) 1.73 (4) 2.527 (3) 152 (3)
C16—H16⋯O2i 0.95 2.59 3.309 (3) 132
C17—H17⋯N2ii 0.95 2.49 3.344 (3) 150
C21—H21⋯O1iii 0.95 2.45 3.380 (3) 165
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

The crystal packing features the C21—H21⋯O1 inter­action along the crystallographic a axis. The O1 atom of the phenol group is involves in both intra- and inter-mol­ecular hydrogen bonding (Table 1[link], Fig. 2[link]). The crystal structure is further stabilized by the following inter­molecular inter­actions: C17—H17⋯N2ii [symmetry code: (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]], which connects the mol­ecules in a zigzag pattern, and C16—H16⋯O2i [symmetry code: (i) −x + [{3\over 2}], −y + 1, z − [{1\over 2}]], which forms mol­ecular chains along the crystallographic b and a axes, respectively (Fig. 3[link]). In addition, a weak ππ stacking inter­action exhibiting a centroid–centroid distance of 3.7919 (15) Å between C7–C12 and C13–C17/N2 rings is observed (Fig. 4[link]).

[Figure 2]
Figure 2
Unit-cell packing of the title compound showing intra­molecular O—H⋯O and inter­molecular C—H⋯O inter­actions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.
[Figure 3]
Figure 3
Unit-cell packing of the title compound showing inter­molecular C—H⋯N and C—H⋯O inter­actions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.
[Figure 4]
Figure 4
Unit-cell packing depicting the inter­molecular ππ stacking inter­actions as dotted lines.

Synthesis and crystallization

A mixture of 3-amino-4-hy­droxy­coumarin (10 mmol, 1.0 equiv.), 4-acetyl­pyridine (22 mmol, 2.2 equiv.) and a few drops of TEA (0.2 equiv.) in toluene (25 ml) was refluxed under nitro­gen for 4 h. The progress of the reaction was monitored by TLC. The reaction mixture was allowed to attain room temperature and the solvent was dried using a rotary evaporator. The crude product was purified by flash column chromatography to obtain a yellowish brown solid with 67% yield, Rf = 0.10 (5% DCM/MeOH), m.p. 190–192°C. The compound was recrystallized from ethanol solution. 1H NMR (CDCl3, 400 MHz) δ 12.13 (s, 1H), 8.84 (d, J = 6.4 Hz, 2H), 8.81 (d, J = 6.4 Hz, 2H), 8.25 (dd, J = 8.0, 1.2 Hz, 1H), 8.22 (d, J = 1.2 Hz, 1H), 8.19 (d, J = 1.2 Hz, 1H), 8.01 (dd, J = 4.8, 1.6 Hz, 2H), 7.66 (dd, J = 3.2, 1.6 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 8.4–0 Hz, 1H), 6.96 (t, J = 7.2 Hz, 1H); 13C NMR (CDCl3, 150 MHz) δ 196.7, 164.9, 156.6, 154.4, 150.9, 150.8, 150.7, 148.7, 144.8, 144.6, 137.1, 134.2, 122.3, 121.4, 121.1, 120.4, 118.9, 118.5.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H15N3O2
Mr 353.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 7.2994 (2), 9.6105 (3), 23.9296 (8)
V3) 1678.68 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.48 × 0.25 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.879, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 23873, 3416, 3003
Rint 0.041
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.10
No. of reflections 3416
No. of parameters 248
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.23
Computer programs: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).

(2-Hydroxyphenyl)(4,2':4',4''-terpyridin-6'-yl)methanone top
Crystal data top
C22H15N3O2Dx = 1.398 Mg m3
Mr = 353.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9903 reflections
a = 7.2994 (2) Åθ = 2.9–26.3°
b = 9.6105 (3) ŵ = 0.09 mm1
c = 23.9296 (8) ÅT = 150 K
V = 1678.68 (9) Å3Parallelepiped, yellow
Z = 40.48 × 0.25 × 0.18 mm
F(000) = 736
Data collection top
Bruker SMART APEX CCD
diffractometer
3003 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
ω scansθmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 98
Tmin = 0.879, Tmax = 0.928k = 1211
23873 measured reflectionsl = 2929
3416 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.4435P]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydroxy H atom was located in the Fourier maps and freyly refined, while all other H atoms were fixed geometrically and allow to ride on their parent carbon atoms, with a C—H distance of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6864 (3)0.49905 (18)1.05784 (7)0.0296 (4)
O20.7035 (3)0.49051 (18)1.16325 (7)0.0321 (4)
H2'0.706 (5)0.522 (3)1.1292 (14)0.051 (10)*
N10.6398 (3)0.18406 (19)0.98997 (7)0.0195 (4)
N20.3663 (3)0.6191 (2)0.76383 (9)0.0348 (6)
N30.8135 (4)0.2862 (2)0.91678 (9)0.0367 (6)
C10.6004 (3)0.3190 (2)0.99800 (9)0.0193 (5)
C20.5477 (3)0.4093 (2)0.95579 (9)0.0201 (5)
H20.5254640.5046440.9637400.024*
C30.5278 (3)0.3587 (2)0.90164 (9)0.0197 (5)
C40.5690 (3)0.2187 (2)0.89279 (9)0.0199 (5)
H40.5574920.1798700.8564460.024*
C50.6269 (3)0.1354 (2)0.93715 (9)0.0194 (5)
C60.6289 (3)0.3781 (2)1.05576 (9)0.0211 (5)
C70.5894 (3)0.2996 (2)1.10698 (9)0.0195 (5)
C80.5071 (3)0.1676 (2)1.10724 (10)0.0220 (5)
H80.4763670.1247081.0727170.026*
C90.4699 (3)0.0988 (3)1.15652 (10)0.0263 (5)
H90.4142550.0094361.1559140.032*
C100.5147 (4)0.1617 (3)1.20729 (10)0.0296 (6)
H100.4901450.1142221.2413060.036*
C110.5937 (4)0.2912 (3)1.20868 (10)0.0294 (6)
H110.6236450.3326541.2435460.035*
C120.6301 (3)0.3618 (2)1.15932 (10)0.0230 (5)
C130.4716 (3)0.4501 (2)0.85454 (9)0.0208 (5)
C140.3732 (4)0.5721 (3)0.86268 (10)0.0281 (6)
H140.3396650.6006400.8992860.034*
C150.3244 (4)0.6518 (3)0.81667 (11)0.0350 (6)
H150.2569620.7348520.8230800.042*
C160.4630 (4)0.5027 (3)0.75683 (11)0.0315 (6)
H160.4965790.4776050.7198170.038*
C170.5177 (3)0.4161 (3)0.79977 (10)0.0248 (5)
H170.5861210.3342720.7920060.030*
C180.6840 (3)0.0113 (2)0.92905 (9)0.0205 (5)
C190.7538 (3)0.0593 (3)0.87856 (10)0.0252 (5)
H190.7592700.0007240.8470510.030*
C200.8152 (4)0.1948 (3)0.87460 (11)0.0333 (6)
H200.8618620.2251120.8395990.040*
C210.7440 (4)0.2392 (3)0.96517 (11)0.0321 (6)
H210.7396210.3015780.9959290.039*
C220.6785 (4)0.1058 (2)0.97307 (10)0.0250 (5)
H220.6301060.0787861.0082900.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0424 (11)0.0236 (9)0.0228 (9)0.0076 (8)0.0032 (8)0.0015 (7)
O20.0489 (12)0.0263 (10)0.0212 (9)0.0064 (8)0.0069 (8)0.0005 (8)
N10.0189 (10)0.0212 (10)0.0183 (10)0.0016 (8)0.0001 (7)0.0018 (8)
N20.0347 (13)0.0338 (13)0.0360 (13)0.0014 (11)0.0033 (10)0.0151 (10)
N30.0515 (15)0.0219 (12)0.0366 (13)0.0032 (11)0.0013 (11)0.0022 (9)
C10.0161 (11)0.0223 (12)0.0195 (11)0.0022 (9)0.0010 (9)0.0001 (9)
C20.0198 (11)0.0175 (12)0.0231 (12)0.0018 (9)0.0003 (9)0.0004 (9)
C30.0155 (11)0.0227 (12)0.0208 (11)0.0013 (9)0.0003 (9)0.0024 (9)
C40.0187 (11)0.0230 (12)0.0179 (11)0.0019 (9)0.0020 (9)0.0001 (9)
C50.0178 (11)0.0194 (12)0.0211 (11)0.0033 (9)0.0003 (9)0.0017 (9)
C60.0202 (12)0.0213 (12)0.0217 (12)0.0020 (10)0.0021 (9)0.0004 (10)
C70.0187 (11)0.0215 (12)0.0183 (11)0.0040 (9)0.0014 (9)0.0001 (9)
C80.0196 (11)0.0247 (13)0.0217 (11)0.0013 (9)0.0007 (9)0.0017 (10)
C90.0253 (12)0.0242 (13)0.0294 (13)0.0001 (10)0.0057 (11)0.0035 (10)
C100.0345 (14)0.0326 (14)0.0217 (12)0.0038 (12)0.0047 (11)0.0075 (11)
C110.0375 (15)0.0333 (14)0.0175 (12)0.0053 (12)0.0012 (10)0.0018 (11)
C120.0262 (12)0.0211 (12)0.0218 (12)0.0030 (10)0.0012 (10)0.0008 (10)
C130.0183 (11)0.0207 (11)0.0232 (11)0.0019 (9)0.0035 (9)0.0032 (10)
C140.0312 (13)0.0259 (13)0.0272 (13)0.0026 (11)0.0017 (11)0.0020 (10)
C150.0371 (15)0.0257 (14)0.0423 (16)0.0063 (12)0.0035 (13)0.0064 (12)
C160.0299 (14)0.0412 (16)0.0235 (13)0.0002 (12)0.0019 (11)0.0080 (12)
C170.0243 (13)0.0267 (14)0.0233 (12)0.0018 (10)0.0031 (10)0.0010 (10)
C180.0195 (12)0.0209 (12)0.0209 (11)0.0032 (10)0.0040 (9)0.0004 (9)
C190.0304 (13)0.0226 (12)0.0226 (12)0.0020 (10)0.0026 (10)0.0011 (10)
C200.0436 (15)0.0279 (14)0.0283 (13)0.0019 (12)0.0018 (12)0.0040 (11)
C210.0444 (17)0.0220 (13)0.0299 (13)0.0020 (12)0.0046 (12)0.0047 (11)
C220.0315 (13)0.0227 (13)0.0208 (12)0.0013 (10)0.0006 (10)0.0011 (9)
Geometric parameters (Å, º) top
O1—C61.237 (3)C9—C101.396 (3)
O2—C121.351 (3)C9—H90.9500
O2—H2'0.87 (3)C10—C111.372 (4)
N1—C11.342 (3)C10—H100.9500
N1—C51.351 (3)C11—C121.388 (3)
N2—C161.334 (3)C11—H110.9500
N2—C151.338 (3)C13—C141.389 (3)
N3—C201.338 (3)C13—C171.392 (3)
N3—C211.343 (3)C14—C151.388 (3)
C1—C21.386 (3)C14—H140.9500
C1—C61.509 (3)C15—H150.9500
C2—C31.392 (3)C16—C171.381 (3)
C2—H20.9500C16—H160.9500
C3—C41.395 (3)C17—H170.9500
C3—C131.487 (3)C18—C191.390 (3)
C4—C51.395 (3)C18—C221.391 (3)
C4—H40.9500C19—C201.380 (3)
C5—C181.484 (3)C19—H190.9500
C6—C71.467 (3)C20—H200.9500
C7—C81.404 (3)C21—C221.381 (4)
C7—C121.419 (3)C21—H210.9500
C8—C91.379 (3)C22—H220.9500
C8—H80.9500
C12—O2—H2'105 (2)C10—C11—H11119.9
C1—N1—C5116.96 (19)C12—C11—H11119.9
C16—N2—C15115.9 (2)O2—C12—C11117.7 (2)
C20—N3—C21115.7 (2)O2—C12—C7122.0 (2)
N1—C1—C2124.1 (2)C11—C12—C7120.3 (2)
N1—C1—C6117.72 (19)C14—C13—C17117.1 (2)
C2—C1—C6118.1 (2)C14—C13—C3122.4 (2)
C1—C2—C3119.3 (2)C17—C13—C3120.6 (2)
C1—C2—H2120.4C15—C14—C13119.2 (2)
C3—C2—H2120.4C15—C14—H14120.4
C2—C3—C4117.1 (2)C13—C14—H14120.4
C2—C3—C13121.9 (2)N2—C15—C14124.1 (2)
C4—C3—C13120.9 (2)N2—C15—H15117.9
C3—C4—C5120.2 (2)C14—C15—H15117.9
C3—C4—H4119.9N2—C16—C17124.4 (2)
C5—C4—H4119.9N2—C16—H16117.8
N1—C5—C4122.3 (2)C17—C16—H16117.8
N1—C5—C18115.6 (2)C16—C17—C13119.3 (2)
C4—C5—C18122.1 (2)C16—C17—H17120.3
O1—C6—C7121.0 (2)C13—C17—H17120.3
O1—C6—C1115.9 (2)C19—C18—C22116.9 (2)
C7—C6—C1123.0 (2)C19—C18—C5122.1 (2)
C8—C7—C12117.8 (2)C22—C18—C5120.9 (2)
C8—C7—C6123.5 (2)C20—C19—C18119.4 (2)
C12—C7—C6118.7 (2)C20—C19—H19120.3
C9—C8—C7121.4 (2)C18—C19—H19120.3
C9—C8—H8119.3N3—C20—C19124.4 (2)
C7—C8—H8119.3N3—C20—H20117.8
C8—C9—C10119.4 (2)C19—C20—H20117.8
C8—C9—H9120.3N3—C21—C22124.2 (2)
C10—C9—H9120.3N3—C21—H21117.9
C11—C10—C9120.8 (2)C22—C21—H21117.9
C11—C10—H10119.6C21—C22—C18119.5 (2)
C9—C10—H10119.6C21—C22—H22120.3
C10—C11—C12120.2 (2)C18—C22—H22120.3
C5—N1—C1—C20.2 (3)C6—C7—C12—O20.1 (3)
C5—N1—C1—C6175.1 (2)C8—C7—C12—C111.9 (3)
N1—C1—C2—C32.1 (3)C6—C7—C12—C11179.6 (2)
C6—C1—C2—C3177.4 (2)C2—C3—C13—C1424.2 (3)
C1—C2—C3—C42.1 (3)C4—C3—C13—C14158.0 (2)
C1—C2—C3—C13180.0 (2)C2—C3—C13—C17155.4 (2)
C2—C3—C4—C50.1 (3)C4—C3—C13—C1722.4 (3)
C13—C3—C4—C5178.0 (2)C17—C13—C14—C150.8 (4)
C1—N1—C5—C42.3 (3)C3—C13—C14—C15179.6 (2)
C1—N1—C5—C18175.8 (2)C16—N2—C15—C140.8 (4)
C3—C4—C5—N12.2 (3)C13—C14—C15—N20.1 (4)
C3—C4—C5—C18175.8 (2)C15—N2—C16—C171.0 (4)
N1—C1—C6—O1143.3 (2)N2—C16—C17—C130.3 (4)
C2—C1—C6—O132.3 (3)C14—C13—C17—C160.7 (3)
N1—C1—C6—C737.6 (3)C3—C13—C17—C16179.7 (2)
C2—C1—C6—C7146.9 (2)N1—C5—C18—C19151.7 (2)
O1—C6—C7—C8173.4 (2)C4—C5—C18—C1926.4 (3)
C1—C6—C7—C85.7 (3)N1—C5—C18—C2224.9 (3)
O1—C6—C7—C124.2 (3)C4—C5—C18—C22157.0 (2)
C1—C6—C7—C12176.7 (2)C22—C18—C19—C200.7 (4)
C12—C7—C8—C91.3 (3)C5—C18—C19—C20176.0 (2)
C6—C7—C8—C9178.9 (2)C21—N3—C20—C190.9 (4)
C7—C8—C9—C100.1 (3)C18—C19—C20—N30.3 (4)
C8—C9—C10—C110.5 (4)C20—N3—C21—C220.5 (4)
C9—C10—C11—C120.1 (4)N3—C21—C22—C180.4 (4)
C10—C11—C12—O2178.2 (2)C19—C18—C22—C211.1 (4)
C10—C11—C12—C71.3 (4)C5—C18—C22—C21175.7 (2)
C8—C7—C12—O2177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.87 (4)1.73 (4)2.527 (3)152 (3)
C16—H16···O2i0.952.593.309 (3)132
C17—H17···N2ii0.952.493.344 (3)150
C21—H21···O1iii0.952.453.380 (3)165
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x, y1, z.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKalinowski, D. S., Yu, Y., Sharpe, P. C., Islam, M., Liao, Y.-T., Lovejoy, D. B., Kumar, N., Bernhardt, P. V. & Richardson, D. R. (2007). J. Med. Chem. 50, 3716–3729.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSantos, A. F., Ferreira, I. P., Pinheiro, C. B., Santos, V. G., Lopes, M. T. P., Teixeira, L. R., Rocha, W. R., Rodrigues, G. L. S. & Beraldo, H. (2018). ACS Omega, 3, 7027–7035.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds