organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(S)-2-[(4-Fluoro­phen­yl)formamido]-3-phenyl­propanoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Abilene Christian University, ACU 28132, Abilene, Texas 79699, USA, and bRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas, 77381, USA
*Correspondence e-mail: Kathleen.Lee@acu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 June 2020; accepted 1 July 2020; online 10 July 2020)

The title compound, C16H14FNO3, was synthesized via solid phase methods; it exhibits monoclinic (P21) symmetry at room temperature. The two independent mol­ecules that comprise the asymmetric unit display distinct torsion angles of 173.2 (2) and 72.6 (2)° along the central sp3 C—N bond. In the crystal, hydrogen bonding through N—H⋯O contacts couples the asymmetric unit mol­ecules into pairs that align in layers extending parallel to (100) via additional O—H⋯O inter­actions. The phenyl ring of one independent mol­ecule was found to be disordered over two sets of sites in a 0.55 (3):0.45 (3) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Anti­biotic resistance is a major global concern, compounded by the shortage of novel classes of anti­biotics in the clinical pipeline (Friedman et al., 2016[Friedman, N. D., Temkin, E. & Carmeli, Y. (2016). Clin. Microbiol. Infect. 22, 416-422.]; Frieri et al., 2017[Frieri, M., Kumar, K. & Boutin, A. (2017). J. Infect. Publ. Heal. 10, 369-378.]). In order to address the need for new pharmaceuticals and to incorporate drug discovery into the undergraduate curriculum, William Scott and coworkers created the Distributed Drug Discovery (D3) program (Scott & O'Donnell, 2009[Scott, W. L. & O'Donnell, M. J. (2009). J. Comb. Chem. 11, 3-13.]). D3′s virtual catalogs enumerate sets of amino-acid derivatives that have potential biological activity and that may be synthesized through straightforward combinatorial methods (Scott et al., 2009[Scott, W. L., Alsina, J., Audu, C. O., Babaev, E., Cook, L., Dage, J. L., Goodwin, L. A., Martynow, J. G., Matosiuk, D., Royo, M., Smith, J. G., Strong, A. T., Wickizer, K., Woerly, E. M., Zhou, Z. & O'Donnell, M. J. (2009). J. Comb. Chem. 11, 14-33.]; Abraham et al., 2017[Abraham, M. M., Denton, R. E., Harper, R. W., Scott, W. L., O'Donnell, M. J. & Durrant, J. D. (2017). Chem. Biol. Drug Des. 90, 909-918.]). The D3 Lab 2 procedure targets N-acyl derivatives of natural amino acids in three steps (Dounay et al., 2019[Dounay, A. B., O'Donnell, M. J., Samaritoni, J. G., Popiolek, L., Schirch, D., Biernasiuk, A., Malm, A., Lamb, I. W., Mudrack, K., Rivera, D. G., Ojeda, G. M. & Scott, W. L. (2019). J. Chem. Educ. 96, 1731-1737.]). In this paper, we report the use of the D3 procedure to obtain the title compound as a single stereoisomer.

The compound was synthesized via solid phase methods starting from an Fmoc-protected phenyl­alanine bound to a Wang resin, which was purchased from CreoSalus Advanced Chem Tech as the enanti­opure S stereoisomer. The stereocenter remains unchanged during the deprotection, benzoyl­ation, cleavage sequence to form the final product. The absolute configuration of the title compound has been established by anomalous dispersion effects in the diffraction measurement.

Two unique mol­ecules comprise the asymmetric unit. Within the mol­ecules the planes containing the benzene rings are rotated with respect to one another by 79.9 (1)° (mol­ecule 1, containing N1—F1) and 89.3 (1)° (mol­ecule 2, containing N2—F2), as shown in Fig. 1[link]. The phenyl ring in mol­ecule 1 is disordered over two slightly different positions. Inter­estingly, torsion angles measured at the middle of the mol­ecules are quite different; in mol­ecule 1, the C1—N1—C9—C10 angle is 173.2 (2)° and in mol­ecule 2, the analogous C17—N2—C25—C26 angle is 72.6 (2)°. The amino-hydrogen atom on each mol­ecule is hydrogen-bonded to the organic-acid carbonyl O atom on the other mol­ecule (N—H⋯O contacts, Table 1[link]) coupling the mol­ecules in the asymmetric unit so that they are positioned on top of each other with a fluoro-substituted ring above and nearly perpendicular to the unsubstituted ring of the partner mol­ecule [mean dihedral angle between the rings of the two mol­ecules = 87 (3)°]. Fig. 2[link] shows an overlay of the two distinct mol­ecules, highlighting their conformational differences. As shown in Fig. 3[link], the coupled asymmetric-unit pairs align in chains parallel to [010] via additional hydrogen-bonding inter­actions between OH organic-acid hydrogen atoms and the amide oxygen atoms in adjacent pairs through the O—H⋯O contacts listed in Table 1[link]. Layers of chains extending parallel to (100) are visible when the packing is viewed along the b axis. The benzene-ring ends of the asymmetric-unit pairs that project out of each hydrogen-bonded chain occupy the voids between coupled asymmetric-unit pairs in the chain layers above and below, allowing closer packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O6i 0.84 1.83 2.6497 (18) 163
O1—H1⋯O3ii 0.84 1.77 2.607 (2) 177
N1—H1A⋯O4 0.89 (2) 2.16 (2) 3.039 (2) 170 (2)
N2—H2⋯O2 0.84 (2) 2.06 (2) 2.900 (2) 170 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric unit consists of two mol­ecules of the title compound, shown here with displacement ellipsoids drawn at the 50% probability level. The minor component of the disordered phenyl ring is shown in pale blue.
[Figure 2]
Figure 2
An overlay illustration of the two independent mol­ecules. For mol­ecule 1 only the major component of the disordered phenyl ring is displayed; mol­ecule 2 is shown in purple.
[Figure 3]
Figure 3
The packing of the mol­ecules of the title compound in a view along the b axis, showing hydrogen-bonded layers parallel to (100).

Synthesis and crystallization

50 µmol of S-phenyl­alanine protected with fluorenyl­methyl­oxycarbonyl (Fmoc) and bound to a Wang resin were placed in a fritted vial with screw caps at both ends. The resin was rinsed with three 3 ml aliquots of N-methyl-2-pyrrolidone (NMP) and three 2 ml aliquots of NMP:piperidine (4:1). The bottom of the vial was capped to prevent the acyl­ating reagents from draining from the vial. To the resin was added 1.0 ml of a solution of p-fluoro­benzoic acid (0.25 M) and hy­droxy­benzotriazole (HOBt, 0.25 M) in NMP and 0.5 ml of 0.5 M diiso­propyl­carbodi­imide in NMP. The vial was capped, inverted three times, and allowed to sit. After four days, the vial was uncapped at both ends, and the resin was washed sequentially with two 3 ml portions of NMP, two 3 ml portions of tetra­hydro­furan, and three 3 ml portions of di­chloro­methane. The reaction vial was placed over a collection vial, and the resin was washed twice with 2.0 ml of tri­fluoro­acetic acid–di­chloro­methane–water (35:60:5) and once with 2.0 ml of di­chloro­methane. The collection vial containing the combined rinses was placed in a vacuum chamber to remove the solvents. Column chromatography (hexa­nes:acetone, 75/25 v/v) afforded 12.8 mg of the title compound (89% overall yield from Fmoc–Phe–Wang resin). The purified product was crystallized from a di­chloro­methane solution layered with a solution of heptane and benzene. 1H NMR (600 MHz, CDCl3/CD3OD) δ 7.73 (m, 2H), 7.13 (m, 3H), 7.10 (m, 4H), 5.05 (t, J = 5.6 Hz, 1H), 3.27 (dd, J = 13.8, 5.7 Hz, 1H), 3.21 (dd, J = 13.8, 5.6 Hz, 1H). 13C NMR (150 MHz, CDCl3/CD3OD) δ 172.23, 166.11, 164.09, 135.77, 129.49, 129.43, 129.29, 128.67, 127.26, 115.78, 53.55, 37.78.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The phenyl ring (C11–C16) of mol­ecule 1 was found to be disordered over two sets of sites in a ratio of 0.55 (3):0.45 (3). The AFIX 66 constraint was applied to both parts of the disordered phenyl ring, and the RIGU rigid body restraint was applied to all non-hydrogen atoms in those rings with σ values of 0.001 for the 1–2 and 1–3 distances.

Table 2
Experimental details

Crystal data
Chemical formula C16H14FNO3
Mr 287.28
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 9.74134 (5), 9.83313 (4), 14.91737 (6)
β (°) 98.2662 (4)
V3) 1414.06 (1)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.56 × 0.21 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.452, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 53742, 5671, 5602
Rint 0.032
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.05
No. of reflections 5671
No. of parameters 421
No. of restraints 355
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.12
Absolute structure Flack x determined using 2580 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(S)-2-[(4-Fluorophenyl)formamido]-3-phenylpropanoic acid top
Crystal data top
C16H14FNO3F(000) = 600
Mr = 287.28Dx = 1.349 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 9.74134 (5) ÅCell parameters from 40752 reflections
b = 9.83313 (4) Åθ = 4.6–73.5°
c = 14.91737 (6) ŵ = 0.86 mm1
β = 98.2662 (4)°T = 100 K
V = 1414.06 (1) Å3Block, colourless
Z = 40.56 × 0.21 × 0.12 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
diffractometer
5671 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source5602 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 5.2387 pixels mm-1θmax = 73.7°, θmin = 4.6°
ω scansh = 1112
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2019)
k = 1212
Tmin = 0.452, Tmax = 1.000l = 1818
53742 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0473P)2 + 0.1344P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.079Δρmax = 0.16 e Å3
S = 1.05Δρmin = 0.12 e Å3
5671 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
421 parametersExtinction coefficient: 0.0068 (5)
355 restraintsAbsolute structure: Flack x determined using 2580 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.05 (3)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.55896 (13)0.60198 (15)0.89050 (9)0.0473 (3)
O50.38969 (13)0.57893 (16)0.97497 (8)0.0464 (3)
H50.43690.63591.00820.070*
O30.47124 (17)0.78037 (16)0.57577 (9)0.0532 (4)
O20.49339 (14)0.45890 (15)0.60468 (9)0.0477 (3)
N20.43835 (15)0.38567 (14)0.78447 (10)0.0362 (3)
O60.51088 (15)0.27881 (15)0.91538 (8)0.0474 (3)
O10.64625 (15)0.49117 (17)0.50928 (9)0.0543 (4)
H10.60830.42190.48370.081*
F10.14855 (17)1.06807 (19)0.85687 (12)0.0825 (5)
F20.83586 (18)0.06630 (18)0.65856 (14)0.0876 (5)
N10.59204 (17)0.69008 (16)0.69952 (10)0.0401 (3)
C180.59847 (18)0.19811 (17)0.78350 (12)0.0387 (4)
C250.35323 (17)0.48177 (16)0.82684 (10)0.0334 (3)
H250.31920.55050.77940.040*
C80.59457 (18)0.51500 (18)0.58414 (11)0.0370 (3)
C240.44635 (16)0.55878 (17)0.90178 (10)0.0334 (3)
C170.51291 (18)0.28963 (17)0.83285 (11)0.0360 (3)
C230.5622 (2)0.16621 (18)0.69210 (14)0.0439 (4)
H230.48150.20530.65870.053*
C10.4897 (2)0.76851 (18)0.65954 (11)0.0399 (4)
C270.11085 (18)0.50384 (19)0.87908 (11)0.0380 (3)
C20.3995 (2)0.84212 (18)0.71611 (12)0.0408 (4)
C260.22470 (19)0.41301 (18)0.85338 (13)0.0421 (4)
H26A0.18390.35510.80210.050*
H26B0.25510.35190.90520.050*
C220.6434 (2)0.0778 (2)0.64961 (16)0.0532 (5)
H220.61980.05640.58720.064*
C320.0009 (2)0.4410 (2)0.91043 (13)0.0488 (4)
H320.00390.34460.91390.059*
C90.67988 (19)0.61896 (19)0.64353 (11)0.0383 (4)
H90.71870.68660.60380.046*
C190.7173 (2)0.1409 (2)0.83170 (15)0.0495 (4)
H190.74350.16310.89380.059*
C100.8002 (2)0.5494 (2)0.70428 (12)0.0483 (4)
H10C0.84060.61550.75070.058*0.45 (3)
H10D0.76190.47320.73630.058*0.45 (3)
H10A0.76210.47550.73850.058*0.55 (3)
H10B0.84430.61650.74880.058*0.55 (3)
C210.7572 (2)0.0226 (2)0.69956 (18)0.0567 (5)
C280.1109 (2)0.6446 (2)0.87296 (14)0.0457 (4)
H280.18470.68970.85000.055*
C310.1082 (2)0.5172 (3)0.93667 (15)0.0586 (5)
H310.18400.47270.95770.070*
C40.3585 (2)0.9521 (2)0.85435 (15)0.0539 (5)
H40.38750.97520.91600.065*
C70.2683 (2)0.8821 (2)0.67540 (14)0.0514 (4)
H70.23660.85670.61450.062*
C290.0034 (2)0.7198 (2)0.90028 (15)0.0553 (5)
H290.00510.81630.89660.066*
C30.4435 (2)0.8773 (2)0.80636 (13)0.0461 (4)
H30.53250.84970.83500.055*
C16B0.9064 (12)0.3556 (8)0.6455 (9)0.063 (2)0.45 (3)
H16B0.83440.30500.66670.076*0.45 (3)
C15B1.0046 (15)0.2896 (8)0.6023 (8)0.071 (2)0.45 (3)
H15B0.99980.19380.59390.085*0.45 (3)
C14B1.1099 (13)0.3636 (14)0.5712 (6)0.064 (2)0.45 (3)
H14B1.17700.31840.54170.077*0.45 (3)
C13B1.1169 (8)0.5037 (13)0.5835 (7)0.073 (2)0.45 (3)
H13B1.18890.55430.56230.087*0.45 (3)
C12B1.0187 (10)0.5698 (8)0.6268 (7)0.054 (2)0.45 (3)
H12B1.02350.66550.63510.065*0.45 (3)
C11B0.9134 (10)0.4957 (8)0.6578 (9)0.0461 (19)0.45 (3)
C60.1834 (2)0.9586 (3)0.72273 (17)0.0600 (5)
H60.09430.98710.69480.072*
C50.2313 (2)0.9922 (2)0.81097 (16)0.0565 (5)
C200.7975 (2)0.0519 (3)0.78943 (18)0.0608 (5)
H200.87850.01190.82190.073*
C300.1054 (2)0.6563 (3)0.93251 (15)0.0580 (5)
H300.17800.70840.95170.070*
C16A1.0068 (9)0.5848 (5)0.6299 (7)0.068 (3)0.55 (3)
H16A0.99430.67830.64240.082*0.55 (3)
C15A1.1190 (7)0.5437 (10)0.5885 (6)0.0672 (17)0.55 (3)
H15A1.18320.60920.57280.081*0.55 (3)
C14A1.1373 (7)0.4068 (12)0.5702 (5)0.0602 (16)0.55 (3)
H14A1.21400.37880.54190.072*0.55 (3)
C13A1.0434 (10)0.3110 (7)0.5931 (6)0.0617 (17)0.55 (3)
H13A1.05590.21750.58060.074*0.55 (3)
C12A0.9312 (9)0.3521 (6)0.6345 (7)0.0571 (16)0.55 (3)
H12A0.86700.28660.65020.068*0.55 (3)
C11A0.9129 (8)0.4889 (7)0.6528 (7)0.0437 (15)0.55 (3)
H1A0.594 (2)0.665 (2)0.7566 (16)0.047 (6)*
H20.452 (2)0.397 (2)0.7303 (16)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0360 (6)0.0599 (8)0.0469 (7)0.0066 (5)0.0088 (5)0.0043 (6)
O50.0425 (6)0.0618 (8)0.0359 (6)0.0085 (6)0.0089 (5)0.0125 (6)
O30.0718 (10)0.0542 (8)0.0339 (6)0.0109 (7)0.0087 (6)0.0057 (6)
O20.0519 (7)0.0538 (8)0.0388 (6)0.0108 (6)0.0115 (5)0.0034 (5)
N20.0439 (8)0.0371 (7)0.0288 (6)0.0068 (6)0.0089 (5)0.0016 (5)
O60.0582 (8)0.0501 (7)0.0348 (6)0.0137 (6)0.0094 (5)0.0083 (5)
O10.0544 (8)0.0741 (10)0.0366 (6)0.0145 (7)0.0135 (6)0.0184 (6)
F10.0859 (10)0.0780 (10)0.0923 (10)0.0130 (8)0.0431 (8)0.0129 (9)
F20.0745 (10)0.0735 (10)0.1229 (13)0.0176 (8)0.0420 (9)0.0265 (9)
N10.0499 (8)0.0421 (7)0.0286 (6)0.0001 (6)0.0073 (6)0.0007 (6)
C180.0401 (8)0.0325 (7)0.0448 (8)0.0001 (6)0.0108 (6)0.0036 (6)
C250.0363 (7)0.0331 (7)0.0308 (7)0.0035 (6)0.0052 (6)0.0006 (6)
C80.0404 (8)0.0428 (8)0.0277 (7)0.0012 (6)0.0043 (6)0.0015 (6)
C240.0333 (7)0.0344 (7)0.0324 (7)0.0032 (6)0.0047 (6)0.0013 (6)
C170.0383 (8)0.0346 (7)0.0356 (7)0.0000 (6)0.0066 (6)0.0027 (6)
C230.0464 (9)0.0369 (8)0.0492 (9)0.0001 (7)0.0104 (7)0.0049 (7)
C10.0498 (9)0.0356 (8)0.0347 (7)0.0046 (7)0.0076 (6)0.0018 (6)
C270.0348 (8)0.0444 (8)0.0340 (8)0.0006 (6)0.0021 (6)0.0025 (6)
C20.0494 (9)0.0346 (8)0.0397 (8)0.0052 (7)0.0108 (6)0.0021 (6)
C260.0385 (8)0.0357 (8)0.0528 (10)0.0026 (6)0.0095 (7)0.0025 (7)
C220.0548 (10)0.0434 (9)0.0649 (11)0.0047 (8)0.0206 (8)0.0140 (9)
C320.0439 (9)0.0611 (11)0.0419 (9)0.0029 (8)0.0078 (7)0.0062 (8)
C90.0429 (8)0.0433 (8)0.0290 (7)0.0032 (7)0.0067 (6)0.0016 (6)
C190.0444 (9)0.0516 (10)0.0537 (10)0.0078 (8)0.0111 (8)0.0080 (8)
C100.0443 (9)0.0643 (11)0.0348 (8)0.0009 (8)0.0012 (7)0.0016 (8)
C210.0515 (10)0.0446 (10)0.0796 (12)0.0025 (8)0.0283 (9)0.0072 (9)
C280.0397 (9)0.0441 (9)0.0533 (10)0.0010 (7)0.0064 (8)0.0053 (7)
C310.0433 (10)0.0867 (13)0.0474 (10)0.0006 (9)0.0124 (8)0.0001 (10)
C40.0642 (11)0.0496 (10)0.0509 (10)0.0098 (8)0.0190 (8)0.0115 (8)
C70.0518 (10)0.0580 (11)0.0453 (9)0.0001 (8)0.0104 (7)0.0068 (8)
C290.0485 (10)0.0570 (11)0.0589 (12)0.0110 (8)0.0026 (9)0.0134 (9)
C30.0527 (10)0.0421 (9)0.0443 (9)0.0075 (8)0.0093 (7)0.0043 (7)
C16B0.066 (4)0.057 (3)0.071 (4)0.003 (2)0.024 (3)0.004 (2)
C15B0.075 (5)0.055 (3)0.090 (4)0.002 (2)0.036 (4)0.002 (3)
C14B0.072 (4)0.049 (4)0.078 (4)0.004 (3)0.033 (3)0.004 (3)
C13B0.075 (3)0.050 (4)0.103 (5)0.000 (3)0.049 (4)0.005 (3)
C12B0.052 (3)0.053 (3)0.058 (4)0.001 (2)0.014 (3)0.006 (2)
C11B0.045 (3)0.057 (3)0.036 (4)0.0017 (18)0.002 (3)0.002 (2)
C60.0547 (11)0.0649 (13)0.0633 (11)0.0081 (10)0.0183 (9)0.0095 (9)
C50.0616 (11)0.0490 (10)0.0643 (11)0.0014 (9)0.0274 (9)0.0010 (9)
C200.0477 (10)0.0570 (11)0.0810 (13)0.0138 (9)0.0205 (9)0.0074 (10)
C300.0442 (10)0.0827 (13)0.0471 (10)0.0104 (9)0.0070 (8)0.0144 (9)
C16A0.063 (3)0.057 (3)0.092 (6)0.006 (2)0.031 (4)0.006 (2)
C15A0.063 (3)0.056 (3)0.088 (4)0.009 (2)0.029 (3)0.007 (2)
C14A0.056 (3)0.057 (3)0.071 (3)0.008 (2)0.023 (2)0.002 (3)
C13A0.059 (3)0.048 (2)0.083 (4)0.0027 (19)0.029 (2)0.000 (2)
C12A0.054 (3)0.049 (2)0.072 (4)0.0034 (16)0.023 (3)0.0009 (18)
C11A0.041 (2)0.051 (2)0.037 (3)0.0016 (15)0.001 (2)0.0007 (18)
Geometric parameters (Å, º) top
O4—C241.210 (2)C10—H10A0.9900
O5—H50.8400C10—H10B0.9900
O5—C241.307 (2)C10—C11B1.482 (6)
O3—C11.242 (2)C10—C11A1.546 (5)
O2—C81.207 (2)C21—C201.372 (4)
N2—C251.460 (2)C28—H280.9500
N2—C171.338 (2)C28—C291.391 (3)
N2—H20.84 (2)C31—H310.9500
O6—C171.239 (2)C31—C301.369 (4)
O1—H10.8400C4—H40.9500
O1—C81.310 (2)C4—C31.382 (3)
F1—C51.354 (3)C4—C51.371 (3)
F2—C211.364 (2)C7—H70.9500
N1—C11.332 (2)C7—C61.384 (3)
N1—C91.457 (2)C29—H290.9500
N1—H1A0.89 (2)C29—C301.375 (3)
C18—C171.491 (2)C3—H30.9500
C18—C231.394 (3)C16B—H16B0.9500
C18—C191.390 (3)C16B—C15B1.3900
C25—H251.0000C16B—C11B1.3900
C25—C241.534 (2)C15B—H15B0.9500
C25—C261.525 (2)C15B—C14B1.3900
C8—C91.520 (2)C14B—H14B0.9500
C23—H230.9500C14B—C13B1.3900
C23—C221.388 (3)C13B—H13B0.9500
C1—C21.490 (3)C13B—C12B1.3900
C27—C261.516 (3)C12B—H12B0.9500
C27—C321.390 (3)C12B—C11B1.3900
C27—C281.387 (3)C6—H60.9500
C2—C71.391 (3)C6—C51.372 (3)
C2—C31.396 (3)C20—H200.9500
C26—H26A0.9900C30—H300.9500
C26—H26B0.9900C16A—H16A0.9500
C22—H220.9500C16A—C15A1.3900
C22—C211.357 (3)C16A—C11A1.3900
C32—H320.9500C15A—H15A0.9500
C32—C311.388 (3)C15A—C14A1.3900
C9—H91.0000C14A—H14A0.9500
C9—C101.536 (3)C14A—C13A1.3900
C19—H190.9500C13A—H13A0.9500
C19—C201.384 (3)C13A—C12A1.3900
C10—H10C0.9900C12A—H12A0.9500
C10—H10D0.9900C12A—C11A1.3900
C24—O5—H5109.5C11A—C10—H10B108.6
C25—N2—H2120.2 (16)F2—C21—C20118.2 (2)
C17—N2—C25121.44 (14)C22—C21—F2118.5 (2)
C17—N2—H2117.7 (16)C22—C21—C20123.3 (2)
C8—O1—H1109.5C27—C28—H28119.9
C1—N1—C9118.99 (14)C27—C28—C29120.3 (2)
C1—N1—H1A120.1 (15)C29—C28—H28119.9
C9—N1—H1A119.1 (15)C32—C31—H31119.8
C23—C18—C17122.54 (16)C30—C31—C32120.4 (2)
C19—C18—C17118.14 (17)C30—C31—H31119.8
C19—C18—C23119.32 (17)C3—C4—H4120.8
N2—C25—H25106.4C5—C4—H4120.8
N2—C25—C24108.77 (13)C5—C4—C3118.5 (2)
N2—C25—C26111.36 (14)C2—C7—H7119.7
C24—C25—H25106.4C6—C7—C2120.7 (2)
C26—C25—H25106.4C6—C7—H7119.7
C26—C25—C24116.82 (14)C28—C29—H29119.6
O2—C8—O1124.23 (16)C30—C29—C28120.8 (2)
O2—C8—C9123.89 (15)C30—C29—H29119.6
O1—C8—C9111.86 (15)C2—C3—H3119.7
O4—C24—O5124.25 (16)C4—C3—C2120.5 (2)
O4—C24—C25121.64 (15)C4—C3—H3119.7
O5—C24—C25114.01 (14)C15B—C16B—H16B120.0
N2—C17—C18117.28 (14)C15B—C16B—C11B120.0
O6—C17—N2120.79 (16)C11B—C16B—H16B120.0
O6—C17—C18121.93 (15)C16B—C15B—H15B120.0
C18—C23—H23119.8C14B—C15B—C16B120.0
C22—C23—C18120.45 (19)C14B—C15B—H15B120.0
C22—C23—H23119.8C15B—C14B—H14B120.0
O3—C1—N1119.71 (17)C15B—C14B—C13B120.0
O3—C1—C2120.83 (17)C13B—C14B—H14B120.0
N1—C1—C2119.46 (15)C14B—C13B—H13B120.0
C32—C27—C26117.39 (17)C12B—C13B—C14B120.0
C28—C27—C26124.34 (17)C12B—C13B—H13B120.0
C28—C27—C32118.28 (19)C13B—C12B—H12B120.0
C7—C2—C1118.01 (17)C13B—C12B—C11B120.0
C7—C2—C3119.05 (19)C11B—C12B—H12B120.0
C3—C2—C1122.88 (18)C16B—C11B—C10112.9 (6)
C25—C26—H26A107.9C12B—C11B—C10127.1 (6)
C25—C26—H26B107.9C12B—C11B—C16B120.0
C27—C26—C25117.55 (15)C7—C6—H6120.8
C27—C26—H26A107.9C5—C6—C7118.4 (2)
C27—C26—H26B107.9C5—C6—H6120.8
H26A—C26—H26B107.2F1—C5—C4118.9 (2)
C23—C22—H22120.9F1—C5—C6118.3 (2)
C21—C22—C23118.3 (2)C4—C5—C6122.9 (2)
C21—C22—H22120.9C19—C20—H20120.8
C27—C32—H32119.6C21—C20—C19118.5 (2)
C31—C32—C27120.8 (2)C21—C20—H20120.8
C31—C32—H32119.6C31—C30—C29119.4 (2)
N1—C9—C8109.88 (14)C31—C30—H30120.3
N1—C9—H9108.9C29—C30—H30120.3
N1—C9—C10109.69 (14)C15A—C16A—H16A120.0
C8—C9—H9108.9C15A—C16A—C11A120.0
C8—C9—C10110.57 (16)C11A—C16A—H16A120.0
C10—C9—H9108.9C16A—C15A—H15A120.0
C18—C19—H19119.9C14A—C15A—C16A120.0
C20—C19—C18120.2 (2)C14A—C15A—H15A120.0
C20—C19—H19119.9C15A—C14A—H14A120.0
C9—C10—H10C108.3C15A—C14A—C13A120.0
C9—C10—H10D108.3C13A—C14A—H14A120.0
C9—C10—H10A108.6C14A—C13A—H13A120.0
C9—C10—H10B108.6C12A—C13A—C14A120.0
C9—C10—C11A114.5 (5)C12A—C13A—H13A120.0
H10C—C10—H10D107.4C13A—C12A—H12A120.0
H10A—C10—H10B107.6C13A—C12A—C11A120.0
C11B—C10—C9116.0 (6)C11A—C12A—H12A120.0
C11B—C10—H10C108.3C16A—C11A—C10113.7 (5)
C11B—C10—H10D108.3C12A—C11A—C10126.2 (5)
C11A—C10—H10A108.6C12A—C11A—C16A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O6i0.841.832.6497 (18)163
O1—H1···O3ii0.841.772.607 (2)177
N1—H1A···O40.89 (2)2.16 (2)3.039 (2)170 (2)
N2—H2···O20.84 (2)2.06 (2)2.900 (2)170 (2)
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y1/2, z+1.
 

Acknowledgements

NMR data were collected by Dr Joseph Ready and Dr Feng Lin at UT Southwestern Medical Center, Dallas, Texas.

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021); Abilene Christian University Office of Undergraduate Research; Abilene Christian University Research Council.

References

First citationAbraham, M. M., Denton, R. E., Harper, R. W., Scott, W. L., O'Donnell, M. J. & Durrant, J. D. (2017). Chem. Biol. Drug Des. 90, 909–918.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDounay, A. B., O'Donnell, M. J., Samaritoni, J. G., Popiolek, L., Schirch, D., Biernasiuk, A., Malm, A., Lamb, I. W., Mudrack, K., Rivera, D. G., Ojeda, G. M. & Scott, W. L. (2019). J. Chem. Educ. 96, 1731–1737.  Web of Science CrossRef CAS Google Scholar
First citationFriedman, N. D., Temkin, E. & Carmeli, Y. (2016). Clin. Microbiol. Infect. 22, 416–422.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFrieri, M., Kumar, K. & Boutin, A. (2017). J. Infect. Publ. Heal. 10, 369–378.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScott, W. L., Alsina, J., Audu, C. O., Babaev, E., Cook, L., Dage, J. L., Goodwin, L. A., Martynow, J. G., Matosiuk, D., Royo, M., Smith, J. G., Strong, A. T., Wickizer, K., Woerly, E. M., Zhou, Z. & O'Donnell, M. J. (2009). J. Comb. Chem. 11, 14–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScott, W. L. & O'Donnell, M. J. (2009). J. Comb. Chem. 11, 3–13.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds