inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Rerefinement of the crystal structure of tri­chlorido­sulfonium­(IV) hexa­chlorido­uranate(V), (SCl3)[UCl6]

CROSSMARK_Color_square_no_text.svg

aAnorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: florian.kraus@chemie.uni-marburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 June 2020; accepted 14 July 2020; online 17 July 2020)

Single crystals of tri­chlorido­sulfonium­(IV) hexa­chlorido­uranate(V) were obtained from the reaction of uranium(IV) chloride with an excess of disulfur dichloride and studied by single-crystal X-ray diffraction. In comparison with the structure model reported previously [Sawodny et al. (1983[Sawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81-88.]). Z. Anorg. Allg. Chem. 499, 81–88.], the lattice parameters and fractional atomic coordinates were determined to a much higher precision, leading overall to an improved structure model. The ionic compound contains trigonal–pyramidal (SCl3)+ cations and slightly distorted octa­hedral [UCl6] anions. The structure was refined as an inversion twin with a twin ratio of 4.4:1.

3D view (loading...)
[Scheme 3D1]

Structure description

We explored the reaction of uranium tetra­chloride with disulfur dichloride out of curiosity. Moreover, we investigated whether the latter compound could be a potential solvent for uranium halides. During these studies, high-quality single crystals of (SCl3)[UCl6] were obtained.

The lattice parameters determined at 100 K from the current single-crystal X-ray structure determination (Table 3[link]) agree with those reported previously [a = 10.668 (10), b = 10.712 (4) c = 11.333 (6) Å at T = 293 K; Sawodny et al., 1983[Sawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81-88.]].

Table 3
Experimental details

Crystal data
Chemical formula (SCl3)[UCl6]
Mr 589.14
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 10.534 (2), 10.545 (2), 11.217 (2)
V3) 1246.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 15.07
Crystal size (mm) 0.15 × 0.1 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Numerical (X-RED32; Stoe 2016[Stoe (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.036, 0.090
No. of measured, independent and observed [I > 2σ(I)] reflections 18340, 3364, 3304
Rint 0.046
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.043, 1.08
No. of reflections 3364
No. of parameters 101
Δρmax, Δρmin (e Å−3) 0.53, −1.01
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.186 (6)
Computer programs: X-AREA (Stoe, 2016[Stoe (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 2019[Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The UV atom is located on Wyckoff position 4 a and has six chloride ligands in its slightly distorted octa­hedral coordination sphere (Fig. 1[link]). The U—Cl bond lengths range between 2.4869 (16) and 2.5209 (14) Å and are in good agreement with the previously reported values [U—Cl distances = 2.485 (11)–2.531 (10) Å; Sawodny et al., 1983[Sawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81-88.]]. A comparison between the U—Cl bond lengths and Cl—U—Cl angles obtained from the current and the previous refinements is collated in Tables 1[link] and 2[link], respectively. Similar U—Cl distances are observed: (i) in the crystal structure of the low-temperature modification of UCl6 where the coordination sphere for the U atom is also distorted octa­hedral but with slightly shorter U—Cl bonds of 2.4443 (15)–2.4570 (20) Å (at 100 K; Deubner et al., 2019[Deubner, H. L., Rudel, S. S., Sachs, M., Pietzonka, C., Karttunen, A. J., Ivlev, S. I., Müller, M., Conrad, M., Müller, U. & Kraus, F. (2019). Chem. Eur. J. 25, 6402-6411.]) due to the presence of a UVI atom, and (ii) in Cs2[UCl6] with longer U—Cl bonds of 2.621 Å (at 293 K; Schleid et al., 1987[Schleid, T., Meyer, G. & Morss, L. R. (1987). J. Less-Common Met. 132, 69-77.]) due to the presence of an UIV atom.

Table 1
Selected inter­atomic distances d (Å) for (SCl3)[UCl6] from the current and the previous refinement

Bond d (current study) d (Sawodny et al., 1983[Sawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81-88.])
U1—Cl1ii 2.5263 (15) 2.510 (10)
U1—Cl2iii 2.5297 (15) 2.531 (9)
U1—Cl3 2.5151 (16) 2.521 (10)
U1—Cl4 2.4869 (16) 2.485 (11)
U1—Cl5i 2.5045 (16) 2.499 (10)
U1—Cl6ii 2.5209 (15) 2.511 (9)
S1—Cl7 1.975 (2) 1.955 (14)
S1—Cl8 1.975 (2) 1.973 (13)
S1—Cl9 1.979 (2) 1.959 (13)
Symmetry codes: (i) −x + [{3\over 2}], −y + 1, z + [{1\over 2}]; (ii) −x + 2, y − [{1\over 2}], −z + [{3\over 2}]; (iii) x + [{1\over 2}], −y + [{3\over 2}], −z + 2.

Table 2
Comparison of selected angles φ (°) for (SCl3)[UCl6] from the current and the previous refinement

Angle φ (current study) φ (Sawodny et al., 1983[Sawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81-88.])
Cl1ii—U1—Cl2iii 89.86 (5) 89.9 (3)
Cl3—U1—Cl6ii 179.02 (6) 179.3 (4)
Cl3—U1—Cl2iii 91.20 (5) 91.8 (4)
Cl3—U1—Cl1ii 89.76 (6) 90.0 (4)
Cl4—U1—Cl2iii 178.87 (6) 179.4 (4)
Cl4—U1—Cl1ii 89.44 (5) 89.6 (4)
Cl4—U1—Cl3 89.69 (6) 88.2 (4)
Cl4—U1—Cl5i 91.56 (6) 91.3 (4)
Cl4—U1—C6ii 90.83 (6) 91.2 (4)
Cl5i—U1—Cl1ii 178.95 (6) 179.0 (4)
Cl5i—U1—Cl6ii 90.89 (5) 90.1 (4)
Cl5i—U1—Cl2iii 89.14 (5) 89.2 (4)
Cl5i—U1—Cl3 89.92 (6) 89.5 (4)
Cl6ii—U1—Cl1ii 89.42 (5) 90.4 (4)
Cl6ii—U1—Cl2iii 88.28 (5) 88.7 (3)
Cl7iv—S1—Cl8 102.92 (10) 101.7 (7)
Cl7i—S1—Cl9 102.93 (10) 103.5 (7)
Cl8—S1—Cl9 102.21 (9) 101.8 (6)
Symmetry codes: (i) −x + [{3\over 2}], −y + 1, z + [{1\over 2}]; (ii) −x + 2, y − [{1\over 2}], −z + [{3\over 2}]; (iii) x + [{1\over 2}], −y + [{3\over 2}], −z + 2; (iv) x − [{1\over 2}], −y + [{3\over 2}], −z + 2.
[Figure 1]
Figure 1
The slightly distorted trigonal–pyramidal [SCl3]+ cation and octa­hedral [UCl6] anion of the title compound. Displacement ellipsoids are shown at the 90% probability level.

The SIV atom is also located on Wyckoff position 4 a and has three chloride atoms in its trigonal–pyramidal coordination sphere (Fig. 1[link]). The S—Cl bond lengths are virtually the same at 100 K. In comparison, Sawodny et al. (1983[Sawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81-88.]) reported slightly shorter S—Cl bond lengths for (SCl3)[UCl6] at 293 K (Table 1[link]). Nevertheless, these atomic distances are also in good agreement with those reported for the ionic compound β-[SCl3][SbCl6] [1.979 (5) to 1.992 (7) Å at 169 K; Minkwitz et al., 1992[Minkwitz, R., Kornath, A. & Preut, H. (1992). Z. Naturforsch. Teil B, 47, 594-596.]]. The Cl—S—Cl bond angles in (SCl3)[UCl6] resulting from the current and the previous refinements differ slightly (Table 2[link]).

The packing of U and S atoms in the crystal structure of (SCl3)[UCl6] is shown in Fig. 2[link]. As can be seen, the U and S atoms are arranged according to a distorted NaCl-type of structure. The overall coordination sphere of the S atom can be regarded as [3 + 3], with the three long S—Cl inter­actions being 3.0721 (2), 3.160 (2) and 3.287 (2) Å. The corresponding coordination polyhedron is a distorted trigonal anti­prism, with the S atom displaced from the center.

[Figure 2]
Figure 2
Packing of the U and S atoms in the crystal structure of (SCl3)[UCl6], showing a distorted NaCl-type arrangement. The unit cell drawn in black can be shifted to the one highlighted in blue to make the relation more easily visible. The idealized blue unit cell shows the deviation of U atoms from F-centering as well as the deviation of the (SCl3)+ entities (Cl atoms not shown) from the octa­hedral voids.

Synthesis and crystallization

(SCl3)[UCl6] was synthesized in a borosilicate Schlenk tube from uranium tetra­chloride (35 mg, 0.09 mmol) in disulfur dichloride (3 ml) at 358 K over a period of four months. A selected dark-yellow crystal was chosen for single-crystal X-ray diffraction.

We assume that S2Cl2 disproportionates under the applied reaction conditions and that elemental chlorine, sulfur monochloride, as well as the sulfur chlorides S3Cl2 and S3Cl4 are produced in the chemical equilibria described in equations (1)–(3).

3 S2Cl2 → S3Cl2 + S3Cl4 [equation (1); Spong, 1933[Spong, A. H. (1933). J. Chem. Soc. pp. 1547-1551.]].

S3Cl4 → S2Cl2 + SCl2 [equation (2); Spong, 1933[Spong, A. H. (1933). J. Chem. Soc. pp. 1547-1551.]].

S3Cl4 → S3Cl2 + Cl2 [equation (3); Spong, 1933[Spong, A. H. (1933). J. Chem. Soc. pp. 1547-1551.]].

Chlorine is dissolved in an excess of S2Cl2 and may then act as an oxidant oxidizing uranium(IV) chloride to form UCl5 [equation (4)]. Other chlorine-sulfur species may also be responsible for the oxidation.

2 UCl4 + Cl2 → 2 UCl5 [equation (4); Cordfunke et al., 1982[Cordfunke, E. H. P., Ouweltjes, W. & Prins, G. (1982). J. Chem. Thermodyn. 14, 495-502.]].

We further assume that the formed SCl2 [equation (2)] may disproportionate to S2Cl2 and SCl4 [equation (5)].

3 SCl2 → S2Cl2 + SCl4 [equation (5); Lowry et al., 1927[Lowry, T. M., McHatton, L. P. & Jones, G. G. (1927). J. Chem. Soc. pp. 746-756.]].

Finally, the formation of the title compound may be described by the reaction of the Lewis acid UCl5 with SCl4 under abstraction of a chloride ion [equation (6)].

SCl4 + UCl5 → (SCl3)[UCl6] [equation (6); Sawodny et al., 1983[Sawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81-88.]].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atomic coordinates of the previously reported (SCl3)[UCl6] structure (Sawodny et al., 1983[Sawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81-88.]) were used for refinement. The structure was refined as an inversion twin with a twin ratio of 4.4:1. As a result of the similarity of the a and b lattice parameters, a fourfold twin was also considered; refinement of this twin model led to insignificant twin fractions. Rint for the tetra­gonal crystal system was above 0.4, ruling out a higher symmetry model.

Structural data


Computing details top

Data collection: X-AREA (Stoe, 2016); cell refinement: X-AREA (Stoe, 2016); data reduction: X-AREA (Stoe, 2016); program(s) used to solve structure: coordinates from an isotypic structure; program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).

Trichloridosulfonium(IV) hexachloridouranate(V) top
Crystal data top
(SCl3)[UCl6]Dx = 3.141 Mg m3
Mr = 589.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 23552 reflections
a = 10.534 (2) Åθ = 3.6–58.9°
b = 10.545 (2) ŵ = 15.07 mm1
c = 11.217 (2) ÅT = 100 K
V = 1246.0 (4) Å3Block, dark yellow
Z = 40.15 × 0.1 × 0.08 mm
F(000) = 1044
Data collection top
STOE IPDS 2T
diffractometer
3364 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3304 reflections with I > 2σ(I)
Planar graphite monochromatorRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 2.7°
rotation method, ω scansh = 1413
Absorption correction: numerical
(X-Red32; Stoe 2016)
k = 1414
Tmin = 0.036, Tmax = 0.090l = 1515
18340 measured reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0148P)2 + 3.5607P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.001
wR(F2) = 0.043Δρmax = 0.53 e Å3
S = 1.08Δρmin = 1.01 e Å3
3364 reflectionsAbsolute structure: Refined as an inversion twin
101 parametersAbsolute structure parameter: 0.186 (6)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.97364 (2)0.42494 (2)0.98324 (2)0.01499 (6)
S10.42766 (14)0.54654 (14)0.91370 (13)0.0181 (3)
Cl10.82355 (14)0.89033 (16)0.63247 (14)0.0239 (3)
Cl20.59526 (14)0.94785 (14)0.86341 (13)0.0225 (3)
Cl30.93040 (17)0.62131 (16)0.86263 (15)0.0273 (3)
Cl40.85717 (15)0.29644 (17)0.83292 (15)0.0258 (3)
Cl50.72554 (14)0.53738 (16)0.59988 (14)0.0241 (3)
Cl60.97901 (16)0.72883 (13)0.39615 (13)0.0220 (3)
Cl70.92843 (16)0.96521 (16)0.91059 (14)0.0250 (3)
Cl80.60091 (14)0.60665 (15)0.87712 (15)0.0241 (3)
Cl90.32415 (15)0.69986 (15)0.88359 (15)0.0255 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01381 (8)0.01650 (8)0.01466 (9)0.00076 (7)0.00008 (7)0.00013 (7)
S10.0170 (6)0.0191 (7)0.0180 (6)0.0009 (5)0.0012 (5)0.0006 (5)
Cl10.0180 (6)0.0306 (8)0.0232 (7)0.0019 (5)0.0051 (5)0.0038 (6)
Cl20.0221 (7)0.0233 (8)0.0221 (7)0.0034 (5)0.0020 (5)0.0045 (5)
Cl30.0355 (8)0.0223 (7)0.0241 (7)0.0010 (6)0.0012 (7)0.0060 (6)
Cl40.0219 (7)0.0316 (8)0.0239 (7)0.0038 (6)0.0057 (6)0.0059 (6)
Cl50.0170 (6)0.0342 (8)0.0211 (7)0.0039 (6)0.0024 (5)0.0018 (6)
Cl60.0227 (6)0.0192 (6)0.0240 (6)0.0011 (6)0.0028 (6)0.0027 (5)
Cl70.0273 (7)0.0295 (8)0.0182 (7)0.0015 (6)0.0004 (6)0.0028 (6)
Cl80.0179 (6)0.0283 (8)0.0262 (7)0.0016 (5)0.0012 (5)0.0053 (6)
Cl90.0240 (7)0.0243 (7)0.0280 (8)0.0073 (6)0.0025 (6)0.0035 (6)
Geometric parameters (Å, º) top
U1—Cl42.4869 (16)U1—Cl2iii2.5297 (15)
U1—Cl5i2.5045 (16)S1—Cl7iv1.975 (2)
U1—Cl32.5151 (16)S1—Cl81.975 (2)
U1—Cl6ii2.5209 (14)S1—Cl91.979 (2)
U1—Cl1ii2.5263 (15)
Cl4—U1—Cl5i91.56 (6)Cl6ii—U1—Cl1ii89.42 (5)
Cl4—U1—Cl389.69 (6)Cl4—U1—Cl2iii178.87 (6)
Cl5i—U1—Cl389.92 (6)Cl5i—U1—Cl2iii89.14 (5)
Cl4—U1—Cl6ii90.83 (6)Cl3—U1—Cl2iii91.20 (5)
Cl5i—U1—Cl6ii90.89 (5)Cl6ii—U1—Cl2iii88.28 (5)
Cl3—U1—Cl6ii179.02 (6)Cl1ii—U1—Cl2iii89.86 (5)
Cl4—U1—Cl1ii89.44 (5)Cl7iv—S1—Cl8102.92 (10)
Cl5i—U1—Cl1ii178.95 (6)Cl7iv—S1—Cl9102.93 (10)
Cl3—U1—Cl1ii89.76 (6)Cl8—S1—Cl9102.21 (9)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+2; (iv) x1/2, y+3/2, z+2.
Selected interatomic distances d (Å) for (SCl3)[UCl6] from the current and the previous refinement top
Bondd (current study)d (Sawodny et al., 1983)
U1—Cl1ii2.5263 (15)2.510 (10)
U1—Cl2iii2.5297 (15)2.531 (9)
U1—Cl32.5151 (16)2.521 (10)
U1—Cl42.4869 (16)2.485 (11)
U1—Cl5i2.5045 (16)2.499 (10)
U1—Cl6ii2.5209 (15)2.511 (9)
S1—Cl71.975 (2)1.955 (14)
S1—Cl81.975 (2)1.973 (13)
S1—Cl91.979 (2)1.959 (13)
Symmetry codes: (i) -x + 3/2, -y + 1, z + 1/2; (ii) -x + 2, y - 1/2, -z + 3/2; (iii) x + 1/2, -y + 3/2, -z + 2.
Comparison of selected angles φ (°)for (SCl3)[UCl6] from the current and the previous refinement top
Angleφ (current study)φ (Sawodny et al., 1983)
Cl1ii—U1—Cl2iii89.86 (5)89.9 (3)
Cl3—U1—Cl6ii179.02 (6)179.3 (4)
Cl3—U1—Cl2iii91.20 (5)91.8 (4)
Cl3—U1—Cl1ii89.76 (6)90.0 (4)
Cl4—U1—Cl2iii178.87 (6)179.4 (4)
Cl4—U1—Cl1ii89.44 (5)89.6 (4)
Cl4—U1—Cl389.69 (6)88.2 (4)
Cl4—U1—Cl5i91.56 (6)91.3 (4)
Cl4—U1—C6ii90.83 (6)91.2 (4)
Cl5i—U1—Cl1ii178.95 (6)179.0 (4)
Cl5i—U1—Cl6ii90.89 (5)90.1 (4)
Cl5i—U1—Cl2iii89.14 (5)89.2 (4)
Cl5i—U1—Cl389.92 (6)89.5 (4)
Cl6ii—U1—Cl1ii89.42 (5)90.4 (4)
Cl6ii—U1—Cl2iii88.28 (5)88.7 (3)
Cl7iv—S1—Cl8102.92 (10)101.7 (7)
Cl7i—S1—Cl9102.93 (10)103.5 (7)
Cl8—S1—Cl9102.21 (9)101.8 (6)
Symmetry codes: (i) -x + 3/2, -y + 1, z + 1/2; (ii) -x + 2, y - 1/2, -z + 3/2; (iii) x + 1/2, -y + 3/2, -z + 2; (iv) x - 1/2, -y + 3/2, -z+2.
 

Funding information

FK thanks the DFG for very generous funding.

References

First citationBrandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCordfunke, E. H. P., Ouweltjes, W. & Prins, G. (1982). J. Chem. Thermodyn. 14, 495–502.  CrossRef CAS Web of Science Google Scholar
First citationDeubner, H. L., Rudel, S. S., Sachs, M., Pietzonka, C., Karttunen, A. J., Ivlev, S. I., Müller, M., Conrad, M., Müller, U. & Kraus, F. (2019). Chem. Eur. J. 25, 6402–6411.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationLowry, T. M., McHatton, L. P. & Jones, G. G. (1927). J. Chem. Soc. pp. 746–756.  CrossRef Google Scholar
First citationMinkwitz, R., Kornath, A. & Preut, H. (1992). Z. Naturforsch. Teil B, 47, 594–596.  CrossRef CAS Google Scholar
First citationSawodny, W., Rediess, K. & Thewalt, U. (1983). Z. Anorg. Allg. Chem. 499, 81–88.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSchleid, T., Meyer, G. & Morss, L. R. (1987). J. Less-Common Met. 132, 69–77.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpong, A. H. (1933). J. Chem. Soc. pp. 1547–1551.  CrossRef Google Scholar
First citationStoe (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds