metal-organic compounds
Bis(3,5-dinitrobenzoato-κO)bis(ethane-1,2-diamine-κ2N,N′)cadmium(II)
aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: alex.ibragimov@inbox.ru
During systematic investigations of bioavailability and biological action enhancement of well known compounds with low bioactivity, a new mixed-ligand metal complex, [Cd(DNBA)2(en)2)] (DNBA = 3,5-dinitrobenzoate, C7H3N2O6; en = ethylendiamine, C2H8N2), has been synthesized. The complex molecules are located on inversion centers. Two DNBA anions monodentately coordinate the CdII atom through an oxygen atom of the carboxylate group while two en molecules coordinate in a chelate fashion, resulting in a distorted O2N4 coordination set. There is a weak intramolecular hydrogen bond of 3.099 (4) Å between the non-coordinating oxygen atom of the carboxylate group and one of the en amine groups. Three relatively weak intermolecular N—H⋯O hydrogen bonds associate complex molecules into sheets extending parallel to (01), which are further stabilized by π–π interactions. A Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯O/O⋯H (50.2%) and H⋯H (21.1%) interactions.
CCDC reference: 2011747
Structure description
DNBA (= 3,5-dinitrobenzoic acid) is an organic compound that is an important corrosion inhibitor applied in photography and is used by chemists to identify alcohol components in et al., 2013). DNBA demonstrates low antimicrobial activity against bacteria and yeasts with values of the half maximal (IC50) and minimum inhibition concentration (MIC) of more than 3 mmol l−1 but shows medium biological action against filamentous fungi M. gypseum with IC50 and MIC values of 2.1 and 3 mmol l−1 (microbicide effect), respectively (Vaskova et al., 2009).
and in the fluorometric analysis of creatinine (ChandrasekaranEn (ethylendiamine) is used in large quantities for the production of many industrial chemicals. It is a well known bidentate chelating ligand for coordination complexes (Matsushita & Taira, 1999). En itself is not biologically active against different strains of microorganisms, but its CoIII complex demonstrates a strong antifungal action against a broad spectrum of Candida species (Turecka et al., 2018).
The water solubility of DNBA is low (1.35 g l−1 at 25°C; Rogers & Stovall, 2000). In order to enhance its water solubility and antimicrobial activity, we tried to apply some of the presently available approaches (Jain et al., 2015). However, more encouraging is the combination of organic salts, DNBA and en as well as mixed-ligand complexes comprising respective ligands. Promising results have already been achieved in the case of 4-nitrobenzoic acid (Ibragimov et al., 2017), 4-aminobenzoic acid (Ibragimov et al., 2016) and 3-hydroxybenzoic acid (Ibragimov, 2016). A search of the Cambridge Structural Database (Groom et al., 2016) has revealed that organic salts on the basis of DNBA have already been obtained [refcodes VUJXIH (Nethaji et al., 1992) and FONCER (Jones et al., 2005)] and therefore we made another attempt and synthesized a cadmium-based mixed-ligand complex. The choice of Cd is explained by the fact that compounds based on cadmium are toxic for living organisms including fungi.
In the crystal of the title compound, the complex molecules are located on inversion centers. Two symmetry-related DNBA anions monodentately coordinate to CdII through one of the oxygen atoms of the carboxylate group. The two en ligands coordinate in a chelate fashion through the two N atoms (Fig. 1). The bond lengths Cd—O1, Cd—N3 and Cd—N4 are 2.344 (2), 2.337 (4) and 2.322 (3) Å, respectively, and the cis-bond angles vary from 77.34 (12) to 102.66 (12)°, indicating a rather strong distortion from the ideal octahedral shape. The conformation of the complex molecule is stabilized through a weak intramolecular hydrogen bond [3.099 (4) Å and 143 (3)°] between the N4—H4A donor and the O2 acceptor (Table 1) defining a six-membered ring with graph-set notation S(6). Most coplanar with the aromatic ring is the N1O2 nitro group [dihedral angle of 3.873 (3)°] while the carboxylate group is considerably twisted from the aromatic ring [dihedral angle = 19.332 (9)°]. The arrangement of the N2O2 nitro group is intermediate between the latter two, the corresponding dihedral angle being 13.529 (6)°.
There are three relatively weak intermolecular hydrogen bonds in the ). N4—H4A⋯O4i and N4—H4B⋯O4ii hydrogen bonds define rings with graph-set notation R42(8). The rings are further connected via N3—H3B⋯O5iii hydrogen bonds, forming sheets extending parallel to (01) (Fig. 2). The sheets are stabilized by π–π stacking interactions [Cg1⋯Cg1 = 3.715 (3) Å, slippage = 1.608 Å, 1 − x, −y, 1 − z; Cg1 is the centroid of the phenyl (C1–C6) ring].
(Table 1In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surface mapped over dnorm (Fig. 3) shows the expected bright-red spots near atoms O2, O4, O5, H3B, H4A and H4B involved in the N—H⋯O hydrogen-bonding interactions described above. Fingerprint plots, Fig. 4, reveal that while H⋯O/O⋯H interactions make the greatest contribution to the surface contacts, as would be expected for a molecule with such a predominance of O atoms, H⋯H and H⋯C/C⋯H contacts are also substantial. The C⋯O/O⋯C, O⋯O, N⋯O/O⋯N, C⋯C, C⋯N/N⋯C and H⋯N/N⋯H contacts are less significant.
A search of the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016) attested that over 300 crystal structures based on DNBA are registered. Among these structures, eleven compounds are monoligand complexes while 120 ones belong to mixed-ligand coordination compounds. There are two mixed-ligand complexes closely related to the [Cd(DNBA)2(en)2)] complex. The silver complexes with refcodes EQOKEA (Zhu et al., 2003) and EQOKEA01 (Qiu et al., 2005) consist of discrete and polymeric components. In the discrete component, AgI is coordinated by two DNBA molecules in a monodentate mode whereas in the second component silver ions are associated by en ligands into polymeric chains. There are also DNBA, en and –NO2 ligands in the CoI complex with refcode KICCEF (Sharma et al., 2007). In this complex, the metal ion is chelated by two en ligands, and one DNBA and one NO2 molecules each in a monodentate mode.
Synthesis and crystallization
To an aqueous solution (2.5 ml) of Cd(CH3COO)2 (0.115 g, 0.5 mmol) was slowly added an ethanol solution (4 ml) containing en (60 μl) and DNBA (0.212 g, 1 mmol) under constant stirring. A colourless crystalline product was obtained at room temperature by slow solvent evaporation after 6 d. Single crystals for X-ray were selected from this product. Yield: 65%. Elemental analysis for C18H22CdN8O12 (654.83): calculated C 33.02; H 3.39; N 17.11%; found: C 32.96; H 3.32; N 17.08%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2011747
https://doi.org/10.1107/S2414314620008433/wm4132sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620008433/wm4132Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Cd(C7H3N2O6)2(C2H8N2)2)] | Z = 1 |
Mr = 654.83 | F(000) = 330 |
Triclinic, P1 | Dx = 1.763 Mg m−3 |
a = 7.191 (5) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.698 (5) Å | Cell parameters from 3166 reflections |
c = 10.987 (5) Å | θ = 4.4–75.1° |
α = 112.289 (5)° | µ = 7.81 mm−1 |
β = 92.827 (5)° | T = 291 K |
γ = 101.656 (5)° | Block, colorless |
V = 616.7 (6) Å3 | 0.22 × 0.18 × 0.16 mm |
Rigaku Oxford Diffraction Xcalibur, Ruby diffractometer | 2482 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 2406 reflections with I > 2σ(I) |
Detector resolution: 10.2576 pixels mm-1 | Rint = 0.031 |
ω scans | θmax = 75.8°, θmin = 4.4° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | h = −8→8 |
Tmin = 0.397, Tmax = 1.000 | k = −10→10 |
4512 measured reflections | l = −11→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0513P)2 + 0.2183P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2482 reflections | Δρmax = 0.45 e Å−3 |
195 parameters | Δρmin = −0.51 e Å−3 |
5 restraints | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: Intrinsic-phasing | Extinction coefficient: 0.0032 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. N-bound H atoms were located in a difference Fourier map and were refined with bond-length restraints of 0.92 (1) Å. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 1.000000 | 0.500000 | 1.000000 | 0.04436 (14) | |
O2 | 0.6549 (4) | 0.5433 (4) | 0.7930 (3) | 0.0651 (7) | |
O1 | 0.8216 (4) | 0.3493 (3) | 0.7881 (2) | 0.0620 (7) | |
O3 | 0.1233 (4) | 0.3373 (4) | 0.4291 (3) | 0.0715 (8) | |
O4 | 0.1282 (4) | 0.1278 (4) | 0.2450 (3) | 0.0767 (9) | |
O6 | 0.8565 (4) | −0.0927 (4) | 0.3594 (3) | 0.0730 (8) | |
N1 | 0.1978 (4) | 0.2284 (4) | 0.3583 (3) | 0.0517 (6) | |
N4 | 1.0222 (4) | 0.7651 (3) | 0.9904 (3) | 0.0487 (6) | |
O5 | 0.6643 (5) | −0.1370 (4) | 0.1882 (3) | 0.0757 (8) | |
N2 | 0.7258 (4) | −0.0609 (4) | 0.3057 (3) | 0.0516 (6) | |
C2 | 0.6271 (4) | 0.3000 (4) | 0.5940 (3) | 0.0381 (6) | |
C3 | 0.4603 (4) | 0.3208 (4) | 0.5398 (3) | 0.0396 (6) | |
H3 | 0.402141 | 0.406126 | 0.589595 | 0.047* | |
C7 | 0.7155 (4) | 0.1743 (4) | 0.5164 (3) | 0.0395 (6) | |
H7 | 0.827318 | 0.158989 | 0.551588 | 0.047* | |
C6 | 0.6340 (4) | 0.0733 (4) | 0.3869 (3) | 0.0397 (6) | |
C4 | 0.3822 (4) | 0.2132 (4) | 0.4114 (3) | 0.0401 (6) | |
C5 | 0.4662 (4) | 0.0883 (4) | 0.3320 (3) | 0.0426 (6) | |
H5 | 0.411582 | 0.017367 | 0.245051 | 0.051* | |
N3 | 1.2449 (5) | 0.5152 (5) | 0.8698 (4) | 0.0714 (10) | |
C1 | 0.7084 (4) | 0.4101 (4) | 0.7390 (3) | 0.0443 (7) | |
C8 | 1.2033 (6) | 0.8097 (5) | 0.9427 (4) | 0.0622 (9) | |
H8A | 1.307671 | 0.851575 | 1.015179 | 0.075* | |
H8B | 1.200122 | 0.900523 | 0.912486 | 0.075* | |
C9 | 1.2380 (7) | 0.6594 (6) | 0.8321 (5) | 0.0725 (11) | |
H9A | 1.136935 | 0.622053 | 0.758114 | 0.087* | |
H9B | 1.358522 | 0.693491 | 0.802584 | 0.087* | |
H4A | 0.922 (4) | 0.747 (5) | 0.928 (3) | 0.050 (10)* | |
H4B | 1.024 (6) | 0.846 (4) | 1.074 (2) | 0.072 (13)* | |
H3A | 1.336 (4) | 0.586 (4) | 0.940 (3) | 0.053 (11)* | |
H3B | 1.285 (10) | 0.419 (8) | 0.821 (8) | 0.27 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0539 (2) | 0.0461 (2) | 0.03613 (18) | 0.01547 (13) | 0.00951 (12) | 0.01752 (13) |
O2 | 0.0524 (14) | 0.0699 (16) | 0.0509 (13) | 0.0237 (12) | −0.0022 (10) | −0.0035 (12) |
O1 | 0.0744 (17) | 0.0650 (15) | 0.0418 (12) | 0.0244 (13) | −0.0096 (11) | 0.0144 (11) |
O3 | 0.0556 (15) | 0.086 (2) | 0.0744 (18) | 0.0318 (14) | −0.0012 (13) | 0.0279 (16) |
O4 | 0.0756 (19) | 0.0665 (17) | 0.0712 (18) | 0.0104 (14) | −0.0354 (15) | 0.0181 (15) |
O6 | 0.0684 (17) | 0.0780 (19) | 0.0744 (18) | 0.0403 (15) | 0.0103 (14) | 0.0209 (15) |
N1 | 0.0464 (14) | 0.0535 (16) | 0.0554 (16) | 0.0080 (12) | −0.0075 (12) | 0.0257 (13) |
N4 | 0.0558 (16) | 0.0437 (14) | 0.0428 (14) | 0.0192 (12) | 0.0014 (11) | 0.0099 (11) |
O5 | 0.096 (2) | 0.0711 (18) | 0.0481 (15) | 0.0316 (16) | 0.0140 (13) | 0.0040 (13) |
N2 | 0.0561 (16) | 0.0472 (15) | 0.0494 (15) | 0.0136 (12) | 0.0162 (12) | 0.0154 (12) |
C2 | 0.0365 (13) | 0.0420 (15) | 0.0356 (13) | 0.0062 (11) | 0.0038 (10) | 0.0169 (12) |
C3 | 0.0384 (14) | 0.0408 (15) | 0.0400 (14) | 0.0085 (11) | 0.0056 (11) | 0.0172 (12) |
C7 | 0.0385 (14) | 0.0437 (15) | 0.0388 (14) | 0.0109 (11) | 0.0052 (11) | 0.0185 (12) |
C6 | 0.0446 (15) | 0.0374 (14) | 0.0381 (14) | 0.0090 (11) | 0.0086 (11) | 0.0161 (12) |
C4 | 0.0394 (14) | 0.0412 (15) | 0.0415 (14) | 0.0063 (11) | −0.0018 (11) | 0.0208 (12) |
C5 | 0.0483 (16) | 0.0400 (15) | 0.0350 (13) | 0.0043 (12) | 0.0011 (11) | 0.0139 (12) |
N3 | 0.068 (2) | 0.073 (2) | 0.098 (3) | 0.0355 (19) | 0.038 (2) | 0.047 (2) |
C1 | 0.0386 (14) | 0.0523 (17) | 0.0350 (14) | 0.0083 (12) | 0.0034 (11) | 0.0112 (13) |
C8 | 0.064 (2) | 0.052 (2) | 0.074 (2) | 0.0088 (16) | 0.0048 (18) | 0.0329 (19) |
C9 | 0.074 (3) | 0.086 (3) | 0.082 (3) | 0.029 (2) | 0.035 (2) | 0.052 (2) |
Cd1—N4i | 2.322 (3) | C2—C7 | 1.397 (4) |
Cd1—N4 | 2.322 (3) | C2—C1 | 1.524 (4) |
Cd1—N3 | 2.337 (4) | C3—C4 | 1.374 (4) |
Cd1—N3i | 2.337 (4) | C3—H3 | 0.9300 |
Cd1—O1 | 2.344 (2) | C7—C6 | 1.379 (4) |
Cd1—O1i | 2.344 (2) | C7—H7 | 0.9300 |
O2—C1 | 1.235 (4) | C6—C5 | 1.375 (4) |
O1—C1 | 1.257 (4) | C4—C5 | 1.380 (4) |
O3—N1 | 1.216 (4) | C5—H5 | 0.9300 |
O4—N1 | 1.226 (4) | N3—C9 | 1.471 (6) |
O6—N2 | 1.218 (4) | N3—H3A | 0.914 (10) |
N1—C4 | 1.473 (4) | N3—H3B | 0.916 (10) |
N4—C8 | 1.462 (5) | C8—C9 | 1.485 (6) |
N4—H4A | 0.916 (10) | C8—H8A | 0.9700 |
N4—H4B | 0.917 (10) | C8—H8B | 0.9700 |
O5—N2 | 1.216 (4) | C9—H9A | 0.9700 |
N2—C6 | 1.474 (4) | C9—H9B | 0.9700 |
C2—C3 | 1.388 (4) | ||
N4i—Cd1—N4 | 179.999 (11) | C6—C7—C2 | 118.8 (3) |
N4i—Cd1—N3 | 102.66 (12) | C6—C7—H7 | 120.6 |
N4—Cd1—N3 | 77.34 (12) | C2—C7—H7 | 120.6 |
N4i—Cd1—N3i | 77.34 (12) | C5—C6—C7 | 122.6 (3) |
N4—Cd1—N3i | 102.66 (12) | C5—C6—N2 | 118.6 (3) |
N3—Cd1—N3i | 180.0 | C7—C6—N2 | 118.8 (3) |
N4i—Cd1—O1 | 86.36 (10) | C3—C4—C5 | 122.8 (3) |
N4—Cd1—O1 | 93.64 (10) | C3—C4—N1 | 118.4 (3) |
N3—Cd1—O1 | 80.38 (15) | C5—C4—N1 | 118.8 (3) |
N3i—Cd1—O1 | 99.63 (15) | C6—C5—C4 | 117.1 (3) |
N4i—Cd1—O1i | 93.64 (10) | C6—C5—H5 | 121.5 |
N4—Cd1—O1i | 86.36 (10) | C4—C5—H5 | 121.5 |
N3—Cd1—O1i | 99.62 (15) | C9—N3—Cd1 | 106.2 (2) |
N3i—Cd1—O1i | 80.37 (15) | C9—N3—H3A | 90 (3) |
O1—Cd1—O1i | 180.00 (8) | Cd1—N3—H3A | 95 (3) |
C1—O1—Cd1 | 122.9 (2) | C9—N3—H3B | 126 (8) |
O3—N1—O4 | 124.1 (3) | Cd1—N3—H3B | 121 (7) |
O3—N1—C4 | 118.6 (3) | H3A—N3—H3B | 110 (2) |
O4—N1—C4 | 117.3 (3) | O2—C1—O1 | 128.6 (3) |
C8—N4—Cd1 | 107.5 (2) | O2—C1—C2 | 117.4 (3) |
C8—N4—H4A | 109 (2) | O1—C1—C2 | 114.0 (3) |
Cd1—N4—H4A | 105 (2) | N4—C8—C9 | 111.1 (3) |
C8—N4—H4B | 109 (3) | N4—C8—H8A | 109.4 |
Cd1—N4—H4B | 110 (3) | C9—C8—H8A | 109.4 |
H4A—N4—H4B | 117 (4) | N4—C8—H8B | 109.4 |
O5—N2—O6 | 123.1 (3) | C9—C8—H8B | 109.4 |
O5—N2—C6 | 118.1 (3) | H8A—C8—H8B | 108.0 |
O6—N2—C6 | 118.8 (3) | N3—C9—C8 | 112.9 (4) |
C3—C2—C7 | 119.7 (3) | N3—C9—H9A | 109.0 |
C3—C2—C1 | 119.7 (3) | C8—C9—H9A | 109.0 |
C7—C2—C1 | 120.5 (3) | N3—C9—H9B | 109.0 |
C4—C3—C2 | 118.9 (3) | C8—C9—H9B | 109.0 |
C4—C3—H3 | 120.5 | H9A—C9—H9B | 107.8 |
C2—C3—H3 | 120.5 | ||
C7—C2—C3—C4 | 1.8 (4) | O4—N1—C4—C5 | 0.0 (4) |
C1—C2—C3—C4 | −175.9 (3) | C7—C6—C5—C4 | 1.5 (4) |
C3—C2—C7—C6 | 0.0 (4) | N2—C6—C5—C4 | 178.9 (3) |
C1—C2—C7—C6 | 177.8 (3) | C3—C4—C5—C6 | 0.5 (4) |
C2—C7—C6—C5 | −1.8 (4) | N1—C4—C5—C6 | −177.3 (3) |
C2—C7—C6—N2 | −179.2 (3) | Cd1—O1—C1—O2 | −8.4 (5) |
O5—N2—C6—C5 | 9.9 (4) | Cd1—O1—C1—C2 | 172.57 (19) |
O6—N2—C6—C5 | −168.6 (3) | C3—C2—C1—O2 | −19.2 (4) |
O5—N2—C6—C7 | −172.6 (3) | C7—C2—C1—O2 | 163.0 (3) |
O6—N2—C6—C7 | 8.9 (4) | C3—C2—C1—O1 | 159.9 (3) |
C2—C3—C4—C5 | −2.2 (4) | C7—C2—C1—O1 | −17.8 (4) |
C2—C3—C4—N1 | 175.6 (3) | Cd1—N4—C8—C9 | 42.2 (4) |
O3—N1—C4—C3 | 1.3 (5) | Cd1—N3—C9—C8 | 41.0 (5) |
O4—N1—C4—C3 | −177.9 (3) | N4—C8—C9—N3 | −59.1 (5) |
O3—N1—C4—C5 | 179.2 (3) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O2 | 0.92 (1) | 2.32 (2) | 3.099 (4) | 143 (3) |
N4—H4A···O4ii | 0.92 (1) | 2.56 (3) | 3.268 (4) | 134 (3) |
N4—H4B···O4iii | 0.92 (1) | 2.39 (2) | 3.237 (4) | 153 (4) |
N3—H3B···O5iv | 0.92 (1) | 2.52 (7) | 3.312 (5) | 145 (10) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1, y+1, z+1; (iv) −x+2, −y, −z+1. |
Contacts | Included surface area % |
H···O/O···H | 50.2 |
H···H | 21.1 |
H···C/C···H | 8.4 |
C···O/O···C | 6.4 |
O···O | 5.1 |
N···O/O···N | 3.8 |
C···C | 2.7 |
C···N/N···C | 1.4 |
H···N/N···H | 1.0 |
Funding information
This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. BA–FA–F7–004).
References
Chandrasekaran, J., Babu, B., Balaprabhakaran, S., Ilayabarathi, P., Maadeswaran, P. & Sathishkumar, K. (2013). Optik, 124, 1250–1253. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ibragimov, A. B. (2016). Acta Cryst. E72, 643–647. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ibragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Tashpulatov, Zh. Zh. (2017). Russ. J. Coord. Chem. 43, 380–388. Web of Science CSD CrossRef CAS Google Scholar
Ibragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2016). J. Chem. Cryst. 46, 352–363. Web of Science CSD CrossRef CAS Google Scholar
Jain, S., Patel, N. & Lin, S. (2015). Drug Dev. Ind. Pharm. 41, 875–887. Web of Science CrossRef CAS PubMed Google Scholar
Jones, H. P., Gillon, A. L. & Davey, R. J. (2005). Acta Cryst. E61, o1823–o1825. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787–1788. Web of Science CSD CrossRef CAS Google Scholar
Nethaji, M., Pattabhi, V., Chhabra, N. & Poonia, N. S. (1992). Acta Cryst. C48, 2207–2209. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Qiu, X.-Y., Ma, J.-L., Sun, L., Yang, S. & Zhu, H.-L. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 189–192>. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rogers, E. & Stovall, I. (2000). Fundamentals of Chemistry: Solubility. University of Wisconsin. Google Scholar
Sharma, R., Sharma, R. P., Bala, R., Pretto, L. & Ferretti, V. (2007). J. Coord. Chem. 60, 495–504. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turecka, K., Chylewska, A., Kawiak, A. & Waleron, K. F. (2018). Front. Microbiol. 9, article 1594. https://doi.org/10.3389/fmicb.2018.01594 Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Vaskova, Z., Stachova, P., Krupkova, L., Hudecova, D. & Valigura, D. (2009). Acta Chim. Slov. 2, 77–87. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, H.-L., Sun, X.-J., Wang, X.-J. & Wang, D.-Q. (2003). Z. Krist. New Cryst. Struct. 218, 305–306. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.