metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1,2,2,2,3,3,3-Octa­carbonyl-1,1,2,3-tetra­kis­(1,3,5-tri­aza-7-phosphatri­cyclo­[3.3.1.13,7]decane-κP)-triangulo-triosmium(0)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Abilene Christian University, Abilene, Texas 79699-8132, USA, and bDepartment of Chemistry, University of Texas, Austin, Texas 78712, USA
*Correspondence e-mail: powellg@acu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 July 2020; accepted 8 July 2020; online 17 July 2020)

The title compound, [Os3(C6H12N3P)4(CO)8], crystallizes in the ortho­rhom­bic space group Pbca with Z = 8. The mol­ecule consists of a triangular triosmium(0) core surrounded by eight carbonyl ligands and four 1,3,5-tri­aza-7-phosphatri­cyclo­[3.3.1.13,7]decane (or PTA) ligands. One Os atom is coordinated by two PTA ligands and two CO ligands, while the other two Os atoms are each bonded to a single PTA ligand and three CO ligands. There is a small disorder associated with the Os3 unit so that a minor orientation has an occupancy of 2.17 (4)%. The title compound represents the first structurally characterized triangular Os3 carbonyl cluster with four monodentate tertiary phosphane ligands.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The water-soluble, air-stable, and non-toxic phosphane ligand 1,3,5-tri­aza-7-phosphatri­cyclo­[3.3.1.13,7]decane (PTA) is often used in attempts to prepare metal complexes that are soluble in water (Phillips et al., 2004[Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955-993.]; Bravo et al., 2010[Bravo, J., Bolaño, S., Gonsalvi, L. & Peruzzini, M. (2010). Coord. Chem. Rev. 254, 555-607.]). A series of triangular trinuclear metal carbonyl cluster complexes with the formula M3(CO)12–x(PTA)x, where M = Ru or Os and x = 1, 2, or 3, was recently synthesized by reactions of PTA with M3(CO)12 (Mager et al., 2015[Mager, N., Robeyns, K. & Hermans, S. (2015). J. Organomet. Chem. 794, 48-58.]; Dugan et al., 2016[Dugan, A. C., Nolan, B. S. N., Brehm, K. L., Jackson, J. L. Jr, Gwini, N., Floris, S. D., Marolf, D. M., Johnstone, J. E., Yoon, S. H., Powell, G. L., Nesterov, V. N., Johnston, H. M. & Green, K. N. (2016). Polyhedron, 114, 292-298.]; Naza­rov et al., 2016[Nazarov, A. A., Nosova, Y. N., Mikhalev, O. V., Kovaleva, O. N., Dyson, P. J. & Milaeva, E. R. (2016). Russ. Chem. Bull. 65, 546-549.]). The complexes M3(CO)11(PTA) and M3(CO)10(PTA)2 are insoluble in water, while the complexes M3(CO)9(PTA)3 dissolve in water with a pH lower than 4. The title complex, Os3(CO)8(PTA)4, was also prepared and found to be soluble under acidic, neutral and basic aqueous conditions (Dugan et al., 2016[Dugan, A. C., Nolan, B. S. N., Brehm, K. L., Jackson, J. L. Jr, Gwini, N., Floris, S. D., Marolf, D. M., Johnstone, J. E., Yoon, S. H., Powell, G. L., Nesterov, V. N., Johnston, H. M. & Green, K. N. (2016). Polyhedron, 114, 292-298.]). As a result, tests are currently underway to determine if the title complex displays anti­cancer activity. An X-ray crystallographic analysis of Os3(CO)8(PTA)4 is warranted because there are no reports describing the crystal structure of a triosmium carbonyl cluster containing four monodentate phosphane ligands. Previous efforts to produce triangular triosmium carbonyl compounds with more than three phosphane ligands have typically resulted in cluster fragmentation (Alex et al., 1987[Alex, R. F., Einstein, F. W. B., Jones, R. H. & Pomeroy, R. K. (1987). Inorg. Chem. 26, 3175-3178.]).

In the title compound, the four phosphane ligands adopt positions that maximize the distance between them (Fig. 1[link]). Two PTA ligands coordinate to Os1 through their P atoms, and the other two PTA ligands coordinate one each to Os2 and Os3 through their P atoms. All PTA ligands are located in equatorial coordination sites so that the four phospho­rus atoms are within 1 Å of residing in the same plane as the three osmium atoms. Two carbonyl ligands occupy equatorial sites (one each on Os2 and Os3), while the other six CO ligands occupy axial sites (two per Os atom). Each Os atom exhibits a pseudo-octa­hedral coordination environment, but the three coordination spheres are twisted relative to one another so that the axial CO ligands are no longer perpendicular to the Os3 plane as they are in Os3(CO)12 (Corey & Dahl, 1962[Corey, E. R. & Dahl, L. F. (1962). Inorg. Chem. 1, 521-526.]). The average Cax—Os—Os—Cax torsion angle is 29 (3)°. Crystal structures have been reported for five Ru3(CO)12–xLx complexes: one [L = P(OMe)2Ph] with two bridging CO ligands (Bruce et al., 1985[Bruce, M. I., Matisons, J. G., Patrick, J. M., White, A. H. & Willis, A. C. (1985). J. Chem. Soc. Dalton Trans. pp. 1223-1227.]), two [L = P(OEt)3, PMe2Ph] with two semi-bridging CO ligands, and two [L = P(OMe)3, P(OPh)3] with only terminal CO ligands (Bruce et al., 1989[Bruce, M. I., Liddell, M. J., bin Shawkataly, O., Bytheway, I., Skelton, B. W. & White, A. H. (1989). J. Organomet. Chem. 369, 217-244.]). In all cases, the phosphane or phosphite ligands adopt the same coordination geometry as in the title complex. The average Cax—Ru—Ru—Cax torsion angles in the latter two are similar to that in the title complex with 35 (3)° for L = P(OMe)3 and 30 (2)° for L = P(OPh)3. Such torsional twisting was also noted in the cases of Ru3(CO)9(PTA)3 and Os3(CO)9(PTA)3, albeit to a significantly lower degree with average CaxMM—Cax torsion angles of 19 (2) and 17 (2)°, respectively (Mager et al., 2015[Mager, N., Robeyns, K. & Hermans, S. (2015). J. Organomet. Chem. 794, 48-58.]; Dugan et al., 2016[Dugan, A. C., Nolan, B. S. N., Brehm, K. L., Jackson, J. L. Jr, Gwini, N., Floris, S. D., Marolf, D. M., Johnstone, J. E., Yoon, S. H., Powell, G. L., Nesterov, V. N., Johnston, H. M. & Green, K. N. (2016). Polyhedron, 114, 292-298.]). The average Os—Os bond length of 2.903 (22) Å in the title complex is virtually the same as that of 2.90 (2) Å in Os3(CO)9(PTA)3, suggesting that torsional distortion is preferred over metal–metal bond lengthening.

[Figure 1]
Figure 1
View of the title mol­ecule showing the atom-labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. The Os3 core is represented by the major disorder component. For the sake of clarity, the atoms labels for C15 (in front of N7) and C22 (behind N11) are omitted.

In the structure of the title complex, the mol­ecules are stacked parallel to the a axis of the unit cell with every other Os3 triangle facing in the opposite direction and tilted at an angle of 9 (1)° from the previous Os3 triangle in the same stack (Fig. 2[link]). The planes defined by the Os3 units appear to be roughly perpendicular to the b axis, but actually form 21 (1)° angles with the ac plane. There is a slight disorder in the title complex associated with the triangular Os3 unit so that two different orientations are observed with a 0.9783 (4)/0.0217 (4) ratio of major-to-minor components (Fig. 3[link]). This type of disorder is rather common in M3(CO)12–xLx complexes in which M = Ru or Os. For example, a 50/50 disorder of the M3 unit exists in Os3(CO)6[P(OMe)3]6, Ru3(CO)8(PMe2Ph)4, and Ru3(CO)8[P(OEt)3]4, while an 85/15 disorder is present in Ru3(CO)8[P(OMe)3]4 (Alex et al., 1987[Alex, R. F., Einstein, F. W. B., Jones, R. H. & Pomeroy, R. K. (1987). Inorg. Chem. 26, 3175-3178.]; Bruce et al., 1989[Bruce, M. I., Liddell, M. J., bin Shawkataly, O., Bytheway, I., Skelton, B. W. & White, A. H. (1989). J. Organomet. Chem. 369, 217-244.]).

[Figure 2]
Figure 2
Packing of the mol­ecules viewed approximately along the a axis.
[Figure 3]
Figure 3
View of the major and minor components of the disordered triangular Os3 unit.

Synthesis and crystallization

Dodceca­carbonyl­triosmium (63.3 mg, 0.0698 mmol), PTA (87.6 mg, 0.557 mmol), 1,2-di­chloro­benzene (6 ml), and aceto­nitrile (2 ml) were added to a 35 ml glass reaction vessel, then sealed with a PTFE cap and placed in a CEM Discover-SP microwave reactor. The mixture was stirred and heated at 458 K for 24 min to produce a vibrant orange solution. The solvent was removed and water (15 ml) was added to dissolve the residue. The resulting solution was filtered through a glass frit and the orange filtrate collected. After 16 h, a precipitate had formed. Filtering again allowed for the isolation of the title complex as an orange solid. IR (νCO cm−1 in CHCl3): 2033(w), 1970(sh), 1953(vs), 1921(m). Crystals grew as thin, reddish orange plates via diffusion of n-hexane into a CH2Cl2 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Three rather large electron density peaks located near the Os atoms persisted in the difference electron-density map after all of the expected atoms were included in the model. The position of these peaks suggested there was a slight disorder in the complex resulting from an approximately 60° rotation about an axis perpendicular to the plane through the three Os atoms. A disorder model with this in mind was proposed where these three electron-density peaks represented the alternate orientation of the Os3 core. The variable x was assigned to the site occupancy for Os1, Os2 and Os3, while the site occupancy for Os1A, Os2A and Os3A was set to (1 − x). The displacement parameters for the lower occupancy Os atoms were set to be equal to those of the major component. The variable x refined to 0.9783 (4). Disorder of the associated CO and PTA ligands could not be resolved.

Table 1
Experimental details

Crystal data
Chemical formula [Os3(C6H12N3P)4(CO)8]
Mr 1423.30
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 18.7500 (2), 15.8889 (2), 27.5984 (3)
V3) 8222.03 (16)
Z 8
Radiation type Cu Kα
μ (mm−1) 19.16
Crystal size (mm) 0.18 × 0.09 × 0.01
 
Data collection
Diffractometer Agilent SuperNova with AtlasS2 CCD
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2016[Agilent (2016). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.142, 0.783
No. of measured, independent and observed [I > 2σ(I)] reflections 38755, 8184, 7535
Rint 0.048
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.14
No. of reflections 8184
No. of parameters 542
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.24, −1.34
Computer programs: CrysAlis PRO (Agilent, 2016[Agilent (2016). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014/7 (Sheldrick 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2016); cell refinement: CrysAlis PRO (Agilent, 2016); data reduction: CrysAlis PRO (Agilent, 2016); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014/7 (Sheldrick 2015); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick 2015).

1,1,2,2,2,3,3,3-Octacarbonyl-1,1,2,3-tetrakis(1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane-κP)-triangulo-triosmium(0) top
Crystal data top
[Os3(C6H12N3P)4(CO)8]Dx = 2.300 Mg m3
Mr = 1423.30Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 21014 reflections
a = 18.7500 (2) Åθ = 3.9–74.1°
b = 15.8889 (2) ŵ = 19.16 mm1
c = 27.5984 (3) ÅT = 100 K
V = 8222.03 (16) Å3Plates, red-orange
Z = 80.18 × 0.09 × 0.01 mm
F(000) = 5408
Data collection top
Agilent SuperNova with AtlasS2 CCD
diffractometer
7535 reflections with I > 2σ(I)
Radiation source: sealed microfocus tubeRint = 0.048
ω–scansθmax = 74.3°, θmin = 3.2°
Absorption correction: gaussian
(CrysAlisPro; Agilent, 2016)
h = 2323
Tmin = 0.142, Tmax = 0.783k = 1919
38755 measured reflectionsl = 3333
8184 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0225P)2 + 60.4468P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.002
8184 reflectionsΔρmax = 1.24 e Å3
542 parametersΔρmin = 1.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Three rather large peaks persisted in the difference electron density map after all the expected atoms were included in the model. These peaks, all greater than 4 e-/A3, were located near the Os atoms. The position of these peaks suggested there was a slight disorder in the complex. The disorder resulted from an approximately 60 degree rotation about an axis perpendicular to the plane through the three Os atoms. A disorder model with this in mind was proposed where these three peaks represented the alternate orientation of the Os atoms. The variable x was assigned to the site occupancy for Os1, Os2 and Os3, while the site occupancy factors for Os1a, Os2a and Os3a was set to (1-x). The displacement parameters for the lower occupancy Os atoms was set to be equal to that of the major component. The variable x refined to 0.9783 (4). The other atoms of the alternate component were not included in the disorder model because the very low electron density of a 2% component would be lost in the noise.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Os10.13660 (2)0.51582 (2)0.16473 (2)0.01732 (6)0.9783 (4)
Os1A0.1385 (5)0.5007 (6)0.2876 (4)0.017*0.0217 (4)
Os20.06461 (2)0.53429 (2)0.25694 (2)0.01999 (7)0.9783 (4)
Os2A0.2036 (6)0.4728 (7)0.1943 (4)0.020*0.0217 (4)
Os30.21112 (2)0.47110 (2)0.25254 (2)0.01941 (7)0.9783 (4)
Os3A0.0633 (6)0.5501 (7)0.2014 (4)0.019*0.0217 (4)
P10.19602 (7)0.44377 (9)0.10564 (5)0.0205 (3)
P20.06469 (7)0.59975 (9)0.11836 (5)0.0204 (3)
P30.03369 (8)0.56927 (10)0.33489 (5)0.0231 (3)
P40.24364 (8)0.41978 (9)0.32711 (5)0.0215 (3)
O10.2497 (2)0.6564 (3)0.16584 (15)0.0343 (10)
O20.0236 (2)0.3749 (3)0.16316 (15)0.0288 (9)
O30.1199 (2)0.7154 (3)0.24106 (15)0.0298 (9)
O40.0818 (2)0.5625 (4)0.21312 (16)0.0422 (12)
O50.0292 (3)0.3491 (3)0.28011 (17)0.0379 (11)
O60.2521 (2)0.6475 (3)0.28886 (16)0.0354 (10)
O70.3580 (2)0.4501 (4)0.20884 (17)0.0442 (12)
O80.1579 (2)0.2948 (3)0.22133 (16)0.0336 (10)
N10.2921 (3)0.3214 (3)0.07410 (17)0.0263 (10)
N20.2723 (3)0.4408 (3)0.01888 (18)0.0291 (11)
N30.1794 (3)0.3322 (3)0.02862 (18)0.0310 (11)
N40.0582 (3)0.6146 (3)0.0632 (2)0.0350 (12)
N50.0450 (3)0.6985 (3)0.03545 (17)0.0287 (11)
N60.0219 (3)0.7418 (3)0.10798 (19)0.0297 (11)
N70.0301 (3)0.5304 (4)0.4224 (2)0.0414 (14)
N80.0477 (3)0.6759 (4)0.3919 (2)0.0389 (13)
N90.0689 (3)0.6327 (3)0.42524 (18)0.0327 (12)
N100.2154 (3)0.3296 (3)0.41086 (17)0.0302 (11)
N110.3084 (3)0.4396 (3)0.41678 (17)0.0279 (11)
N120.3330 (3)0.3066 (3)0.37345 (18)0.0269 (10)
C10.2665 (3)0.3640 (4)0.1184 (2)0.0276 (12)
H1A0.30730.39200.13450.033*
H1B0.24730.32130.14100.033*
C20.3233 (3)0.3817 (4)0.0398 (2)0.0308 (13)
H2A0.36110.41400.05660.037*
H2B0.34630.35000.01310.037*
C30.2143 (3)0.3926 (4)0.0037 (2)0.0342 (14)
H3A0.17800.43260.01580.041*
H3B0.23370.36190.03190.041*
C40.2333 (3)0.2771 (4)0.0496 (2)0.0307 (13)
H4A0.25360.24170.02350.037*
H4B0.21000.23920.07320.037*
C50.2442 (3)0.4983 (4)0.0563 (2)0.0282 (13)
H5A0.21150.53910.04070.034*
H5B0.28440.53050.07040.034*
C60.1397 (3)0.3753 (4)0.0674 (2)0.0300 (13)
H6A0.11660.33250.08820.036*
H6B0.10150.40990.05250.036*
C70.0174 (3)0.5548 (4)0.0924 (2)0.0293 (13)
H7A0.00460.50590.07200.035*
H7B0.04800.53410.11910.035*
C80.0167 (4)0.6460 (4)0.0227 (2)0.0346 (14)
H8A0.04860.67930.00150.042*
H8B0.00040.59730.00360.042*
C90.0183 (3)0.7678 (4)0.0658 (2)0.0282 (13)
H9A0.05940.80200.07670.034*
H9B0.01240.80440.04560.034*
C100.0806 (3)0.6871 (4)0.0926 (3)0.0369 (15)
H10A0.11500.72100.07360.044*
H10B0.10570.66610.12170.044*
C110.0986 (3)0.6478 (4)0.0616 (2)0.0285 (13)
H11A0.13980.68420.06960.034*
H11B0.11570.60250.04000.034*
C120.0250 (3)0.6981 (4)0.1431 (2)0.0295 (13)
H12A0.00290.68430.17250.035*
H12B0.06390.73670.15280.035*
C130.0117 (4)0.4926 (4)0.3748 (2)0.0326 (14)
H13A0.05580.47260.35870.039*
H13B0.01980.44340.37990.039*
C140.0783 (4)0.6017 (5)0.4161 (3)0.0469 (19)
H14A0.09570.61910.44850.056*
H14B0.12010.58250.39720.056*
C150.0165 (4)0.7002 (4)0.4186 (2)0.0368 (15)
H15A0.00210.72130.45090.044*
H15B0.03980.74730.40120.044*
C160.0344 (4)0.5607 (5)0.4480 (2)0.0382 (16)
H16A0.02110.57620.48150.046*
H16B0.06920.51400.44990.046*
C170.0309 (4)0.6568 (4)0.3413 (2)0.0351 (14)
H17A0.01090.70770.32570.042*
H17B0.07540.64180.32400.042*
C180.1000 (3)0.6076 (4)0.3782 (2)0.0283 (13)
H18A0.13580.56280.38390.034*
H18B0.12510.65650.36400.034*
C190.1803 (3)0.3634 (4)0.3669 (2)0.0269 (12)
H19A0.14170.40240.37670.032*
H19B0.15840.31640.34860.032*
C200.2474 (4)0.3985 (4)0.4397 (2)0.0311 (13)
H20A0.21020.44130.44610.037*
H20B0.26270.37540.47140.037*
C210.3610 (3)0.3745 (4)0.4040 (2)0.0296 (13)
H21A0.40140.40160.38690.036*
H21B0.38000.34960.43420.036*
C220.2710 (3)0.2698 (4)0.3978 (2)0.0300 (13)
H22A0.25010.22650.37630.036*
H22B0.28750.24120.42760.036*
C230.2860 (3)0.4874 (4)0.3736 (2)0.0239 (12)
H23A0.32810.51540.35930.029*
H23B0.25180.53160.38350.029*
C240.3136 (3)0.3386 (4)0.3252 (2)0.0255 (12)
H24A0.29690.29110.30490.031*
H24B0.35670.36250.30960.031*
C250.2074 (3)0.6038 (4)0.16749 (19)0.0253 (12)
C260.0661 (3)0.4266 (4)0.1660 (2)0.0253 (12)
C270.1014 (3)0.6473 (4)0.24557 (19)0.0252 (12)
C280.0263 (3)0.5543 (4)0.2306 (2)0.0295 (13)
C290.0443 (3)0.4157 (4)0.2700 (2)0.0279 (13)
C300.2336 (3)0.5838 (4)0.2740 (2)0.0258 (12)
C310.3020 (3)0.4568 (4)0.2250 (2)0.0315 (14)
C320.1761 (3)0.3613 (4)0.2316 (2)0.0273 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.01825 (11)0.01878 (12)0.01494 (12)0.00020 (9)0.00030 (8)0.00033 (8)
Os20.01924 (12)0.02431 (13)0.01642 (12)0.00041 (10)0.00185 (9)0.00012 (9)
Os30.01938 (12)0.02142 (13)0.01743 (12)0.00041 (9)0.00109 (8)0.00100 (9)
P10.0214 (6)0.0223 (7)0.0178 (6)0.0011 (6)0.0014 (5)0.0025 (5)
P20.0193 (6)0.0222 (7)0.0198 (6)0.0015 (5)0.0012 (5)0.0016 (5)
P30.0234 (7)0.0283 (7)0.0175 (6)0.0014 (6)0.0037 (5)0.0003 (6)
P40.0235 (7)0.0227 (7)0.0183 (6)0.0024 (6)0.0023 (5)0.0011 (5)
O10.035 (2)0.034 (2)0.034 (2)0.018 (2)0.0030 (19)0.0064 (19)
O20.025 (2)0.029 (2)0.032 (2)0.0116 (18)0.0010 (17)0.0036 (17)
O30.037 (2)0.023 (2)0.029 (2)0.0034 (19)0.0014 (18)0.0023 (17)
O40.022 (2)0.072 (3)0.033 (2)0.008 (2)0.0003 (18)0.014 (2)
O50.044 (3)0.028 (2)0.041 (3)0.008 (2)0.010 (2)0.004 (2)
O60.036 (2)0.029 (2)0.041 (3)0.001 (2)0.010 (2)0.005 (2)
O70.022 (2)0.076 (4)0.034 (3)0.008 (2)0.0049 (19)0.020 (2)
O80.035 (2)0.026 (2)0.040 (2)0.0007 (19)0.0056 (19)0.0040 (19)
N10.026 (2)0.030 (3)0.023 (2)0.009 (2)0.0000 (19)0.002 (2)
N20.028 (3)0.034 (3)0.025 (2)0.008 (2)0.005 (2)0.002 (2)
N30.028 (3)0.038 (3)0.026 (3)0.004 (2)0.003 (2)0.012 (2)
N40.023 (2)0.032 (3)0.050 (3)0.002 (2)0.011 (2)0.006 (3)
N50.030 (3)0.035 (3)0.022 (2)0.001 (2)0.005 (2)0.006 (2)
N60.028 (3)0.028 (3)0.032 (3)0.005 (2)0.001 (2)0.002 (2)
N70.045 (3)0.049 (4)0.030 (3)0.014 (3)0.016 (3)0.002 (3)
N80.034 (3)0.046 (3)0.036 (3)0.006 (3)0.010 (2)0.008 (3)
N90.040 (3)0.035 (3)0.023 (3)0.010 (2)0.002 (2)0.002 (2)
N100.038 (3)0.032 (3)0.021 (2)0.007 (2)0.003 (2)0.003 (2)
N110.029 (3)0.030 (3)0.025 (3)0.003 (2)0.010 (2)0.000 (2)
N120.027 (2)0.026 (2)0.029 (3)0.001 (2)0.003 (2)0.002 (2)
C10.029 (3)0.033 (3)0.021 (3)0.001 (3)0.004 (2)0.003 (2)
C20.022 (3)0.042 (4)0.029 (3)0.008 (3)0.002 (2)0.001 (3)
C30.036 (3)0.044 (4)0.022 (3)0.011 (3)0.002 (2)0.005 (3)
C40.035 (3)0.026 (3)0.031 (3)0.004 (3)0.002 (3)0.004 (3)
C50.025 (3)0.032 (3)0.028 (3)0.005 (3)0.009 (2)0.000 (2)
C60.022 (3)0.037 (3)0.031 (3)0.003 (3)0.001 (2)0.012 (3)
C70.021 (3)0.026 (3)0.040 (3)0.003 (2)0.004 (2)0.005 (3)
C80.039 (4)0.035 (3)0.030 (3)0.004 (3)0.015 (3)0.002 (3)
C90.029 (3)0.024 (3)0.032 (3)0.005 (2)0.008 (2)0.006 (2)
C100.023 (3)0.036 (3)0.052 (4)0.003 (3)0.004 (3)0.008 (3)
C110.025 (3)0.032 (3)0.028 (3)0.002 (3)0.001 (2)0.004 (3)
C120.032 (3)0.028 (3)0.028 (3)0.004 (3)0.002 (2)0.001 (2)
C130.034 (3)0.035 (3)0.028 (3)0.008 (3)0.005 (3)0.000 (3)
C140.036 (4)0.064 (5)0.041 (4)0.007 (4)0.015 (3)0.012 (4)
C150.041 (4)0.039 (4)0.030 (3)0.004 (3)0.012 (3)0.007 (3)
C160.050 (4)0.047 (4)0.018 (3)0.004 (3)0.001 (3)0.000 (3)
C170.037 (3)0.040 (4)0.028 (3)0.008 (3)0.000 (3)0.002 (3)
C180.024 (3)0.031 (3)0.029 (3)0.002 (3)0.004 (2)0.003 (2)
C190.022 (3)0.033 (3)0.026 (3)0.005 (2)0.002 (2)0.004 (2)
C200.038 (3)0.034 (3)0.022 (3)0.003 (3)0.001 (3)0.002 (2)
C210.029 (3)0.030 (3)0.030 (3)0.001 (3)0.007 (2)0.003 (3)
C220.038 (3)0.025 (3)0.027 (3)0.006 (3)0.003 (3)0.007 (2)
C230.025 (3)0.022 (3)0.025 (3)0.001 (2)0.002 (2)0.002 (2)
C240.025 (3)0.026 (3)0.025 (3)0.000 (2)0.001 (2)0.001 (2)
C250.035 (3)0.024 (3)0.017 (3)0.002 (3)0.001 (2)0.000 (2)
C260.027 (3)0.031 (3)0.018 (3)0.006 (3)0.001 (2)0.001 (2)
C270.024 (3)0.036 (3)0.015 (3)0.004 (3)0.002 (2)0.000 (2)
C280.026 (3)0.039 (3)0.023 (3)0.008 (3)0.005 (2)0.003 (3)
C290.025 (3)0.033 (3)0.025 (3)0.005 (3)0.007 (2)0.001 (3)
C300.028 (3)0.019 (3)0.030 (3)0.004 (2)0.004 (2)0.003 (2)
C310.034 (3)0.036 (3)0.025 (3)0.003 (3)0.005 (3)0.004 (3)
C320.025 (3)0.029 (3)0.028 (3)0.004 (3)0.000 (2)0.002 (2)
Geometric parameters (Å, º) top
Os1—C251.929 (6)N6—C121.481 (8)
Os1—C261.938 (6)N7—C141.459 (10)
Os1—P12.2831 (13)N7—C161.481 (9)
Os1—P22.2879 (14)N7—C131.487 (8)
Os1—Os32.8861 (3)N8—C171.464 (8)
Os1—Os22.8954 (3)N8—C151.464 (9)
Os1A—C302.252 (12)N8—C141.472 (9)
Os1A—C292.275 (12)N9—C161.456 (8)
Os1A—P42.595 (10)N9—C151.466 (9)
Os1A—P32.599 (10)N9—C181.477 (8)
Os1A—Os3A2.872 (15)N10—C221.456 (8)
Os1A—Os2A2.882 (15)N10—C201.479 (8)
Os2—C281.880 (6)N10—C191.481 (7)
Os2—C271.948 (6)N11—C201.463 (8)
Os2—C291.957 (6)N11—C211.473 (8)
Os2—P32.2965 (14)N11—C231.473 (7)
Os2—Os32.9272 (3)N12—C221.464 (8)
Os2A—C312.046 (13)N12—C211.466 (8)
Os2A—C322.113 (12)N12—C241.472 (7)
Os2A—C252.211 (12)C1—H1A0.9900
Os2A—P12.495 (11)C1—H1B0.9900
Os2A—Os3A2.910 (15)C2—H2A0.9900
Os3—C311.880 (7)C2—H2B0.9900
Os3—C301.933 (6)C3—H3A0.9900
Os3—C321.951 (6)C3—H3B0.9900
Os3—P42.2963 (14)C4—H4A0.9900
Os3A—C281.866 (12)C4—H4B0.9900
Os3A—C272.092 (12)C5—H5A0.9900
Os3A—C262.193 (12)C5—H5B0.9900
Os3A—P22.425 (11)C6—H6A0.9900
P1—C61.848 (6)C6—H6B0.9900
P1—C51.850 (6)C7—H7A0.9900
P1—C11.864 (6)C7—H7B0.9900
P2—C71.841 (6)C8—H8A0.9900
P2—C111.854 (6)C8—H8B0.9900
P2—C121.861 (6)C9—H9A0.9900
P3—C181.830 (6)C9—H9B0.9900
P3—C131.849 (6)C10—H10A0.9900
P3—C171.851 (7)C10—H10B0.9900
P4—C241.841 (6)C11—H11A0.9900
P4—C191.849 (6)C11—H11B0.9900
P4—C231.852 (6)C12—H12A0.9900
O1—C251.153 (7)C12—H12B0.9900
O2—C261.147 (7)C13—H13A0.9900
O3—C271.144 (7)C13—H13B0.9900
O4—C281.154 (7)C14—H14A0.9900
O5—C291.130 (7)C14—H14B0.9900
O6—C301.146 (7)C15—H15A0.9900
O7—C311.146 (8)C15—H15B0.9900
O8—C321.146 (7)C16—H16A0.9900
N1—C21.469 (8)C16—H16B0.9900
N1—C41.472 (8)C17—H17A0.9900
N1—C11.477 (7)C17—H17B0.9900
N2—C21.459 (7)C18—H18A0.9900
N2—C31.468 (8)C18—H18B0.9900
N2—C51.476 (7)C19—H19A0.9900
N3—C41.457 (8)C19—H19B0.9900
N3—C31.465 (9)C20—H20A0.9900
N3—C61.473 (7)C20—H20B0.9900
N4—C81.452 (9)C21—H21A0.9900
N4—C71.462 (8)C21—H21B0.9900
N4—C101.470 (9)C22—H22A0.9900
N5—C81.470 (8)C22—H22B0.9900
N5—C91.471 (8)C23—H23A0.9900
N5—C111.476 (7)C23—H23B0.9900
N6—C91.448 (8)C24—H24A0.9900
N6—C101.465 (8)C24—H24B0.9900
C25—Os1—C26176.7 (2)C21—N12—C24110.8 (5)
C25—Os1—P193.20 (17)N1—C1—P1112.7 (4)
C26—Os1—P188.80 (17)N1—C1—H1A109.1
C25—Os1—P290.29 (17)P1—C1—H1A109.1
C26—Os1—P291.96 (17)N1—C1—H1B109.1
P1—Os1—P2100.38 (5)P1—C1—H1B109.1
C25—Os1—Os379.18 (16)H1A—C1—H1B107.8
C26—Os1—Os397.76 (16)N2—C2—N1114.4 (5)
P1—Os1—Os3103.89 (4)N2—C2—H2A108.7
P2—Os1—Os3153.97 (4)N1—C2—H2A108.7
C25—Os1—Os2102.28 (16)N2—C2—H2B108.7
C26—Os1—Os274.96 (16)N1—C2—H2B108.7
P1—Os1—Os2154.98 (4)H2A—C2—H2B107.6
P2—Os1—Os299.09 (4)N3—C3—N2114.5 (5)
Os3—Os1—Os260.835 (8)N3—C3—H3A108.6
C30—Os1A—C29158.1 (6)N2—C3—H3A108.6
C30—Os1A—P476.0 (3)N3—C3—H3B108.6
C29—Os1A—P4112.6 (4)N2—C3—H3B108.6
C30—Os1A—P3115.9 (4)H3A—C3—H3B107.6
C29—Os1A—P376.6 (3)N3—C4—N1114.5 (5)
P4—Os1A—P3124.8 (4)N3—C4—H4A108.6
C30—Os1A—Os3A95.2 (4)N1—C4—H4A108.6
C29—Os1A—Os3A66.8 (4)N3—C4—H4B108.6
P4—Os1A—Os3A148.9 (5)N1—C4—H4B108.6
P3—Os1A—Os3A86.0 (4)H4A—C4—H4B107.6
C30—Os1A—Os2A66.8 (4)N2—C5—P1113.5 (4)
C29—Os1A—Os2A92.8 (4)N2—C5—H5A108.9
P4—Os1A—Os2A88.7 (4)P1—C5—H5A108.9
P3—Os1A—Os2A146.5 (5)N2—C5—H5B108.9
Os3A—Os1A—Os2A60.8 (4)P1—C5—H5B108.9
C28—Os2—C2795.9 (3)H5A—C5—H5B107.7
C28—Os2—C2993.3 (3)N3—C6—P1113.6 (4)
C27—Os2—C29170.4 (3)N3—C6—H6A108.9
C28—Os2—P395.26 (18)P1—C6—H6A108.9
C27—Os2—P391.00 (16)N3—C6—H6B108.9
C29—Os2—P390.61 (17)P1—C6—H6B108.9
C28—Os2—Os195.78 (18)H6A—C6—H6B107.7
C27—Os2—Os177.69 (16)N4—C7—P2113.6 (4)
C29—Os2—Os198.95 (17)N4—C7—H7A108.8
P3—Os2—Os1164.93 (4)P2—C7—H7A108.8
C28—Os2—Os3153.25 (19)N4—C7—H7B108.8
C27—Os2—Os388.68 (18)P2—C7—H7B108.8
C29—Os2—Os381.95 (17)H7A—C7—H7B107.7
P3—Os2—Os3111.03 (4)N4—C8—N5115.6 (5)
Os1—Os2—Os359.425 (8)N4—C8—H8A108.4
C31—Os2A—C3285.1 (5)N5—C8—H8A108.4
C31—Os2A—C25103.2 (5)N4—C8—H8B108.4
C32—Os2A—C25163.9 (6)N5—C8—H8B108.4
C31—Os2A—P1115.8 (5)H8A—C8—H8B107.4
C32—Os2A—P1108.0 (5)N6—C9—N5114.9 (5)
C25—Os2A—P181.2 (4)N6—C9—H9A108.5
C31—Os2A—Os1A91.8 (5)N5—C9—H9A108.5
C32—Os2A—Os1A65.8 (4)N6—C9—H9B108.5
C25—Os2A—Os1A99.7 (5)N5—C9—H9B108.5
P1—Os2A—Os1A151.6 (5)H9A—C9—H9B107.5
C31—Os2A—Os3A147.1 (6)N6—C10—N4114.3 (5)
C32—Os2A—Os3A95.8 (5)N6—C10—H10A108.7
C25—Os2A—Os3A69.7 (4)N4—C10—H10A108.7
P1—Os2A—Os3A95.3 (4)N6—C10—H10B108.7
Os1A—Os2A—Os3A59.4 (4)N4—C10—H10B108.7
C31—Os3—C3092.2 (3)H10A—C10—H10B107.6
C31—Os3—C3294.4 (3)N5—C11—P2113.9 (4)
C30—Os3—C32173.0 (2)N5—C11—H11A108.8
C31—Os3—P494.47 (19)P2—C11—H11A108.8
C30—Os3—P489.81 (17)N5—C11—H11B108.8
C32—Os3—P492.11 (18)P2—C11—H11B108.8
C31—Os3—Os197.47 (19)H11A—C11—H11B107.7
C30—Os3—Os197.74 (17)N6—C12—P2113.0 (4)
C32—Os3—Os179.00 (17)N6—C12—H12A109.0
P4—Os3—Os1165.60 (4)P2—C12—H12A109.0
C31—Os3—Os2155.42 (19)N6—C12—H12B109.0
C30—Os3—Os282.79 (18)P2—C12—H12B109.0
C32—Os3—Os290.20 (17)H12A—C12—H12B107.8
P4—Os3—Os2109.50 (4)N7—C13—P3111.5 (4)
Os1—Os3—Os259.740 (8)N7—C13—H13A109.3
C28—Os3A—C2791.7 (5)P3—C13—H13A109.3
C28—Os3A—C26104.2 (5)N7—C13—H13B109.3
C27—Os3A—C26155.8 (6)P3—C13—H13B109.3
C28—Os3A—P2114.0 (5)H13A—C13—H13B108.0
C27—Os3A—P2107.9 (5)N7—C14—N8115.7 (6)
C26—Os3A—P282.5 (4)N7—C14—H14A108.3
C28—Os3A—Os1A95.4 (5)N8—C14—H14A108.3
C27—Os3A—Os1A63.4 (4)N7—C14—H14B108.3
C26—Os3A—Os1A96.5 (4)N8—C14—H14B108.3
P2—Os3A—Os1A150.0 (5)H14A—C14—H14B107.4
C28—Os3A—Os2A149.2 (6)N8—C15—N9114.9 (5)
C27—Os3A—Os2A92.4 (4)N8—C15—H15A108.6
C26—Os3A—Os2A64.6 (4)N9—C15—H15A108.6
P2—Os3A—Os2A93.7 (4)N8—C15—H15B108.6
Os1A—Os3A—Os2A59.8 (4)N9—C15—H15B108.6
C6—P1—C597.7 (3)H15A—C15—H15B107.5
C6—P1—C196.5 (3)N9—C16—N7114.3 (5)
C5—P1—C196.4 (3)N9—C16—H16A108.7
C6—P1—Os1115.11 (19)N7—C16—H16A108.7
C5—P1—Os1122.0 (2)N9—C16—H16B108.7
C1—P1—Os1123.49 (18)N7—C16—H16B108.7
C6—P1—Os2A134.6 (3)H16A—C16—H16B107.6
C5—P1—Os2A127.4 (3)N8—C17—P3112.8 (5)
C1—P1—Os2A84.2 (3)N8—C17—H17A109.0
C7—P2—C1196.8 (3)P3—C17—H17A109.0
C7—P2—C1297.7 (3)N8—C17—H17B109.0
C11—P2—C1295.7 (3)P3—C17—H17B109.0
C7—P2—Os1119.0 (2)H17A—C17—H17B107.8
C11—P2—Os1120.71 (19)N9—C18—P3113.3 (4)
C12—P2—Os1121.3 (2)N9—C18—H18A108.9
C7—P2—Os3A103.5 (3)P3—C18—H18A108.9
C11—P2—Os3A159.4 (3)N9—C18—H18B108.9
C12—P2—Os3A85.5 (3)P3—C18—H18B108.9
C18—P3—C1398.2 (3)H18A—C18—H18B107.7
C18—P3—C1797.6 (3)N10—C19—P4112.1 (4)
C13—P3—C1797.9 (3)N10—C19—H19A109.2
C18—P3—Os2121.42 (19)P4—C19—H19A109.2
C13—P3—Os2120.9 (2)N10—C19—H19B109.2
C17—P3—Os2115.8 (2)P4—C19—H19B109.2
C18—P3—Os1A87.4 (3)H19A—C19—H19B107.9
C13—P3—Os1A111.8 (3)N11—C20—N10114.5 (5)
C17—P3—Os1A148.9 (3)N11—C20—H20A108.6
C24—P4—C1997.8 (3)N10—C20—H20A108.6
C24—P4—C2396.9 (3)N11—C20—H20B108.6
C19—P4—C2398.3 (3)N10—C20—H20B108.6
C24—P4—Os3114.33 (19)H20A—C20—H20B107.6
C19—P4—Os3122.26 (19)N12—C21—N11114.5 (5)
C23—P4—Os3121.95 (19)N12—C21—H21A108.6
C24—P4—Os1A151.2 (3)N11—C21—H21A108.6
C19—P4—Os1A90.1 (3)N12—C21—H21B108.6
C23—P4—Os1A109.3 (3)N11—C21—H21B108.6
C2—N1—C4108.3 (5)H21A—C21—H21B107.6
C2—N1—C1111.4 (5)N10—C22—N12115.0 (5)
C4—N1—C1110.9 (5)N10—C22—H22A108.5
C2—N2—C3108.5 (5)N12—C22—H22A108.5
C2—N2—C5110.9 (5)N10—C22—H22B108.5
C3—N2—C5110.8 (5)N12—C22—H22B108.5
C4—N3—C3108.9 (5)H22A—C22—H22B107.5
C4—N3—C6110.0 (5)N11—C23—P4112.6 (4)
C3—N3—C6111.3 (5)N11—C23—H23A109.1
C8—N4—C7111.6 (5)P4—C23—H23A109.1
C8—N4—C10107.9 (5)N11—C23—H23B109.1
C7—N4—C10110.7 (5)P4—C23—H23B109.1
C8—N5—C9107.0 (5)H23A—C23—H23B107.8
C8—N5—C11110.2 (5)N12—C24—P4113.1 (4)
C9—N5—C11111.2 (5)N12—C24—H24A109.0
C9—N6—C10109.1 (5)P4—C24—H24A109.0
C9—N6—C12110.5 (5)N12—C24—H24B109.0
C10—N6—C12111.0 (5)P4—C24—H24B109.0
C14—N7—C16108.1 (6)H24A—C24—H24B107.8
C14—N7—C13110.6 (6)O1—C25—Os1175.5 (5)
C16—N7—C13111.3 (5)O1—C25—Os2A135.8 (6)
C17—N8—C15111.0 (5)O2—C26—Os1175.0 (5)
C17—N8—C14110.6 (6)O2—C26—Os3A130.9 (5)
C15—N8—C14107.6 (6)O3—C27—Os2175.6 (5)
C16—N9—C15109.4 (5)O3—C27—Os3A137.6 (5)
C16—N9—C18110.0 (5)O4—C28—Os3A129.4 (6)
C15—N9—C18110.6 (5)O4—C28—Os2176.3 (6)
C22—N10—C20109.0 (5)O5—C29—Os2175.0 (5)
C22—N10—C19110.6 (5)O5—C29—Os1A134.3 (6)
C20—N10—C19110.7 (5)O6—C30—Os3173.8 (5)
C20—N11—C21108.2 (5)O6—C30—Os1A134.3 (6)
C20—N11—C23110.9 (5)O7—C31—Os3178.1 (6)
C21—N11—C23111.1 (5)O7—C31—Os2A132.5 (6)
C22—N12—C21108.3 (5)O8—C32—Os3176.2 (5)
C22—N12—C24110.9 (5)O8—C32—Os2A136.4 (6)
C2—N1—C1—P160.5 (5)C17—P3—C13—N750.2 (5)
C4—N1—C1—P160.1 (6)Os2—P3—C13—N7176.8 (4)
C6—P1—C1—N149.1 (5)Os1A—P3—C13—N7139.2 (5)
C5—P1—C1—N149.4 (5)C16—N7—C14—N854.6 (7)
Os1—P1—C1—N1175.1 (3)C13—N7—C14—N867.5 (8)
Os2A—P1—C1—N1176.6 (5)C17—N8—C14—N766.7 (8)
C3—N2—C2—N155.2 (6)C15—N8—C14—N754.7 (7)
C5—N2—C2—N166.7 (7)C17—N8—C15—N967.3 (7)
C4—N1—C2—N255.2 (6)C14—N8—C15—N953.9 (7)
C1—N1—C2—N267.0 (6)C16—N9—C15—N854.7 (7)
C4—N3—C3—N254.1 (6)C18—N9—C15—N866.7 (7)
C6—N3—C3—N267.4 (6)C15—N9—C16—N754.0 (7)
C2—N2—C3—N354.5 (6)C18—N9—C16—N767.8 (7)
C5—N2—C3—N367.5 (6)C14—N7—C16—N953.6 (7)
C3—N3—C4—N154.2 (6)C13—N7—C16—N968.1 (8)
C6—N3—C4—N168.0 (6)C15—N8—C17—P360.0 (7)
C2—N1—C4—N354.6 (6)C14—N8—C17—P359.4 (7)
C1—N1—C4—N367.9 (6)C18—P3—C17—N849.2 (5)
C2—N2—C5—P161.1 (6)C13—P3—C17—N850.3 (5)
C3—N2—C5—P159.5 (6)Os2—P3—C17—N8179.6 (4)
C6—P1—C5—N247.5 (5)Os1A—P3—C17—N8146.8 (6)
C1—P1—C5—N249.9 (5)C16—N9—C18—P361.2 (6)
Os1—P1—C5—N2173.6 (3)C15—N9—C18—P359.8 (6)
Os2A—P1—C5—N2137.6 (5)C13—P3—C18—N950.1 (5)
C4—N3—C6—P161.8 (6)C17—P3—C18—N949.1 (5)
C3—N3—C6—P159.1 (6)Os2—P3—C18—N9175.7 (3)
C5—P1—C6—N347.2 (5)Os1A—P3—C18—N9161.7 (5)
C1—P1—C6—N350.2 (5)C22—N10—C19—P460.8 (6)
Os1—P1—C6—N3178.0 (4)C20—N10—C19—P460.1 (6)
Os2A—P1—C6—N3138.5 (5)C24—P4—C19—N1049.3 (5)
C8—N4—C7—P259.8 (6)C23—P4—C19—N1048.9 (5)
C10—N4—C7—P260.5 (6)Os3—P4—C19—N10174.7 (3)
C11—P2—C7—N448.7 (5)Os1A—P4—C19—N10158.4 (5)
C12—P2—C7—N448.1 (5)C21—N11—C20—N1054.0 (6)
Os1—P2—C7—N4179.5 (4)C23—N11—C20—N1068.0 (7)
Os3A—P2—C7—N4135.3 (5)C22—N10—C20—N1153.6 (6)
C7—N4—C8—N566.4 (7)C19—N10—C20—N1168.3 (7)
C10—N4—C8—N555.5 (7)C22—N12—C21—N1155.3 (6)
C9—N5—C8—N455.4 (7)C24—N12—C21—N1166.5 (6)
C11—N5—C8—N465.6 (7)C20—N11—C21—N1255.4 (6)
C10—N6—C9—N555.0 (6)C23—N11—C21—N1266.6 (6)
C12—N6—C9—N567.3 (6)C20—N10—C22—N1253.8 (6)
C8—N5—C9—N654.6 (6)C19—N10—C22—N1268.1 (6)
C11—N5—C9—N665.7 (6)C21—N12—C22—N1054.6 (6)
C9—N6—C10—N454.3 (7)C24—N12—C22—N1067.1 (6)
C12—N6—C10—N467.7 (7)C20—N11—C23—P459.9 (6)
C8—N4—C10—N654.0 (7)C21—N11—C23—P460.4 (5)
C7—N4—C10—N668.4 (7)C24—P4—C23—N1150.1 (4)
C8—N5—C11—P259.1 (6)C19—P4—C23—N1148.8 (5)
C9—N5—C11—P259.4 (6)Os3—P4—C23—N11174.6 (3)
C7—P2—C11—N549.0 (5)Os1A—P4—C23—N11141.9 (4)
C12—P2—C11—N549.5 (5)C22—N12—C24—P459.2 (6)
Os1—P2—C11—N5178.6 (3)C21—N12—C24—P461.1 (6)
Os3A—P2—C11—N5142.1 (8)C19—P4—C24—N1248.9 (4)
C9—N6—C12—P262.4 (6)C23—P4—C24—N1250.6 (4)
C10—N6—C12—P258.8 (6)Os3—P4—C24—N12179.6 (3)
C7—P2—C12—N647.0 (5)Os1A—P4—C24—N12153.5 (5)
C11—P2—C12—N650.7 (5)C27—Os3A—C28—O4125.6 (8)
Os1—P2—C12—N6177.9 (3)C26—Os3A—C28—O472.8 (9)
Os3A—P2—C12—N6150.0 (5)P2—Os3A—C28—O415.1 (10)
C14—N7—C13—P360.7 (6)Os1A—Os3A—C28—O4171.0 (7)
C16—N7—C13—P359.5 (7)Os2A—Os3A—C28—O4136.8 (10)
C18—P3—C13—N748.7 (5)
 

Acknowledgements

We are thankful for the support of the Abilene Christian University Scholars Lab.

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021).

References

First citationAgilent (2016). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAlex, R. F., Einstein, F. W. B., Jones, R. H. & Pomeroy, R. K. (1987). Inorg. Chem. 26, 3175–3178.  CSD CrossRef CAS Web of Science Google Scholar
First citationBravo, J., Bolaño, S., Gonsalvi, L. & Peruzzini, M. (2010). Coord. Chem. Rev. 254, 555–607.  Web of Science CrossRef CAS Google Scholar
First citationBruce, M. I., Liddell, M. J., bin Shawkataly, O., Bytheway, I., Skelton, B. W. & White, A. H. (1989). J. Organomet. Chem. 369, 217–244.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Matisons, J. G., Patrick, J. M., White, A. H. & Willis, A. C. (1985). J. Chem. Soc. Dalton Trans. pp. 1223–1227.  CSD CrossRef Web of Science Google Scholar
First citationCorey, E. R. & Dahl, L. F. (1962). Inorg. Chem. 1, 521–526.  CSD CrossRef CAS Web of Science Google Scholar
First citationDugan, A. C., Nolan, B. S. N., Brehm, K. L., Jackson, J. L. Jr, Gwini, N., Floris, S. D., Marolf, D. M., Johnstone, J. E., Yoon, S. H., Powell, G. L., Nesterov, V. N., Johnston, H. M. & Green, K. N. (2016). Polyhedron, 114, 292–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationMager, N., Robeyns, K. & Hermans, S. (2015). J. Organomet. Chem. 794, 48–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationNazarov, A. A., Nosova, Y. N., Mikhalev, O. V., Kovaleva, O. N., Dyson, P. J. & Milaeva, E. R. (2016). Russ. Chem. Bull. 65, 546–549.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPhillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds