organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-5-(4-Bromo­phen­yl)-3-{[(3,5-di­chloro­phen­yl)amino]­methyl­­idene}furan-2(3H)-one

CROSSMARK_Color_square_no_text.svg

aInstitute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russian Federation, and bInstitute of Chemistry, N. G. Chernyshevsky National Research Saratov State University, Ulitsa Astrakhanskaya, 83, Saratov 410012, Russian Federation
*Correspondence e-mail: grinev@ibppm.ru

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 25 June 2020; accepted 9 July 2020; online 17 July 2020)

The title compound, C17H10BrCl2NO2, crystallizes in the monoclinic space group C2/c with a large cell volume of 6207 (3) Å3. The asymmetric unit of the title compound investigated at 120 K contains two crystallographically independent mol­ecules (Z′ = 2). Each mol­ecule demonstrates slight non-planarity in the solid state and a Z-configuration for the exocyclic C=C bond. The crystal packing reveals the presence of π-π stacking inter­actions between the substituted benzene rings [centroid–centroid distances of 3.836 (5) Å, shift distances in the range 1.272–1.843 Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Push–pull enamines based on furan-2(3H)-ones may be of inter­est for the creation of mol­ecular switches (Osipov et al., 2017[Osipov, A. K., Anis'kov, A. A., Grinev, V. S. & Yegorova, A. Yu. (2017). Magn. Reson. Chem. 55, 730-737.]). Both crystallographically independent mol­ecules of the title compound are close to planarity and may be aligned together with an r.m.s.d. of 0.297 Å without and 0.561 Å with inversion. Usually, pronounced non-planar mol­ecules differ much more in their alignment with and without inversion. Actually, both mol­ecules are slightly non-planar (Fig. 1[link]) with the 4-bromo­phenyl substituent rotated about the mean plane of the furan­one ring by approximately 2–5° [C18—C17—C6—O1 = 2.1 (12)° while the corresponding C18A—C17A—C6A—O1A torsion angle = 5.2 (13)°] . The C4=C7 as well as corresponding C4A=C7A bonds adopt a Z configuration. The benzene ring of the 3,5-di­chloro­phenyl substituent is also out of the plane of the mol­ecule [the dihedral angles between the mean planes of the furan­one and 3,5-di­chloro­phenyl rings are 33.6 (4) and 14.8 (4)°, respectively, for the two mol­ecules], which is a consequence of the repulsion of hydrogen atoms H16/H16A of the aromatic substituent and H7/H7A of the enamine fragment with distances H7⋯H16 = 2.178 Å and H7A⋯H16A = 2.063 Å, which is less than the sum of the van der Waals radii (2.38 Å). This is in agreement with the observation that the inter­atomic distance is slightly larger in the more twisted mol­ecule than in the more planar one.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level (two crystallographically independent mol­ecules are shown).

In contrast to (Z)-3-[(3,5-di­chloro­anilino)methyl­idene]-5-(p-tol­yl)furan-2(3H)-one (Grinev et al., 2018[Grinev, V. S., Osipov, A. K. & Yegorova, A. Y. (2018). IUCrData, 3, x181224.]), which demonstrated only intra­molecular hydrogen bond, in crystal of the title mol­ecule there are not only intra­molecular, but also inter­molecular hydrogen bonds (Table 1[link], Fig. 2[link]). They are relatively weak but result in dimer formation in the crystal packing. The H8⋯O3 distance in both mol­ecules is significantly longer than the corresponding distance in the p-tolyl-substituted analogue [2.18 (2) Å]. This may be explained by the presence of the bulky electronegative bromine atom as a substituent on the benzene ring instead of a methyl group. The two mol­ecules in the asymmetric unit are oriented in a head-to-tail fashion, the bromine atom of one mol­ecule becoming relatively close to the H atoms of CH fragments of both the aromatic and enamine moieties in the neighbouring second crystallographically independent mol­ecule [H⋯Br inter­atomic distances are in the range 3.26—3.82 Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O3 0.87 (13) 2.49 (11) 3.013 (11) 119 (10)
N8—H8⋯O3i 0.87 (13) 2.26 (13) 3.059 (15) 153 (11)
N8A—H8A⋯O3A 0.88 2.44 3.050 (11) 126
N8A—H8A⋯O3Aii 0.88 2.32 3.142 (12) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis.

The inter­planar distances between identically oriented mol­ecules in the p-tolyl substituted analogue are larger than 7 Å, excluding non-covalent inter­actions such as ππ stacking. In contrast to this, in the crystal of the title mol­ecule parallel-displaced ππ stacking inter­actions are present for both crystallographically independent mol­ecules (Fig. 3[link]). The inter­centroid distances between the 3,5-di­chloro­phenyl as well as the 4-bromo­phenyl rings are 3.836 (5) Å for both mol­ecules, with shift distances of 1.272 and 1.665 Å for the first mol­ecule and 1.539 and 1.843 Å for the second mol­ecule.

[Figure 3]
Figure 3
ππ stacking inter­actions between the di­chloro (green) and bromo (brown) substituted aromatic rings of the title compound.

Synthesis and crystallization

The synthesis of the title compound was performed according to the method described by Osipov et al. (2017[Osipov, A. K., Anis'kov, A. A., Grinev, V. S. & Yegorova, A. Yu. (2017). Magn. Reson. Chem. 55, 730-737.]) and Grinev et al. (2018[Grinev, V. S., Osipov, A. K. & Yegorova, A. Y. (2018). IUCrData, 3, x181224.]). Briefly, about 7 ml of benzene, 1.78 g of (12.02 mmol) triethyl orthoformate, 0.40 g (1.67 mmol) of 5-(4-bromo­phen­yl)furan-2(3H)-one and 0.27 g (1.67 mmol) of 3,5-di­chloro­aniline were placed into a round-bottom flask equipped with a Liebig reflux condenser, and the reaction mixture was refluxed for 2 h. The precipitate of 3-[(3,5-di­chloro­anilino)methyl­idene]-5-(4-bromo­phen­yl)furan-2(3H)-one was filtered off, washed with benzene and then with chloro­form, dried, and recrystallized from DMF. Yield 0.51 g (75%), yellow crystals. A single crystal suitable for X-ray analysis was obtained by slow cooling of a saturated solution of the title compound in benzene.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The relatively high Rint and R values as well as the low C—C bond precision are due to poor crystal quality because of probable twinning or clustering.

Table 2
Experimental details

Crystal data
Chemical formula C17H10BrCl2NO2
Mr 411.07
Crystal system, space group Monoclinic, C2/c
Temperature (K) 120
a, b, c (Å) 55.051 (17), 3.8355 (11), 35.979 (12)
β (°) 125.214 (6)
V3) 6207 (3)
Z 16
Radiation type Mo Kα
μ (mm−1) 3.00
Crystal size (mm) 0.6 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.170, 0.337
No. of measured, independent and observed [I > 2σ(I)] reflections 17633, 6123, 3647
Rint 0.136
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.220, 1.06
No. of reflections 6123
No. of parameters 359
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.17, −1.30
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Z)-5-(4-Bromophenyl)-3-{[(3,5-dichlorophenyl)amino]methylidene}furan-2(3H)-one top
Crystal data top
C17H10BrCl2NO2F(000) = 3264
Mr = 411.07Dx = 1.760 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 55.051 (17) ÅCell parameters from 1746 reflections
b = 3.8355 (11) Åθ = 2.8–30.7°
c = 35.979 (12) ŵ = 3.00 mm1
β = 125.214 (6)°T = 120 K
V = 6207 (3) Å3Needle, metallic orangish yellow
Z = 160.6 × 0.1 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
3647 reflections with I > 2σ(I)
φ and ω scansRint = 0.136
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 0.9°
Tmin = 0.170, Tmax = 0.337h = 6665
17633 measured reflectionsk = 44
6123 independent reflectionsl = 4144
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.092 w = 1/[σ2(Fo2) + (0.0747P)2 + 74.2699P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.220(Δ/σ)max = 0.001
S = 1.06Δρmax = 1.17 e Å3
6123 reflectionsΔρmin = 1.30 e Å3
359 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00133 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved by the internal phasing method and refined by the least-squares method in the anisotropic full-matrix approximation in accordance with F2hkl. Aromatic and amine H atoms refined with riding coordinates: C5(H5), C7(H7), C10(H10), C13(H13), C16(H16), C18(H18), C19(H19), C21(H21), C22(H22), N8A(H8A), C5A(H5A), C7A(H7A), C10A(H10A), C13A(H13A), C16A(H16A), C18A(H18A), C19A(H19A), C21A(H21A), C22A(H22A). Other H atoms were placed in calculated positions and refined geometrically using a riding model, with fixed thermal parameters Uiso(H) = 1.2Uiso(C). In addition, the following restraints and constraints were applied: Uanis(C6A) = Uanis(C6); Uanis(C16A) = Uanis(C10A) = Uanis(C16) = Uanis(C10); Uanis(C7A) = Uanis(C7); Uanis(C20) = Uanis(C20A); Uanis(C18) = Uanis(C22) = Uanis(C22A) = Uanis(C18A).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br230.48087 (2)1.1512 (3)0.68139 (4)0.0309 (3)
Cl10.14526 (6)0.0626 (7)0.33686 (10)0.0340 (7)
Cl150.20333 (6)0.2610 (8)0.26102 (10)0.0399 (7)
O10.32912 (15)0.9028 (18)0.5536 (2)0.0275 (17)
O30.27944 (15)0.865 (2)0.5197 (2)0.0338 (18)
N80.2499 (2)0.467 (2)0.4316 (3)0.029 (2)
H80.247 (2)0.48 (3)0.453 (4)0.035*
C20.3001 (2)0.796 (3)0.5180 (3)0.029 (3)
C40.3023 (2)0.614 (3)0.4849 (3)0.026 (2)
C50.3334 (2)0.613 (2)0.5017 (3)0.022 (2)
H50.3416980.5121100.4872580.027*
C60.3483 (2)0.784 (2)0.5422 (3)0.0199 (15)
C70.2781 (2)0.477 (2)0.4441 (3)0.0236 (16)
H70.2818530.3819410.4235270.028*
C90.2261 (2)0.345 (2)0.3887 (3)0.027 (2)
C100.2008 (2)0.216 (2)0.3845 (3)0.0223 (11)
H100.2001370.2089460.4102750.027*
C110.1767 (2)0.097 (3)0.3425 (4)0.030 (3)
C130.1772 (2)0.103 (2)0.3038 (4)0.027 (2)
H130.1609480.0170980.2753660.033*
C140.2023 (2)0.237 (3)0.3086 (3)0.023 (2)
C160.2270 (2)0.363 (2)0.3509 (3)0.0223 (11)
H160.2437840.4584610.3534460.027*
C170.3802 (2)0.867 (2)0.5759 (3)0.0177 (14)
C180.3893 (2)1.041 (2)0.6163 (3)0.0216 (11)
H180.3751381.1027370.6222150.026*
C190.4198 (2)1.123 (3)0.6482 (3)0.026 (2)
H190.4261771.2408560.6756310.031*
C200.4401 (2)1.031 (3)0.6389 (4)0.0270 (17)
C210.4313 (2)0.856 (2)0.5991 (3)0.022 (2)
H210.4455210.7939180.5932320.026*
C220.4007 (2)0.771 (2)0.5672 (3)0.0216 (11)
H220.3943590.6479510.5401070.026*
Br1A0.28136 (2)0.0323 (3)0.32665 (4)0.0321 (3)
Cl2A0.62033 (6)1.0959 (7)0.68860 (9)0.0291 (6)
Cl3A0.55514 (6)0.6764 (7)0.74909 (9)0.0316 (6)
O1A0.42611 (14)0.5740 (16)0.4455 (2)0.0212 (15)
O3A0.47142 (15)0.8240 (17)0.4752 (2)0.0252 (16)
N8A0.51085 (17)0.717 (2)0.5780 (3)0.0213 (19)
H8A0.5118020.8045010.5561910.026*
C2A0.4552 (2)0.657 (2)0.4813 (3)0.020 (2)
C4A0.4599 (2)0.516 (2)0.5227 (3)0.020 (2)
C5A0.4325 (2)0.348 (2)0.5088 (3)0.019 (2)
H5A0.4288730.2278650.5282600.023*
C6A0.4130 (2)0.391 (2)0.4639 (3)0.0199 (15)
C7A0.4858 (2)0.543 (2)0.5660 (3)0.0236 (16)
H7A0.4861330.4282010.5897170.028*
C9A0.5354 (2)0.766 (3)0.6235 (3)0.021 (2)
C10A0.5626 (2)0.887 (2)0.6326 (3)0.0223 (11)
H10A0.5644620.9296660.6083120.027*
C11A0.5865 (2)0.944 (3)0.6769 (3)0.023 (2)
C13A0.5849 (2)0.882 (3)0.7136 (3)0.026 (2)
H13A0.6015350.9235280.7439530.031*
C14A0.5582 (2)0.758 (2)0.7044 (3)0.023 (2)
C16A0.5334 (2)0.706 (2)0.6597 (3)0.0223 (11)
H16A0.5151620.6300530.6541760.027*
C17A0.3814 (2)0.289 (2)0.4306 (3)0.0177 (14)
C18A0.3672 (2)0.348 (2)0.3842 (3)0.0216 (11)
H18A0.3779450.4484350.3736620.026*
C19A0.3374 (2)0.260 (2)0.3532 (3)0.022 (2)
H19A0.3273840.3105060.3217430.026*
C20A0.3224 (2)0.097 (3)0.3692 (4)0.0270 (17)
C21A0.3361 (2)0.038 (2)0.4148 (4)0.027 (2)
H21A0.3254160.0685150.4252100.032*
C22A0.3657 (2)0.134 (2)0.4456 (3)0.0216 (11)
H22A0.3751920.0946170.4772020.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br230.0239 (6)0.0206 (6)0.0413 (7)0.0040 (4)0.0149 (5)0.0004 (5)
Cl10.0339 (15)0.0288 (15)0.0475 (17)0.0050 (12)0.0282 (14)0.0047 (12)
Cl150.0389 (16)0.0507 (19)0.0385 (17)0.0045 (14)0.0273 (14)0.0024 (14)
O10.025 (4)0.036 (4)0.030 (4)0.010 (3)0.021 (3)0.007 (3)
O30.020 (4)0.047 (5)0.040 (5)0.004 (3)0.021 (4)0.005 (4)
N80.030 (5)0.031 (5)0.027 (5)0.004 (4)0.017 (4)0.005 (4)
C20.018 (5)0.041 (7)0.020 (5)0.014 (5)0.007 (4)0.007 (5)
C40.029 (6)0.026 (6)0.022 (5)0.007 (5)0.014 (5)0.006 (4)
C50.037 (6)0.013 (5)0.026 (6)0.004 (4)0.022 (5)0.001 (4)
C60.023 (4)0.011 (3)0.033 (4)0.004 (3)0.021 (3)0.003 (3)
C70.032 (4)0.009 (4)0.032 (4)0.004 (3)0.020 (3)0.004 (3)
C90.033 (6)0.008 (5)0.028 (6)0.005 (4)0.010 (5)0.003 (4)
C100.026 (3)0.013 (3)0.032 (3)0.002 (2)0.020 (2)0.001 (2)
C110.035 (6)0.022 (6)0.037 (6)0.007 (5)0.022 (5)0.004 (5)
C130.029 (6)0.017 (5)0.038 (6)0.010 (4)0.020 (5)0.005 (5)
C140.022 (5)0.019 (5)0.027 (6)0.007 (4)0.014 (5)0.005 (4)
C160.026 (3)0.013 (3)0.032 (3)0.002 (2)0.020 (2)0.001 (2)
C170.023 (3)0.012 (3)0.028 (4)0.001 (3)0.021 (3)0.001 (3)
C180.027 (3)0.017 (3)0.030 (3)0.001 (2)0.022 (2)0.000 (2)
C190.023 (5)0.028 (6)0.030 (6)0.012 (4)0.018 (5)0.008 (5)
C200.027 (4)0.018 (4)0.037 (4)0.003 (3)0.019 (3)0.004 (3)
C210.021 (5)0.017 (5)0.030 (6)0.004 (4)0.017 (5)0.006 (4)
C220.027 (3)0.017 (3)0.030 (3)0.001 (2)0.022 (2)0.000 (2)
Br1A0.0217 (5)0.0293 (7)0.0428 (7)0.0055 (5)0.0171 (5)0.0041 (5)
Cl2A0.0262 (13)0.0328 (15)0.0328 (14)0.0045 (11)0.0196 (12)0.0021 (12)
Cl3A0.0424 (16)0.0316 (15)0.0262 (14)0.0033 (12)0.0228 (13)0.0014 (11)
O1A0.020 (3)0.019 (4)0.024 (4)0.004 (3)0.013 (3)0.001 (3)
O3A0.025 (4)0.024 (4)0.036 (4)0.011 (3)0.023 (3)0.004 (3)
N8A0.028 (5)0.020 (5)0.021 (4)0.001 (4)0.017 (4)0.000 (3)
C2A0.019 (5)0.015 (5)0.030 (6)0.003 (4)0.015 (4)0.009 (4)
C4A0.034 (6)0.008 (5)0.031 (6)0.001 (4)0.025 (5)0.002 (4)
C5A0.027 (5)0.020 (5)0.016 (5)0.003 (4)0.016 (4)0.000 (4)
C6A0.023 (4)0.011 (3)0.033 (4)0.004 (3)0.021 (3)0.003 (3)
C7A0.032 (4)0.009 (4)0.032 (4)0.004 (3)0.020 (3)0.004 (3)
C9A0.018 (5)0.022 (6)0.025 (5)0.003 (4)0.013 (4)0.002 (4)
C10A0.026 (3)0.013 (3)0.032 (3)0.002 (2)0.020 (2)0.001 (2)
C11A0.022 (5)0.021 (6)0.029 (6)0.002 (4)0.016 (5)0.002 (4)
C13A0.033 (6)0.023 (6)0.026 (6)0.009 (5)0.019 (5)0.006 (4)
C14A0.034 (6)0.008 (5)0.031 (6)0.002 (4)0.021 (5)0.006 (4)
C16A0.026 (3)0.013 (3)0.032 (3)0.002 (2)0.020 (2)0.001 (2)
C17A0.023 (3)0.012 (3)0.028 (4)0.001 (3)0.021 (3)0.001 (3)
C18A0.027 (3)0.017 (3)0.030 (3)0.001 (2)0.022 (2)0.000 (2)
C19A0.019 (5)0.020 (5)0.024 (5)0.002 (4)0.011 (4)0.002 (4)
C20A0.027 (4)0.018 (4)0.037 (4)0.003 (3)0.019 (3)0.004 (3)
C21A0.032 (6)0.014 (5)0.046 (7)0.002 (4)0.029 (6)0.006 (5)
C22A0.027 (3)0.017 (3)0.030 (3)0.001 (2)0.022 (2)0.000 (2)
Geometric parameters (Å, º) top
Br23—C201.907 (10)Br1A—C20A1.926 (10)
Cl1—C111.732 (11)Cl2A—C11A1.756 (10)
Cl15—C141.746 (10)Cl3A—C14A1.740 (10)
O1—C21.412 (11)O1A—C2A1.395 (11)
O1—C61.409 (11)O1A—C6A1.416 (11)
O3—C21.204 (12)O3A—C2A1.220 (11)
N8—H80.86 (10)N8A—H8A0.8800
N8—C71.342 (13)N8A—C7A1.361 (12)
N8—C91.411 (13)N8A—C9A1.412 (12)
C2—C41.445 (15)C2A—C4A1.457 (13)
C4—C51.448 (14)C4A—C5A1.440 (13)
C4—C71.397 (14)C4A—C7A1.382 (14)
C5—H50.9500C5A—H5A0.9500
C5—C61.360 (13)C5A—C6A1.339 (13)
C6—C171.486 (13)C6A—C17A1.487 (13)
C7—H70.9500C7A—H7A0.9500
C9—C101.400 (14)C9A—C10A1.417 (13)
C9—C161.389 (14)C9A—C16A1.388 (13)
C10—H100.9500C10A—H10A0.9500
C10—C111.393 (14)C10A—C11A1.378 (14)
C11—C131.410 (15)C11A—C13A1.392 (14)
C13—H130.9500C13A—H13A0.9500
C13—C141.390 (14)C13A—C14A1.390 (14)
C14—C161.418 (14)C14A—C16A1.400 (14)
C16—H160.9500C16A—H16A0.9500
C17—C181.403 (13)C17A—C18A1.392 (13)
C17—C221.380 (12)C17A—C22A1.391 (13)
C18—H180.9500C18A—H18A0.9500
C18—C191.417 (13)C18A—C19A1.394 (13)
C19—H190.9500C19A—H19A0.9500
C19—C201.385 (14)C19A—C20A1.393 (14)
C20—C211.391 (14)C20A—C21A1.375 (14)
C21—H210.9500C21A—H21A0.9500
C21—C221.427 (13)C21A—C22A1.392 (14)
C22—H220.9500C22A—H22A0.9500
C6—O1—C2106.7 (8)C2A—O1A—C6A107.7 (7)
C7—N8—H8118 (8)C7A—N8A—H8A118.4
C7—N8—C9122.8 (9)C7A—N8A—C9A123.3 (8)
C9—N8—H8117 (8)C9A—N8A—H8A118.4
O1—C2—C4107.4 (9)O1A—C2A—C4A107.1 (8)
O3—C2—O1119.9 (10)O3A—C2A—O1A121.4 (9)
O3—C2—C4132.6 (9)O3A—C2A—C4A131.5 (9)
C2—C4—C5107.3 (9)C5A—C4A—C2A106.1 (8)
C7—C4—C2124.4 (10)C7A—C4A—C2A125.8 (9)
C7—C4—C5128.3 (10)C7A—C4A—C5A128.1 (9)
C4—C5—H5126.8C4A—C5A—H5A125.8
C6—C5—C4106.4 (9)C6A—C5A—C4A108.3 (8)
C6—C5—H5126.8C6A—C5A—H5A125.8
O1—C6—C17115.2 (8)O1A—C6A—C17A115.4 (8)
C5—C6—O1112.2 (8)C5A—C6A—O1A110.8 (8)
C5—C6—C17132.5 (9)C5A—C6A—C17A133.8 (9)
N8—C7—C4125.5 (10)N8A—C7A—C4A126.2 (9)
N8—C7—H7117.2N8A—C7A—H7A116.9
C4—C7—H7117.2C4A—C7A—H7A116.9
C10—C9—N8118.4 (9)N8A—C9A—C10A119.3 (8)
C16—C9—N8121.2 (10)C16A—C9A—N8A121.8 (9)
C16—C9—C10120.3 (9)C16A—C9A—C10A118.9 (9)
C9—C10—H10120.0C9A—C10A—H10A120.2
C11—C10—C9120.0 (10)C11A—C10A—C9A119.7 (9)
C11—C10—H10120.0C11A—C10A—H10A120.2
C10—C11—Cl1120.5 (8)C10A—C11A—Cl2A120.0 (8)
C10—C11—C13121.0 (10)C10A—C11A—C13A122.1 (10)
C13—C11—Cl1118.6 (8)C13A—C11A—Cl2A117.9 (8)
C11—C13—H13121.0C11A—C13A—H13A121.0
C14—C13—C11118.1 (10)C14A—C13A—C11A117.9 (10)
C14—C13—H13121.0C14A—C13A—H13A121.0
C13—C14—Cl15119.3 (8)C13A—C14A—Cl3A119.7 (8)
C13—C14—C16121.7 (10)C13A—C14A—C16A121.3 (9)
C16—C14—Cl15119.0 (8)C16A—C14A—Cl3A119.0 (8)
C9—C16—C14118.9 (9)C9A—C16A—C14A120.1 (9)
C9—C16—H16120.6C9A—C16A—H16A119.9
C14—C16—H16120.6C14A—C16A—H16A119.9
C18—C17—C6119.6 (8)C18A—C17A—C6A120.7 (8)
C22—C17—C6119.6 (8)C22A—C17A—C6A119.9 (9)
C22—C17—C18120.8 (9)C22A—C17A—C18A119.3 (9)
C17—C18—H18120.2C17A—C18A—H18A119.7
C17—C18—C19119.5 (9)C17A—C18A—C19A120.5 (9)
C19—C18—H18120.2C19A—C18A—H18A119.7
C18—C19—H19120.3C18A—C19A—H19A120.6
C20—C19—C18119.3 (9)C20A—C19A—C18A118.7 (9)
C20—C19—H19120.3C20A—C19A—H19A120.6
C19—C20—Br23119.0 (8)C19A—C20A—Br1A119.3 (8)
C19—C20—C21121.5 (9)C21A—C20A—Br1A119.2 (8)
C21—C20—Br23119.4 (8)C21A—C20A—C19A121.5 (10)
C20—C21—H21120.5C20A—C21A—H21A120.4
C20—C21—C22119.0 (9)C20A—C21A—C22A119.3 (9)
C22—C21—H21120.5C22A—C21A—H21A120.4
C17—C22—C21119.8 (9)C17A—C22A—C21A120.6 (9)
C17—C22—H22120.1C17A—C22A—H22A119.7
C21—C22—H22120.1C21A—C22A—H22A119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O30.87 (13)2.49 (11)3.013 (11)119 (10)
N8—H8···O3i0.87 (13)2.26 (13)3.059 (15)153 (11)
N8A—H8A···O3A0.882.443.050 (11)126
N8A—H8A···O3Aii0.882.323.142 (12)156
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+2, z+1.
 

Funding information

Funding for this research was provided by: Russian Foundation for Basic Research (grant No. 19-33-60038 to O. A. Mayorova).

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrinev, V. S., Osipov, A. K. & Yegorova, A. Y. (2018). IUCrData, 3, x181224.  Google Scholar
First citationOsipov, A. K., Anis'kov, A. A., Grinev, V. S. & Yegorova, A. Yu. (2017). Magn. Reson. Chem. 55, 730–737.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds