metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(3,5-di­nitro­benzoato-κO)bis­­(ethane-1,2-di­amine-κ2N,N′)cadmium(II)

CROSSMARK_Color_square_no_text.svg

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: alex.ibragimov@inbox.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 June 2020; accepted 23 June 2020; online 3 July 2020)

During systematic investigations of bioavailability and biological action enhancement of well known compounds with low bioactivity, a new mixed-ligand metal complex, [Cd(DNBA)2(en)2)] (DNBA = 3,5-di­nitro­benzoate, C7H3N2O6; en = ethyl­endi­amine, C2H8N2), has been synthesized. The complex mol­ecules are located on inversion centers. Two DNBA anions monodentately coordinate the CdII atom through an oxygen atom of the carboxyl­ate group while two en mol­ecules coordinate in a chelate fashion, resulting in a distorted O2N4 coordination set. There is a weak intra­molecular hydrogen bond of 3.099 (4) Å between the non-coordinating oxygen atom of the carboxyl­ate group and one of the en amine groups. Three relatively weak inter­molecular N—H⋯O hydrogen bonds associate complex mol­ecules into sheets extending parallel to (0[\overline{1}]1), which are further stabilized by ππ inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯O/O⋯H (50.2%) and H⋯H (21.1%) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

DNBA (= 3,5-di­nitro­benzoic acid) is an organic compound that is an important corrosion inhibitor applied in photography and is used by chemists to identify alcohol components in esters and in the fluoro­metric analysis of creatinine (Chandrasekaran et al., 2013[Chandrasekaran, J., Babu, B., Balaprabhakaran, S., Ilayabarathi, P., Maadeswaran, P. & Sathishkumar, K. (2013). Optik, 124, 1250-1253.]). DNBA demonstrates low anti­microbial activity against bacteria and yeasts with values of the half maximal inhibitory concentration (IC50) and minimum inhibition concentration (MIC) of more than 3 mmol l−1 but shows medium biological action against filamentous fungi M. gypseum with IC50 and MIC values of 2.1 and 3 mmol l−1 (microbicide effect), respectively (Vaskova et al., 2009[Vaskova, Z., Stachova, P., Krupkova, L., Hudecova, D. & Valigura, D. (2009). Acta Chim. Slov. 2, 77-87.]).

En (ethyl­endi­amine) is used in large qu­anti­ties for the production of many industrial chemicals. It is a well known bidentate chelating ligand for coordination complexes (Matsushita & Taira, 1999[Matsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787-1788.]). En itself is not biologically active against different strains of microorganisms, but its CoIII complex demonstrates a strong anti­fungal action against a broad spectrum of Candida species (Turecka et al., 2018[Turecka, K., Chylewska, A., Kawiak, A. & Waleron, K. F. (2018). Front. Microbiol. 9, article 1594. https://doi.org/10.3389/fmicb.2018.01594]).

The water solubility of DNBA is low (1.35 g l−1 at 25°C; Rogers & Stovall, 2000[Rogers, E. & Stovall, I. (2000). Fundamentals of Chemistry: Solubility. University of Wisconsin.]). In order to enhance its water solubility and anti­microbial activity, we tried to apply some of the presently available approaches (Jain et al., 2015[Jain, S., Patel, N. & Lin, S. (2015). Drug Dev. Ind. Pharm. 41, 875-887.]). However, more encouraging is the combination of organic salts, DNBA and en as well as mixed-ligand complexes comprising respective ligands. Promising results have already been achieved in the case of 4-nitro­benzoic acid (Ibragimov et al., 2017[Ibragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Tashpulatov, Zh. Zh. (2017). Russ. J. Coord. Chem. 43, 380-388.]), 4-amino­benzoic acid (Ibragimov et al., 2016[Ibragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2016). J. Chem. Cryst. 46, 352-363.]) and 3-hydroxybenzoic acid (Ibragimov, 2016[Ibragimov, A. B. (2016). Acta Cryst. E72, 643-647.]). A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) has revealed that organic salts on the basis of DNBA have already been obtained [refcodes VUJXIH (Nethaji et al., 1992[Nethaji, M., Pattabhi, V., Chhabra, N. & Poonia, N. S. (1992). Acta Cryst. C48, 2207-2209.]) and FONCER (Jones et al., 2005[Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, o1823-o1825.])] and therefore we made another attempt and synthesized a cadmium-based mixed-ligand complex. The choice of Cd is explained by the fact that compounds based on cadmium are toxic for living organisms including fungi.

In the crystal of the title compound, the complex mol­ecules are located on inversion centers. Two symmetry-related DNBA anions monodentately coordinate to CdII through one of the oxygen atoms of the carboxyl­ate group. The two en ligands coordinate in a chelate fashion through the two N atoms (Fig. 1[link]). The bond lengths Cd—O1, Cd—N3 and Cd—N4 are 2.344 (2), 2.337 (4) and 2.322 (3) Å, respectively, and the cis-bond angles vary from 77.34 (12) to 102.66 (12)°, indicating a rather strong distortion from the ideal octa­hedral shape. The conformation of the complex mol­ecule is stabilized through a weak intra­molecular hydrogen bond [3.099 (4) Å and 143 (3)°] between the N4—H4A donor and the O2 acceptor (Table 1[link]) defining a six-membered ring with graph-set notation S(6). Most coplanar with the aromatic ring is the N1O2 nitro group [dihedral angle of 3.873 (3)°] while the carboxyl­ate group is considerably twisted from the aromatic ring [dihedral angle = 19.332 (9)°]. The arrangement of the N2O2 nitro group is inter­mediate between the latter two, the corresponding dihedral angle being 13.529 (6)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2 0.92 (1) 2.32 (2) 3.099 (4) 143 (3)
N4—H4A⋯O4i 0.92 (1) 2.56 (3) 3.268 (4) 134 (3)
N4—H4B⋯O4ii 0.92 (1) 2.39 (2) 3.237 (4) 153 (4)
N3—H3B⋯O5iii 0.92 (1) 2.52 (7) 3.312 (5) 145 (10)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z+1; (iii) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the coordination complex [Cd(DNBA)2(en)2)] with displacement ellipsoids shown at the 30% probability level. The crystallographically independent part of the mol­ecule is labelled, the atoms of the remaining part are generated by inversion symmetry. [Symmetry code: (i) −x + 2, −y + 1, −z + 2].

There are three relatively weak inter­molecular hydrogen bonds in the crystal structure (Table 1[link]). N4—H4A⋯O4i and N4—H4B⋯O4ii hydrogen bonds define rings with graph-set notation R42(8). The rings are further connected via N3—H3B⋯O5iii hydrogen bonds, forming sheets extending parallel to (0[\overline{1}]1) (Fig. 2[link]). The sheets are stabilized by ππ stacking inter­actions [Cg1⋯Cg1 = 3.715 (3) Å, slippage = 1.608 Å, symmetry operation: 1 − x, −y, 1 − z; Cg1 is the centroid of the phenyl (C1–C6) ring].

[Figure 2]
Figure 2
The crystal packing of the coordination complex [Cd(DNBA)2(en)2)] showing N—H⋯O hydrogen bonds as dashed lines. For clarity, H atoms not involved in hydrogen bonding are omitted.

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The Hirshfeld surface mapped over dnorm (Fig. 3[link]) shows the expected bright-red spots near atoms O2, O4, O5, H3B, H4A and H4B involved in the N—H⋯O hydrogen-bonding inter­actions described above. Fingerprint plots, Fig. 4[link], reveal that while H⋯O/O⋯H inter­actions make the greatest contribution to the surface contacts, as would be expected for a mol­ecule with such a predominance of O atoms, H⋯H and H⋯C/C⋯H contacts are also substantial. The C⋯O/O⋯C, O⋯O, N⋯O/O⋯N, C⋯C, C⋯N/N⋯C and H⋯N/N⋯H contacts are less significant.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2200 to 1.2846 a.u..
[Figure 4]
Figure 4
Full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯C/C⋯H, (e) C⋯O/O⋯C, (f) O⋯O, (g) N⋯O/O⋯N, (h) C⋯C and (i) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface. Relative contributions are indicated.

A search of the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) attested that over 300 crystal structures based on DNBA are registered. Among these structures, eleven compounds are monoligand complexes while 120 ones belong to mixed-ligand coordination compounds. There are two mixed-ligand complexes closely related to the [Cd(DNBA)2(en)2)] complex. The silver complexes with refcodes EQOKEA (Zhu et al., 2003[Zhu, H.-L., Sun, X.-J., Wang, X.-J. & Wang, D.-Q. (2003). Z. Krist. New Cryst. Struct. 218, 305-306.]) and EQOKEA01 (Qiu et al., 2005[Qiu, X.-Y., Ma, J.-L., Sun, L., Yang, S. & Zhu, H.-L. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 189-192>.]) consist of discrete and polymeric components. In the discrete component, AgI is coordinated by two DNBA mol­ecules in a monodentate mode whereas in the second component silver ions are associated by en ligands into polymeric chains. There are also DNBA, en and –NO2 ligands in the CoI complex with refcode KICCEF (Sharma et al., 2007[Sharma, R., Sharma, R. P., Bala, R., Pretto, L. & Ferretti, V. (2007). J. Coord. Chem. 60, 495-504.]). In this complex, the metal ion is chelated by two en ligands, and one DNBA and one NO2 mol­ecules each in a monodentate mode.

Synthesis and crystallization

To an aqueous solution (2.5 ml) of Cd(CH3COO)2 (0.115 g, 0.5 mmol) was slowly added an ethanol solution (4 ml) containing en (60 μl) and DNBA (0.212 g, 1 mmol) under constant stirring. A colourless crystalline product was obtained at room temperature by slow solvent evaporation after 6 d. Single crystals for X-ray structure determination were selected from this product. Yield: 65%. Elemental analysis for C18H22CdN8O12 (654.83): calculated C 33.02; H 3.39; N 17.11%; found: C 32.96; H 3.32; N 17.08%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C7H3N2O6)2(C2H8N2)2)]
Mr 654.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 291
a, b, c (Å) 7.191 (5), 8.698 (5), 10.987 (5)
α, β, γ (°) 112.289 (5), 92.827 (5), 101.656 (5)
V3) 616.7 (6)
Z 1
Radiation type Cu Kα
μ (mm−1) 7.81
Crystal size (mm) 0.22 × 0.18 × 0.16
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.397, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4512, 2482, 2406
Rint 0.031
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.06
No. of reflections 2482
No. of parameters 195
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.51
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(3,5-dinitrobenzoato-κO)bis(ethane-1,2-diamine-κ2N,N')cadmium(II) top
Crystal data top
[Cd(C7H3N2O6)2(C2H8N2)2)]Z = 1
Mr = 654.83F(000) = 330
Triclinic, P1Dx = 1.763 Mg m3
a = 7.191 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.698 (5) ÅCell parameters from 3166 reflections
c = 10.987 (5) Åθ = 4.4–75.1°
α = 112.289 (5)°µ = 7.81 mm1
β = 92.827 (5)°T = 291 K
γ = 101.656 (5)°Block, colorless
V = 616.7 (6) Å30.22 × 0.18 × 0.16 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Ruby
diffractometer
2482 independent reflections
Radiation source: fine-focus sealed X-ray tube2406 reflections with I > 2σ(I)
Detector resolution: 10.2576 pixels mm-1Rint = 0.031
ω scansθmax = 75.8°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 88
Tmin = 0.397, Tmax = 1.000k = 1010
4512 measured reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.2183P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2482 reflectionsΔρmax = 0.45 e Å3
195 parametersΔρmin = 0.51 e Å3
5 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: Intrinsic-phasingExtinction coefficient: 0.0032 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. N-bound H atoms were located in a difference Fourier map and were refined with bond-length restraints of 0.92 (1) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.0000000.5000001.0000000.04436 (14)
O20.6549 (4)0.5433 (4)0.7930 (3)0.0651 (7)
O10.8216 (4)0.3493 (3)0.7881 (2)0.0620 (7)
O30.1233 (4)0.3373 (4)0.4291 (3)0.0715 (8)
O40.1282 (4)0.1278 (4)0.2450 (3)0.0767 (9)
O60.8565 (4)0.0927 (4)0.3594 (3)0.0730 (8)
N10.1978 (4)0.2284 (4)0.3583 (3)0.0517 (6)
N41.0222 (4)0.7651 (3)0.9904 (3)0.0487 (6)
O50.6643 (5)0.1370 (4)0.1882 (3)0.0757 (8)
N20.7258 (4)0.0609 (4)0.3057 (3)0.0516 (6)
C20.6271 (4)0.3000 (4)0.5940 (3)0.0381 (6)
C30.4603 (4)0.3208 (4)0.5398 (3)0.0396 (6)
H30.4021410.4061260.5895950.047*
C70.7155 (4)0.1743 (4)0.5164 (3)0.0395 (6)
H70.8273180.1589890.5515880.047*
C60.6340 (4)0.0733 (4)0.3869 (3)0.0397 (6)
C40.3822 (4)0.2132 (4)0.4114 (3)0.0401 (6)
C50.4662 (4)0.0883 (4)0.3320 (3)0.0426 (6)
H50.4115820.0173670.2450510.051*
N31.2449 (5)0.5152 (5)0.8698 (4)0.0714 (10)
C10.7084 (4)0.4101 (4)0.7390 (3)0.0443 (7)
C81.2033 (6)0.8097 (5)0.9427 (4)0.0622 (9)
H8A1.3076710.8515751.0151790.075*
H8B1.2001220.9005230.9124860.075*
C91.2380 (7)0.6594 (6)0.8321 (5)0.0725 (11)
H9A1.1369350.6220530.7581140.087*
H9B1.3585220.6934910.8025840.087*
H4A0.922 (4)0.747 (5)0.928 (3)0.050 (10)*
H4B1.024 (6)0.846 (4)1.074 (2)0.072 (13)*
H3A1.336 (4)0.586 (4)0.940 (3)0.053 (11)*
H3B1.285 (10)0.419 (8)0.821 (8)0.27 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0539 (2)0.0461 (2)0.03613 (18)0.01547 (13)0.00951 (12)0.01752 (13)
O20.0524 (14)0.0699 (16)0.0509 (13)0.0237 (12)0.0022 (10)0.0035 (12)
O10.0744 (17)0.0650 (15)0.0418 (12)0.0244 (13)0.0096 (11)0.0144 (11)
O30.0556 (15)0.086 (2)0.0744 (18)0.0318 (14)0.0012 (13)0.0279 (16)
O40.0756 (19)0.0665 (17)0.0712 (18)0.0104 (14)0.0354 (15)0.0181 (15)
O60.0684 (17)0.0780 (19)0.0744 (18)0.0403 (15)0.0103 (14)0.0209 (15)
N10.0464 (14)0.0535 (16)0.0554 (16)0.0080 (12)0.0075 (12)0.0257 (13)
N40.0558 (16)0.0437 (14)0.0428 (14)0.0192 (12)0.0014 (11)0.0099 (11)
O50.096 (2)0.0711 (18)0.0481 (15)0.0316 (16)0.0140 (13)0.0040 (13)
N20.0561 (16)0.0472 (15)0.0494 (15)0.0136 (12)0.0162 (12)0.0154 (12)
C20.0365 (13)0.0420 (15)0.0356 (13)0.0062 (11)0.0038 (10)0.0169 (12)
C30.0384 (14)0.0408 (15)0.0400 (14)0.0085 (11)0.0056 (11)0.0172 (12)
C70.0385 (14)0.0437 (15)0.0388 (14)0.0109 (11)0.0052 (11)0.0185 (12)
C60.0446 (15)0.0374 (14)0.0381 (14)0.0090 (11)0.0086 (11)0.0161 (12)
C40.0394 (14)0.0412 (15)0.0415 (14)0.0063 (11)0.0018 (11)0.0208 (12)
C50.0483 (16)0.0400 (15)0.0350 (13)0.0043 (12)0.0011 (11)0.0139 (12)
N30.068 (2)0.073 (2)0.098 (3)0.0355 (19)0.038 (2)0.047 (2)
C10.0386 (14)0.0523 (17)0.0350 (14)0.0083 (12)0.0034 (11)0.0112 (13)
C80.064 (2)0.052 (2)0.074 (2)0.0088 (16)0.0048 (18)0.0329 (19)
C90.074 (3)0.086 (3)0.082 (3)0.029 (2)0.035 (2)0.052 (2)
Geometric parameters (Å, º) top
Cd1—N4i2.322 (3)C2—C71.397 (4)
Cd1—N42.322 (3)C2—C11.524 (4)
Cd1—N32.337 (4)C3—C41.374 (4)
Cd1—N3i2.337 (4)C3—H30.9300
Cd1—O12.344 (2)C7—C61.379 (4)
Cd1—O1i2.344 (2)C7—H70.9300
O2—C11.235 (4)C6—C51.375 (4)
O1—C11.257 (4)C4—C51.380 (4)
O3—N11.216 (4)C5—H50.9300
O4—N11.226 (4)N3—C91.471 (6)
O6—N21.218 (4)N3—H3A0.914 (10)
N1—C41.473 (4)N3—H3B0.916 (10)
N4—C81.462 (5)C8—C91.485 (6)
N4—H4A0.916 (10)C8—H8A0.9700
N4—H4B0.917 (10)C8—H8B0.9700
O5—N21.216 (4)C9—H9A0.9700
N2—C61.474 (4)C9—H9B0.9700
C2—C31.388 (4)
N4i—Cd1—N4179.999 (11)C6—C7—C2118.8 (3)
N4i—Cd1—N3102.66 (12)C6—C7—H7120.6
N4—Cd1—N377.34 (12)C2—C7—H7120.6
N4i—Cd1—N3i77.34 (12)C5—C6—C7122.6 (3)
N4—Cd1—N3i102.66 (12)C5—C6—N2118.6 (3)
N3—Cd1—N3i180.0C7—C6—N2118.8 (3)
N4i—Cd1—O186.36 (10)C3—C4—C5122.8 (3)
N4—Cd1—O193.64 (10)C3—C4—N1118.4 (3)
N3—Cd1—O180.38 (15)C5—C4—N1118.8 (3)
N3i—Cd1—O199.63 (15)C6—C5—C4117.1 (3)
N4i—Cd1—O1i93.64 (10)C6—C5—H5121.5
N4—Cd1—O1i86.36 (10)C4—C5—H5121.5
N3—Cd1—O1i99.62 (15)C9—N3—Cd1106.2 (2)
N3i—Cd1—O1i80.37 (15)C9—N3—H3A90 (3)
O1—Cd1—O1i180.00 (8)Cd1—N3—H3A95 (3)
C1—O1—Cd1122.9 (2)C9—N3—H3B126 (8)
O3—N1—O4124.1 (3)Cd1—N3—H3B121 (7)
O3—N1—C4118.6 (3)H3A—N3—H3B110 (2)
O4—N1—C4117.3 (3)O2—C1—O1128.6 (3)
C8—N4—Cd1107.5 (2)O2—C1—C2117.4 (3)
C8—N4—H4A109 (2)O1—C1—C2114.0 (3)
Cd1—N4—H4A105 (2)N4—C8—C9111.1 (3)
C8—N4—H4B109 (3)N4—C8—H8A109.4
Cd1—N4—H4B110 (3)C9—C8—H8A109.4
H4A—N4—H4B117 (4)N4—C8—H8B109.4
O5—N2—O6123.1 (3)C9—C8—H8B109.4
O5—N2—C6118.1 (3)H8A—C8—H8B108.0
O6—N2—C6118.8 (3)N3—C9—C8112.9 (4)
C3—C2—C7119.7 (3)N3—C9—H9A109.0
C3—C2—C1119.7 (3)C8—C9—H9A109.0
C7—C2—C1120.5 (3)N3—C9—H9B109.0
C4—C3—C2118.9 (3)C8—C9—H9B109.0
C4—C3—H3120.5H9A—C9—H9B107.8
C2—C3—H3120.5
C7—C2—C3—C41.8 (4)O4—N1—C4—C50.0 (4)
C1—C2—C3—C4175.9 (3)C7—C6—C5—C41.5 (4)
C3—C2—C7—C60.0 (4)N2—C6—C5—C4178.9 (3)
C1—C2—C7—C6177.8 (3)C3—C4—C5—C60.5 (4)
C2—C7—C6—C51.8 (4)N1—C4—C5—C6177.3 (3)
C2—C7—C6—N2179.2 (3)Cd1—O1—C1—O28.4 (5)
O5—N2—C6—C59.9 (4)Cd1—O1—C1—C2172.57 (19)
O6—N2—C6—C5168.6 (3)C3—C2—C1—O219.2 (4)
O5—N2—C6—C7172.6 (3)C7—C2—C1—O2163.0 (3)
O6—N2—C6—C78.9 (4)C3—C2—C1—O1159.9 (3)
C2—C3—C4—C52.2 (4)C7—C2—C1—O117.8 (4)
C2—C3—C4—N1175.6 (3)Cd1—N4—C8—C942.2 (4)
O3—N1—C4—C31.3 (5)Cd1—N3—C9—C841.0 (5)
O4—N1—C4—C3177.9 (3)N4—C8—C9—N359.1 (5)
O3—N1—C4—C5179.2 (3)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O20.92 (1)2.32 (2)3.099 (4)143 (3)
N4—H4A···O4ii0.92 (1)2.56 (3)3.268 (4)134 (3)
N4—H4B···O4iii0.92 (1)2.39 (2)3.237 (4)153 (4)
N3—H3B···O5iv0.92 (1)2.52 (7)3.312 (5)145 (10)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1.
Percentage contributions to the Hirshfeld surface for (I). top
ContactsIncluded surface area %
H···O/O···H50.2
H···H21.1
H···C/C···H8.4
C···O/O···C6.4
O···O5.1
N···O/O···N3.8
C···C2.7
C···N/N···C1.4
H···N/N···H1.0

Funding information

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. BA–FA–F7–004).

References

First citationChandrasekaran, J., Babu, B., Balaprabhakaran, S., Ilayabarathi, P., Maadeswaran, P. & Sathishkumar, K. (2013). Optik, 124, 1250–1253.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbragimov, A. B. (2016). Acta Cryst. E72, 643–647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIbragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Tashpulatov, Zh. Zh. (2017). Russ. J. Coord. Chem. 43, 380–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationIbragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2016). J. Chem. Cryst. 46, 352–363.  Web of Science CSD CrossRef CAS Google Scholar
First citationJain, S., Patel, N. & Lin, S. (2015). Drug Dev. Ind. Pharm. 41, 875–887.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, o1823–o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787–1788.  Web of Science CSD CrossRef CAS Google Scholar
First citationNethaji, M., Pattabhi, V., Chhabra, N. & Poonia, N. S. (1992). Acta Cryst. C48, 2207–2209.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQiu, X.-Y., Ma, J.-L., Sun, L., Yang, S. & Zhu, H.-L. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 189–192>.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRogers, E. & Stovall, I. (2000). Fundamentals of Chemistry: Solubility. University of Wisconsin.  Google Scholar
First citationSharma, R., Sharma, R. P., Bala, R., Pretto, L. & Ferretti, V. (2007). J. Coord. Chem. 60, 495–504.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurecka, K., Chylewska, A., Kawiak, A. & Waleron, K. F. (2018). Front. Microbiol. 9, article 1594. https://doi.org/10.3389/fmicb.2018.01594  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVaskova, Z., Stachova, P., Krupkova, L., Hudecova, D. & Valigura, D. (2009). Acta Chim. Slov. 2, 77–87.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-L., Sun, X.-J., Wang, X.-J. & Wang, D.-Q. (2003). Z. Krist. New Cryst. Struct. 218, 305–306.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds