metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris[N,N-bis­­(3,5-di-tert-butyl­benz­yl)di­thio­carbamato-κ2S,S′]-μ3-sulfido-tris-μ2-di­sulfido-triangulo-trimolybdenum(IV) iodide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA, and bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: donahue@tulane.edu

Edited by S. Parkin, University of Kentucky, USA (Received 12 June 2020; accepted 9 July 2020; online 17 July 2020)

The title compound, [Mo3(C31H46NS2)3S7]I, crystallizes on a threefold rotational axis in P31c (space group No. 159). The [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]+ cations are arrayed in sheets in the ab plane with inter­ligand hydro­phobic inter­actions between tert-butyl groups guiding the packing arrangement. These cations form stacks parallel to the c axis with a separating distance of 10.9815 (6) Å (the c axis length) between the Mo3 centroids. On the underside of the cluster, opposite the μ3-S2− ligand, the iodide counteranion forms close contacts of 3.166 (2) Å with the sulfur atoms of the μ2-S22− ligands. These contacts are less than the sum of the van der Waals radii of the atoms (1.8 and 2.1 Å for S and I, respectively), thus indicating an appreciable degree of covalency to the [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]+⋯I inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a recent report (Fontenot et al., 2019[Fontenot, P. R., Shan, B., Wang, B., Simpson, S., Ragunathan, G., Greene, A. F., Obanda, A., Hunt, L. A., Hammer, N. I., Webster, C. E., Mague, J. T., Schmehl, R. H. & Donahue, J. P. (2019). Inorg. Chem. 58, 16458-16474.]), we described photocatalytic H2 evolution by [Mo3S7(S2CNiBu2)3]I in a MeCN/H2O mixture with [Ru(bipy)3]2+ as photosensitizer and Et3N as sacrificial electron donor. After a brief incubation period under photoylsis, the [Mo3S7(S2CNiBu2)3]I cluster gives way to a charge-neutral asymmetric hexa­molybdenum species, comprised of [Mo3S7]4+ and [Mo3S4]4+ fragments, that appears to be the operative H2-evolution catalyst. As part of our efforts to understand solution speciation of [Mo3S7(S2CNR2)3]I (R = alk­yl) under photolysis, we endeavored to prepare and structurally characterize [Mo3S4(S2CNR2)3]+ clusters. Although stable to air and moisture and protracted handling, [Mo3S4(S2CNR2)3]+ clusters have proven to be surprisingly intractable to crystallization by typical methods. On the supposition that di­thio­carbamate supporting ligands with sufficiently large substituents would decisively dictate the solubility and crystallinity of a cluster to which they coordin­ate, we have prepared [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I as a precursor to [Mo3S4(S2CN(CH2C6H3-3,5-tBu2)2)3]+. In this communication, we briefly describe the crystal structure of [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I.

The procedure implemented for the synthesis of [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I is similar to that reported for [Mo3S7(S2CNiBu2)3]I (Fontenot et al., 2019[Fontenot, P. R., Shan, B., Wang, B., Simpson, S., Ragunathan, G., Greene, A. F., Obanda, A., Hunt, L. A., Hammer, N. I., Webster, C. E., Mague, J. T., Schmehl, R. H. & Donahue, J. P. (2019). Inorg. Chem. 58, 16458-16474.]). Although nominally an ion pair, [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I is so dominated by the hydro­phobicity of the CH2C6H3-3,5-tBu2 di­thio­carbamate substituents that it is readily taken up into C6H6. Addition of MeOH to a C6H6 solution to the point of incipient precipitation, followed by slow cooling, produces well-formed orange column-shaped crystals of [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I with no inter­stitial solvent.

The triangular [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]+ cation coincides with a crystallographic threefold rotational axis, defined by S5 and the center of the Mo3 equilateral triangle (Fig. 1[link]), in the non-centrosymmetric trigonal space group P31c (space group No. 159). Among the fair number of structural studies of [Mo3S7(S2CNR2)3]+·X salts (X = halide anion) that have been described (Zimmermann et al., 1991[Zimmermann, H., Hegetschweiler, K., Keller, T., Gramlich, V., Schmalle, H. W., Petter, W. & Schneider, W. (1991). Inorg. Chem. 30, 4336-4341.]; Fedin et al., 1992[Fedin, V. P., Sokolov, M. N., Geras'ko, O. A., Virovets, A. V., Podberezskaya, N. V. & Fedorov, V. Y. (1992). Inorg. Chim. Acta, 192, 153-156.], 1993[Fedin, V. P., Mueller, A., Boege, H., Armatazh, A., Sokolov, M. N., Yarovoi, S. S. & Fedorov, V. E. (1993). Zh. Neorg. Khim. 38, 1677-1682.]; Lu et al., 1993[Lu, C.-Z., Tong, W., Zhuang, H.-H. & Wu, D.-M. (1993). Jiegou Huaxue, 12, 124-128.]; Wang et al., 1994[Wang, M.-F., Guo, G.-C., Huang, J.-S., Zhuang, H.-H., Zhang, Q.-E. & Lu, J.-X. (1994). Jiegou Huaxue, 13, 221-225.]; Mayor-López et al., 1998[Mayor-López, M. J., Weber, J., Hegetschweiler, K., Meienberger, M. D., Joho, F., Leoni, S., Nesper, R., Reiss, G. J., Frank, W., Kolesov, B. A., Fedin, V. P. & Fedorov, V. P. (1998). Inorg. Chem. 37, 2633-2644.]; Il'inchik et al., 2002[Il'inchik, E. A., Polyanskaya, T. M., Myakishev, K. G., Basova, T. V. & Kolesov, B. A. (2002). Russ. J. Gen. Chem. 72, 1862-1866.], 2007[Il'inchik, E. A., Polyanskaya, T. M. & Myakishev, K. G. (2007). Russ. J. Gen. Chem. 77, 1148-1154.]; Fontenot et al., 2019[Fontenot, P. R., Shan, B., Wang, B., Simpson, S., Ragunathan, G., Greene, A. F., Obanda, A., Hunt, L. A., Hammer, N. I., Webster, C. E., Mague, J. T., Schmehl, R. H. & Donahue, J. P. (2019). Inorg. Chem. 58, 16458-16474.]), in only one other instance (Fedin et al., 1993[Fedin, V. P., Mueller, A., Boege, H., Armatazh, A., Sokolov, M. N., Yarovoi, S. S. & Fedorov, V. E. (1993). Zh. Neorg. Khim. 38, 1677-1682.]) has the cluster cation been found on a threefold special position: [Mo3S7(S2CNEt2)3]I·1.5C6H6 in R[\overline{3}]c (space group No. 167). The 3,5-tBu2C6H3CH2 groups from each di­thio­carbamate ligand that are syn to the μ3-S2− ligand (carbon atoms C1–C16) define a right-handed propeller when the cation is viewed from its `top', or from the direction of the μ3-S2− ligand toward the Mo3 centroid (Fig. 1[link]). The remaining three 3,5-tBu2C6H3CH2 groups (C17–C31), one from each ligand, are situated just below the Mo3 plane and define a left-handed propeller.

[Figure 1]
Figure 1
Displacement ellipsoid plot of [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I at the 50% probability level with view along the threefold symmetry axis. All hydrogen atoms are omitted for clarity. tert-Butyl groups C13–C16 and C28–C31 are edited to show one of two positional variants in a split-atom model for the disorder. Symmetry codes: A = 1 − y, 1 + x − y, z; B = −x + y, 1 − x, z.

The occurrence of the trigonal space group for [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I is guided by hydro­phobic inter­actions among the tBu groups of adjoining (3,5-tBu2C6H3CH2)2NCS21– ligands from neighboring [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]+ cations (Fig. 2[link]). The dispersion forces between these numerous hydro­carbon groups enforce an arrangement of [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]+ cations into sheets in the ab plane and stacking of these cations, one upon another, along the c axis with a separation equal to the c-axis length of 10.9815 (6) Å between adjacent Mo3 triangles. Inter­ligand π-stacking inter­actions with the benzyl groups are not effectively made due to the encumbering steric profile of the tBu groups.

[Figure 2]
Figure 2
Cell packing diagram for the [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]+ cations showing the numerous inter­ligand hydro­phobic inter­actions. The view is down the c axis. All hydrogen atoms are omitted for clarity.

The I counteranion is positioned on the underside of the [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]+ cation opposite the μ3-S2− ligand (S5) (Fig. 3[link]). A pronounced soft, electrophilic character to the Saxial atoms (Fig. 3[link]) provides for close Sax⋯I contacts of 3.166 (2) Å, which are considerably below the sum of the van der Waals radii of the two atoms, 1.8 and 2.1 Å, respectively (Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.]). Other distinctive structural features of [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I are Mo—Seq bond lengths [2.4847 (16) Å] that are appreciably longer by ∼0.080 Å than the Mo—Sax [2.4056 (16) Å] bond lengths (Fig. 3[link]), a longer Mo—Sdi­thio­carbamate bond length for the sulfur atom that is anti to the μ3-S2− ligand [2.5123 (16) Å] compared to the one that is syn [2.4816 (17) Å], and near orthogonality between the Mo3 plane and the S2CN chelate of the di­thio­carbamate ligand. These parameters are quite similar to those observed in related compounds (Fontenot et al., 2019[Fontenot, P. R., Shan, B., Wang, B., Simpson, S., Ragunathan, G., Greene, A. F., Obanda, A., Hunt, L. A., Hammer, N. I., Webster, C. E., Mague, J. T., Schmehl, R. H. & Donahue, J. P. (2019). Inorg. Chem. 58, 16458-16474.]).

[Figure 3]
Figure 3
Side view of [Mo3S7(S2CN(CH2C6H3-3,5-tBu2)2)3]I (50% probability for the displacement ellipsoids) showing the proximity of the I anion to the Sax atoms of the μ2-S22− ligands.

In continuing work, we target the deliberate synthesis of hexa­molybdenum sulfide clusters by fusion of separate [Mo3S7]4+ and [Mo3S4]4+ fragments.

Synthesis and crystallization

[NH4]2[Mo3S13] and (3,5-tBu2–C6H3CH2)2NC(S)S–SC(S)N(CH2C6H3-3,5-tBu2)2 were reacted in a 1:3 ratio following a procedure detailed earlier (Fontenot et al., 2019[Fontenot, P. R., Shan, B., Wang, B., Simpson, S., Ragunathan, G., Greene, A. F., Obanda, A., Hunt, L. A., Hammer, N. I., Webster, C. E., Mague, J. T., Schmehl, R. H. & Donahue, J. P. (2019). Inorg. Chem. 58, 16458-16474.]). Crystallization was accomplished by layering MeOH onto a solution of the title compound in C6H6 and cooling the set-up to −20°C for 48 h.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The tert-butyl groups defined by C13–C16 and C28–C31 are disordered and were treated with independent, floating site occupancy variables that identified 0.687 (13):0.313 (13) and 0.623 (11):0.377 (11) optimal partitioning, respectively, for the two groups.

Table 1
Experimental details

Crystal data
Chemical formula [Mo3(C31H46NS2)3S7]I
Mr 2129.56
Crystal system, space group Trigonal, P31c
Temperature (K) 150
a, c (Å) 23.6627 (12), 10.9815 (6)
V3) 5325.0 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.38 × 0.16 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.799, 0.890
No. of measured, independent and observed [I > 2σ(I)] reflections 89878, 7810, 7053
Rint 0.043
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.06
No. of reflections 7810
No. of parameters 369
No. of restraints 35
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.54
Absolute structure Flack x determined using 3209 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.014 (8)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tris[N,N-bis(3,5-di-tert-butylbenzyl)dithiocarbamato-κ2S,S']-µ3-sulfido-tris-µ2-disulfido-triangulo-trimolybdenum(IV) iodide top
Crystal data top
[Mo3(C31H46NS2)3S7]IDx = 1.328 Mg m3
Mr = 2129.56Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 9927 reflections
a = 23.6627 (12) Åθ = 2.8–27.0°
c = 10.9815 (6) ŵ = 0.93 mm1
V = 5325.0 (6) Å3T = 150 K
Z = 2Column, yellow-orange
F(000) = 22080.38 × 0.16 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7810 independent reflections
Radiation source: fine-focus sealed tube7053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8.3333 pixels mm-1θmax = 27.1°, θmin = 1.7°
φ and ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 3030
Tmin = 0.799, Tmax = 0.890l = 1414
89878 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0543P)2 + 6.2404P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
7810 reflectionsΔρmax = 1.08 e Å3
369 parametersΔρmin = 0.54 e Å3
35 restraintsAbsolute structure: Flack x determined using 3209 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (8)
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 60 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.3333330.6666670.90377 (7)0.04082 (19)
Mo10.26950 (2)0.59847 (2)0.52052 (5)0.02818 (12)
S10.34151 (8)0.55022 (7)0.50720 (16)0.0357 (3)
S20.33840 (7)0.58992 (7)0.67175 (15)0.0319 (3)
S30.20057 (8)0.51946 (8)0.36144 (15)0.0376 (3)
S40.17377 (8)0.50221 (8)0.61825 (15)0.0367 (3)
S50.3333330.6666670.3562 (3)0.0324 (6)
N10.0983 (2)0.4120 (2)0.4549 (5)0.0313 (10)
C10.1493 (3)0.4695 (3)0.4762 (6)0.0329 (13)
C20.0818 (3)0.3809 (3)0.3340 (6)0.0349 (13)
H2A0.1066060.4139430.2707050.042*
H2B0.0347140.3628670.3180520.042*
C30.0980 (3)0.3270 (3)0.3274 (6)0.0359 (13)
C40.0558 (3)0.2684 (3)0.2686 (6)0.0387 (14)
H40.0158010.2621030.2362420.046*
C50.0710 (4)0.2194 (3)0.2564 (7)0.0448 (16)
C60.1312 (4)0.2316 (4)0.3071 (7)0.0500 (18)
H60.1434340.1992430.2979890.060*
C70.1722 (3)0.2870 (4)0.3679 (7)0.0490 (17)
C80.1555 (3)0.3358 (3)0.3757 (6)0.0409 (15)
H80.1843600.3758260.4150630.049*
C90.0279 (4)0.1560 (4)0.1908 (7)0.059 (2)
C100.0007 (7)0.1002 (5)0.2846 (11)0.158 (9)
H10A0.0287350.0587660.2429890.237*
H10B0.0349780.0980410.3257270.237*
H10C0.0263640.1082710.3448560.237*
C110.0264 (5)0.1557 (5)0.1227 (11)0.096 (4)
H11A0.0524210.1134490.0823520.144*
H11B0.0541240.1630120.1794410.144*
H11C0.0085840.1904950.0614910.144*
C120.0675 (6)0.1397 (6)0.1009 (11)0.108 (5)
H12A0.0384260.0984790.0596660.161*
H12B0.0882150.1747040.0403980.161*
H12C0.1012380.1356730.1453550.161*
C13A0.2382 (5)0.3013 (7)0.4211 (12)0.063 (3)0.687 (13)
C14A0.2939 (7)0.3563 (8)0.3491 (15)0.089 (5)0.687 (13)
H14A0.2910890.3433260.2636230.133*0.687 (13)
H14B0.2904580.3958480.3545800.133*0.687 (13)
H14C0.3358190.3650890.3830720.133*0.687 (13)
C15A0.2454 (9)0.2409 (8)0.4133 (18)0.114 (7)0.687 (13)
H15A0.2422880.2274030.3280660.171*0.687 (13)
H15B0.2878760.2509290.4463770.171*0.687 (13)
H15C0.2105610.2053880.4605660.171*0.687 (13)
C16A0.2430 (10)0.3218 (10)0.5527 (12)0.109 (9)0.687 (13)
H16A0.2074060.2867580.5993180.163*0.687 (13)
H16B0.2849640.3306170.5862540.163*0.687 (13)
H16C0.2396020.3613760.5577620.163*0.687 (13)
C13B0.2345 (10)0.2935 (16)0.426 (2)0.063 (3)0.313 (13)
C14B0.2834 (15)0.298 (2)0.330 (3)0.089 (5)0.313 (13)
H14D0.2630690.2581440.2796770.133*0.313 (13)
H14E0.2962540.3359550.2784450.133*0.313 (13)
H14F0.3220460.3014060.3704740.133*0.313 (13)
C15B0.2197 (17)0.2363 (18)0.510 (3)0.114 (7)0.313 (13)
H15D0.1975410.1955060.4637290.171*0.313 (13)
H15E0.2606380.2419050.5434130.171*0.313 (13)
H15F0.1915620.2348370.5768520.171*0.313 (13)
C16B0.269 (2)0.3560 (18)0.501 (4)0.109 (9)0.313 (13)
H16D0.2392410.3553620.5641610.163*0.313 (13)
H16E0.3077680.3592130.5398690.163*0.313 (13)
H16F0.2819760.3937620.4478410.163*0.313 (13)
C170.0557 (3)0.3703 (3)0.5544 (6)0.0347 (13)
H17A0.0748820.3906680.6337950.042*
H17B0.0529600.3272000.5512640.042*
C180.0116 (3)0.3613 (3)0.5439 (6)0.0342 (13)
C190.0634 (3)0.3013 (3)0.5099 (6)0.0332 (12)
H190.0564480.2655240.4967370.040*
C200.1259 (3)0.2928 (3)0.4947 (7)0.0412 (15)
C210.1349 (3)0.3460 (4)0.5215 (9)0.055 (2)
H210.1773920.3404900.5154710.066*
C220.0829 (4)0.4066 (3)0.5568 (11)0.066 (3)
C230.0215 (3)0.4128 (3)0.5669 (8)0.0485 (18)
H230.0145340.4536480.5901860.058*
C240.1834 (3)0.2258 (4)0.4600 (7)0.0456 (17)
C250.2046 (4)0.1810 (4)0.5663 (8)0.057 (2)
H25A0.2203520.1982090.6308690.085*
H25B0.1675450.1773730.5967360.085*
H25C0.2397140.1377790.5415740.085*
C260.2412 (4)0.2316 (5)0.4121 (9)0.065 (2)
H26A0.2723340.1908320.3716040.098*
H26B0.2253670.2677170.3538490.098*
H26C0.2627580.2399120.4802750.098*
C270.1633 (5)0.1952 (5)0.3569 (9)0.065 (2)
H27A0.1290550.1868340.3863170.097*
H27B0.1467080.2253650.2876300.097*
H27C0.2012200.1540790.3310810.097*
C28A0.0935 (6)0.4631 (6)0.6020 (13)0.067 (5)0.623 (11)
C29A0.0620 (8)0.4899 (8)0.7275 (13)0.093 (6)0.623 (11)
H29A0.0158270.5023990.7249290.139*0.623 (11)
H29B0.0658530.5282400.7476140.139*0.623 (11)
H29C0.0844410.4562220.7896490.139*0.623 (11)
C30A0.0590 (8)0.5175 (8)0.5091 (15)0.089 (6)0.623 (11)
H30A0.0131430.5289040.5027180.133*0.623 (11)
H30B0.0801660.5027160.4296080.133*0.623 (11)
H30C0.0613500.5558390.5351130.133*0.623 (11)
C31A0.1645 (6)0.4449 (10)0.6127 (17)0.075 (5)0.623 (11)
H31A0.1863930.4098480.6727070.113*0.623 (11)
H31B0.1671450.4831170.6389560.113*0.623 (11)
H31C0.1859620.4299940.5334510.113*0.623 (11)
C28B0.0926 (11)0.4657 (8)0.5325 (19)0.067 (5)0.377 (11)
C29B0.1503 (13)0.4527 (18)0.613 (2)0.093 (6)0.377 (11)
H29D0.1416020.4449730.6971970.139*0.377 (11)
H29E0.1565630.4906350.6114920.139*0.377 (11)
H29F0.1898230.4142130.5834650.139*0.377 (11)
C30B0.0323 (12)0.5275 (12)0.577 (3)0.089 (6)0.377 (11)
H30D0.0052060.5364020.5261470.133*0.377 (11)
H30E0.0401570.5643480.5727350.133*0.377 (11)
H30F0.0231740.5214080.6619020.133*0.377 (11)
C31B0.1068 (12)0.4775 (12)0.4032 (18)0.075 (5)0.377 (11)
H31D0.0699290.4859060.3505280.113*0.377 (11)
H31E0.1463720.4389870.3737040.113*0.377 (11)
H31F0.1131120.5154100.4017300.113*0.377 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0389 (3)0.0389 (3)0.0447 (4)0.01945 (13)0.0000.000
Mo10.0219 (2)0.0211 (2)0.0392 (3)0.00897 (19)0.0007 (2)0.0010 (2)
S10.0356 (8)0.0283 (7)0.0477 (9)0.0192 (7)0.0003 (6)0.0037 (6)
S20.0279 (7)0.0260 (7)0.0432 (8)0.0145 (6)0.0011 (6)0.0024 (6)
S30.0318 (8)0.0290 (7)0.0398 (8)0.0060 (6)0.0003 (6)0.0005 (6)
S40.0302 (7)0.0291 (7)0.0381 (8)0.0054 (6)0.0006 (6)0.0001 (6)
S50.0296 (8)0.0296 (8)0.0380 (13)0.0148 (4)0.0000.000
N10.025 (2)0.027 (2)0.037 (3)0.009 (2)0.002 (2)0.002 (2)
C10.025 (3)0.028 (3)0.043 (3)0.012 (2)0.001 (2)0.000 (2)
C20.032 (3)0.028 (3)0.041 (3)0.012 (3)0.004 (2)0.002 (2)
C30.039 (3)0.035 (3)0.035 (3)0.019 (3)0.002 (3)0.000 (2)
C40.042 (4)0.034 (3)0.042 (4)0.020 (3)0.002 (3)0.000 (3)
C50.060 (4)0.033 (3)0.045 (4)0.026 (3)0.005 (3)0.005 (3)
C60.060 (5)0.048 (4)0.058 (4)0.039 (4)0.009 (4)0.008 (3)
C70.047 (4)0.056 (5)0.055 (4)0.033 (4)0.005 (3)0.007 (3)
C80.038 (4)0.043 (4)0.045 (4)0.022 (3)0.001 (3)0.002 (3)
C90.086 (6)0.034 (4)0.053 (4)0.027 (4)0.003 (4)0.000 (3)
C100.22 (2)0.050 (7)0.097 (10)0.007 (9)0.010 (11)0.009 (7)
C110.090 (8)0.057 (6)0.135 (10)0.032 (6)0.033 (8)0.046 (7)
C120.130 (11)0.124 (11)0.109 (9)0.095 (10)0.030 (8)0.056 (8)
C13A0.062 (6)0.092 (8)0.061 (5)0.058 (6)0.005 (4)0.003 (5)
C14A0.044 (7)0.111 (12)0.104 (11)0.033 (9)0.007 (7)0.025 (11)
C15A0.101 (14)0.144 (16)0.145 (19)0.097 (14)0.031 (13)0.001 (16)
C16A0.115 (18)0.20 (3)0.081 (14)0.13 (2)0.037 (12)0.038 (13)
C13B0.062 (6)0.092 (8)0.061 (5)0.058 (6)0.005 (4)0.003 (5)
C14B0.044 (7)0.111 (12)0.104 (11)0.033 (9)0.007 (7)0.025 (11)
C15B0.101 (14)0.144 (16)0.145 (19)0.097 (14)0.031 (13)0.001 (16)
C16B0.115 (18)0.20 (3)0.081 (14)0.13 (2)0.037 (12)0.038 (13)
C170.030 (3)0.025 (3)0.044 (3)0.010 (2)0.001 (2)0.004 (2)
C180.028 (3)0.030 (3)0.044 (3)0.014 (3)0.002 (2)0.007 (3)
C190.026 (3)0.030 (3)0.044 (3)0.015 (3)0.002 (2)0.001 (2)
C200.028 (3)0.035 (3)0.056 (4)0.012 (3)0.007 (3)0.009 (3)
C210.025 (3)0.038 (4)0.100 (7)0.015 (3)0.001 (4)0.010 (4)
C220.040 (4)0.031 (4)0.134 (8)0.024 (3)0.004 (5)0.008 (4)
C230.029 (3)0.032 (3)0.079 (5)0.011 (3)0.001 (3)0.004 (3)
C240.023 (3)0.044 (4)0.062 (4)0.011 (3)0.006 (3)0.012 (3)
C250.049 (4)0.043 (4)0.057 (5)0.007 (4)0.005 (3)0.009 (3)
C260.037 (4)0.064 (5)0.077 (6)0.012 (4)0.016 (4)0.019 (4)
C270.053 (5)0.054 (5)0.067 (6)0.011 (4)0.008 (4)0.009 (4)
C28A0.052 (6)0.039 (5)0.123 (17)0.034 (5)0.009 (10)0.011 (9)
C29A0.084 (11)0.069 (9)0.144 (17)0.051 (9)0.014 (10)0.041 (10)
C30A0.096 (14)0.055 (8)0.131 (19)0.049 (10)0.012 (11)0.028 (11)
C31A0.091 (11)0.077 (10)0.095 (11)0.070 (10)0.027 (9)0.044 (8)
C28B0.052 (6)0.039 (5)0.123 (17)0.034 (5)0.009 (10)0.011 (9)
C29B0.084 (11)0.069 (9)0.144 (17)0.051 (9)0.014 (10)0.041 (10)
C30B0.096 (14)0.055 (8)0.131 (19)0.049 (10)0.012 (11)0.028 (11)
C31B0.091 (11)0.077 (10)0.095 (11)0.070 (10)0.027 (9)0.044 (8)
Geometric parameters (Å, º) top
I1—S23.1657 (17)C14B—H14E0.9800
Mo1—S52.389 (2)C14B—H14F0.9800
Mo1—S22.4056 (16)C15B—H15D0.9800
Mo1—S2i2.4096 (16)C15B—H15E0.9800
Mo1—S1i2.4801 (16)C15B—H15F0.9800
Mo1—S32.4816 (17)C16B—H16D0.9800
Mo1—S12.4847 (16)C16B—H16E0.9800
Mo1—S42.5123 (16)C16B—H16F0.9800
Mo1—Mo1ii2.7100 (8)C17—C181.501 (9)
Mo1—Mo1i2.7100 (8)C17—H17A0.9900
S1—S22.055 (2)C17—H17B0.9900
S3—C11.738 (7)C18—C231.375 (10)
S4—C11.708 (7)C18—C191.385 (9)
N1—C11.313 (8)C19—C201.399 (9)
N1—C21.472 (8)C19—H190.9500
N1—C171.479 (8)C20—C211.407 (11)
C2—C31.505 (9)C20—C241.535 (10)
C2—H2A0.9900C21—C221.399 (11)
C2—H2B0.9900C21—H210.9500
C3—C81.376 (10)C22—C231.391 (10)
C3—C41.397 (9)C22—C28A1.558 (11)
C4—C51.381 (9)C22—C28B1.548 (12)
C4—H40.9500C23—H230.9500
C5—C61.419 (11)C24—C251.486 (10)
C5—C91.510 (10)C24—C261.533 (10)
C6—C71.354 (11)C24—C271.542 (12)
C6—H60.9500C25—H25A0.9800
C7—C81.397 (10)C25—H25B0.9800
C7—C13A1.539 (11)C25—H25C0.9800
C7—C13B1.545 (13)C26—H26A0.9800
C8—H80.9500C26—H26B0.9800
C9—C111.483 (10)C26—H26C0.9800
C9—C101.540 (9)C27—H27A0.9800
C9—C121.538 (10)C27—H27B0.9800
C10—H10A0.9800C27—H27C0.9800
C10—H10B0.9800C28A—C31A1.518 (11)
C10—H10C0.9800C28A—C30A1.520 (11)
C11—H11A0.9800C28A—C29A1.544 (12)
C11—H11B0.9800C29A—H29A0.9800
C11—H11C0.9800C29A—H29B0.9800
C12—H12A0.9800C29A—H29C0.9800
C12—H12B0.9800C30A—H30A0.9800
C12—H12C0.9800C30A—H30B0.9800
C13A—C16A1.510 (12)C30A—H30C0.9800
C13A—C14A1.531 (12)C31A—H31A0.9800
C13A—C15A1.524 (12)C31A—H31B0.9800
C14A—H14A0.9800C31A—H31C0.9800
C14A—H14B0.9800C28B—C29B1.526 (13)
C14A—H14C0.9800C28B—C31B1.518 (13)
C15A—H15A0.9800C28B—C30B1.527 (13)
C15A—H15B0.9800C29B—H29D0.9800
C15A—H15C0.9800C29B—H29E0.9800
C16A—H16A0.9800C29B—H29F0.9800
C16A—H16B0.9800C30B—H30D0.9800
C16A—H16C0.9800C30B—H30E0.9800
C13B—C16B1.525 (14)C30B—H30F0.9800
C13B—C14B1.534 (14)C31B—H31D0.9800
C13B—C15B1.524 (14)C31B—H31E0.9800
C14B—H14D0.9800C31B—H31F0.9800
S5—Mo1—S2110.63 (5)H16A—C16A—H16B109.5
S5—Mo1—S2i110.49 (5)C13A—C16A—H16C109.5
S2—Mo1—S2i85.04 (8)H16A—C16A—H16C109.5
S5—Mo1—S1i85.44 (4)H16B—C16A—H16C109.5
S2—Mo1—S1i134.46 (6)C16B—C13B—C14B106.8 (12)
S2i—Mo1—S1i49.68 (6)C16B—C13B—C15B108.1 (12)
S5—Mo1—S386.13 (6)C14B—C13B—C15B107.7 (12)
S2—Mo1—S3129.83 (6)C16B—C13B—C7110 (2)
S2i—Mo1—S3134.34 (6)C14B—C13B—C7111.9 (19)
S1i—Mo1—S392.23 (6)C15B—C13B—C7112 (2)
S5—Mo1—S185.33 (4)C13B—C14B—H14D109.5
S2—Mo1—S149.66 (6)C13B—C14B—H14E109.5
S2i—Mo1—S1134.40 (6)H14D—C14B—H14E109.5
S1i—Mo1—S1170.77 (7)C13B—C14B—H14F109.5
S3—Mo1—S187.47 (6)H14D—C14B—H14F109.5
S5—Mo1—S4156.09 (6)H14E—C14B—H14F109.5
S2—Mo1—S488.32 (5)C13B—C15B—H15D109.5
S2i—Mo1—S484.78 (5)C13B—C15B—H15E109.5
S1i—Mo1—S491.49 (6)H15D—C15B—H15E109.5
S3—Mo1—S470.28 (5)C13B—C15B—H15F109.5
S1—Mo1—S497.08 (5)H15D—C15B—H15F109.5
S5—Mo1—Mo1ii55.44 (4)H15E—C15B—H15F109.5
S2—Mo1—Mo1ii55.82 (4)C13B—C16B—H16D109.5
S2i—Mo1—Mo1ii96.44 (4)C13B—C16B—H16E109.5
S1i—Mo1—Mo1ii116.88 (4)H16D—C16B—H16E109.5
S3—Mo1—Mo1ii126.34 (4)C13B—C16B—H16F109.5
S1—Mo1—Mo1ii56.84 (4)H16D—C16B—H16F109.5
S4—Mo1—Mo1ii143.68 (4)H16E—C16B—H16F109.5
S5—Mo1—Mo1i55.44 (4)N1—C17—C18111.0 (5)
S2—Mo1—Mo1i96.54 (4)N1—C17—H17A109.4
S2i—Mo1—Mo1i55.68 (4)C18—C17—H17A109.4
S1i—Mo1—Mo1i57.00 (4)N1—C17—H17B109.4
S3—Mo1—Mo1i129.44 (4)C18—C17—H17B109.4
S1—Mo1—Mo1i116.72 (4)H17A—C17—H17B108.0
S4—Mo1—Mo1i139.31 (4)C23—C18—C19120.2 (6)
Mo1ii—Mo1—Mo1i60.0C23—C18—C17119.9 (6)
S2—S1—Mo1ii63.38 (6)C19—C18—C17119.9 (6)
S2—S1—Mo163.17 (6)C18—C19—C20120.6 (6)
Mo1ii—S1—Mo166.16 (4)C18—C19—H19119.7
S1—S2—Mo167.17 (6)C20—C19—H19119.7
S1—S2—Mo1ii66.95 (6)C19—C20—C21117.9 (6)
Mo1—S2—Mo1ii68.50 (5)C19—C20—C24120.4 (6)
S1—S2—I1172.02 (8)C21—C20—C24121.5 (6)
Mo1—S2—I1106.60 (5)C20—C21—C22121.8 (7)
Mo1ii—S2—I1106.50 (5)C20—C21—H21119.1
C1—S3—Mo188.5 (2)C22—C21—H21119.1
C1—S4—Mo188.2 (2)C23—C22—C21117.8 (6)
Mo1i—S5—Mo169.12 (7)C23—C22—C28A119.4 (8)
Mo1i—S5—Mo1ii69.12 (7)C21—C22—C28A122.2 (8)
Mo1—S5—Mo1ii69.12 (7)C23—C22—C28B122.5 (10)
C1—N1—C2123.7 (5)C21—C22—C28B115.3 (11)
C1—N1—C17121.8 (5)C18—C23—C22121.6 (7)
C2—N1—C17114.3 (5)C18—C23—H23119.2
N1—C1—S4124.1 (5)C22—C23—H23119.2
N1—C1—S3122.9 (5)C25—C24—C20110.5 (6)
S4—C1—S3113.0 (3)C25—C24—C26109.7 (6)
N1—C2—C3110.6 (5)C20—C24—C26111.3 (7)
N1—C2—H2A109.5C25—C24—C27108.4 (7)
C3—C2—H2A109.5C20—C24—C27110.1 (6)
N1—C2—H2B109.5C26—C24—C27106.8 (7)
C3—C2—H2B109.5C24—C25—H25A109.5
H2A—C2—H2B108.1C24—C25—H25B109.5
C8—C3—C4119.4 (6)H25A—C25—H25B109.5
C8—C3—C2120.2 (6)C24—C25—H25C109.5
C4—C3—C2120.4 (6)H25A—C25—H25C109.5
C5—C4—C3121.4 (7)H25B—C25—H25C109.5
C5—C4—H4119.3C24—C26—H26A109.5
C3—C4—H4119.3C24—C26—H26B109.5
C4—C5—C6116.6 (7)H26A—C26—H26B109.5
C4—C5—C9123.4 (7)C24—C26—H26C109.5
C6—C5—C9120.0 (7)H26A—C26—H26C109.5
C7—C6—C5123.4 (7)H26B—C26—H26C109.5
C7—C6—H6118.3C24—C27—H27A109.5
C5—C6—H6118.3C24—C27—H27B109.5
C6—C7—C8118.0 (7)H27A—C27—H27B109.5
C6—C7—C13A123.8 (8)C24—C27—H27C109.5
C8—C7—C13A118.1 (8)H27A—C27—H27C109.5
C6—C7—C13B119.1 (14)H27B—C27—H27C109.5
C8—C7—C13B122.9 (14)C31A—C28A—C30A110.0 (9)
C3—C8—C7121.1 (6)C31A—C28A—C29A106.5 (10)
C3—C8—H8119.4C30A—C28A—C29A107.8 (10)
C7—C8—H8119.4C31A—C28A—C22114.3 (12)
C5—C9—C11113.5 (7)C30A—C28A—C22105.3 (10)
C5—C9—C10108.7 (7)C29A—C28A—C22112.7 (10)
C11—C9—C10109.0 (8)C28A—C29A—H29A109.5
C5—C9—C12111.2 (8)C28A—C29A—H29B109.5
C11—C9—C12108.1 (7)H29A—C29A—H29B109.5
C10—C9—C12106.0 (8)C28A—C29A—H29C109.5
C9—C10—H10A109.5H29A—C29A—H29C109.5
C9—C10—H10B109.5H29B—C29A—H29C109.5
H10A—C10—H10B109.5C28A—C30A—H30A109.5
C9—C10—H10C109.5C28A—C30A—H30B109.5
H10A—C10—H10C109.5H30A—C30A—H30B109.5
H10B—C10—H10C109.5C28A—C30A—H30C109.5
C9—C11—H11A109.5H30A—C30A—H30C109.5
C9—C11—H11B109.5H30B—C30A—H30C109.5
H11A—C11—H11B109.5C28A—C31A—H31A109.5
C9—C11—H11C109.5C28A—C31A—H31B109.5
H11A—C11—H11C109.5H31A—C31A—H31B109.5
H11B—C11—H11C109.5C28A—C31A—H31C109.5
C9—C12—H12A109.5H31A—C31A—H31C109.5
C9—C12—H12B109.5H31B—C31A—H31C109.5
H12A—C12—H12B109.5C29B—C28B—C31B108.9 (12)
C9—C12—H12C109.5C29B—C28B—C30B108.6 (12)
H12A—C12—H12C109.5C31B—C28B—C30B108.1 (11)
H12B—C12—H12C109.5C29B—C28B—C22104 (2)
C16A—C13A—C14A109.0 (10)C31B—C28B—C22118.3 (15)
C16A—C13A—C15A109.3 (10)C30B—C28B—C22108.7 (16)
C14A—C13A—C15A108.5 (10)C28B—C29B—H29D109.5
C16A—C13A—C7109.8 (11)C28B—C29B—H29E109.5
C14A—C13A—C7109.7 (10)H29D—C29B—H29E109.5
C15A—C13A—C7110.5 (11)C28B—C29B—H29F109.5
C13A—C14A—H14A109.5H29D—C29B—H29F109.5
C13A—C14A—H14B109.5H29E—C29B—H29F109.5
H14A—C14A—H14B109.5C28B—C30B—H30D109.5
C13A—C14A—H14C109.5C28B—C30B—H30E109.5
H14A—C14A—H14C109.5H30D—C30B—H30E109.5
H14B—C14A—H14C109.5C28B—C30B—H30F109.5
C13A—C15A—H15A109.5H30D—C30B—H30F109.5
C13A—C15A—H15B109.5H30E—C30B—H30F109.5
H15A—C15A—H15B109.5C28B—C31B—H31D109.5
C13A—C15A—H15C109.5C28B—C31B—H31E109.5
H15A—C15A—H15C109.5H31D—C31B—H31E109.5
H15B—C15A—H15C109.5C28B—C31B—H31F109.5
C13A—C16A—H16A109.5H31D—C31B—H31F109.5
C13A—C16A—H16B109.5H31E—C31B—H31F109.5
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z.
 

Acknowledgements

This work was supported in part by the NSF (DMR 1460637). The Louisiana Board of Regents is thanked for enhancement grant LEQSF–(2002–03)–ENH–TR–67 with which Tulane University's Bruker SMART APEX CCD X-ray diffractometer was purchased. Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. DMR 1460637); Louisiana Board of Regents (grant No. LEQSF-(2002-03)-ENH-TR-67).

References

First citationBatsanov, S. S. (2001). Inorg. Mater. 37, 871–885.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFedin, V. P., Mueller, A., Boege, H., Armatazh, A., Sokolov, M. N., Yarovoi, S. S. & Fedorov, V. E. (1993). Zh. Neorg. Khim. 38, 1677–1682.  CAS Google Scholar
First citationFedin, V. P., Sokolov, M. N., Geras'ko, O. A., Virovets, A. V., Podberezskaya, N. V. & Fedorov, V. Y. (1992). Inorg. Chim. Acta, 192, 153–156.  CSD CrossRef CAS Web of Science Google Scholar
First citationFontenot, P. R., Shan, B., Wang, B., Simpson, S., Ragunathan, G., Greene, A. F., Obanda, A., Hunt, L. A., Hammer, N. I., Webster, C. E., Mague, J. T., Schmehl, R. H. & Donahue, J. P. (2019). Inorg. Chem. 58, 16458–16474.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIl'inchik, E. A., Polyanskaya, T. M., Myakishev, K. G., Basova, T. V. & Kolesov, B. A. (2002). Russ. J. Gen. Chem. 72, 1862–1866.  CAS Google Scholar
First citationIl'inchik, E. A., Polyanskaya, T. M. & Myakishev, K. G. (2007). Russ. J. Gen. Chem. 77, 1148–1154.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLu, C.-Z., Tong, W., Zhuang, H.-H. & Wu, D.-M. (1993). Jiegou Huaxue, 12, 124–128.  CAS Google Scholar
First citationMayor-López, M. J., Weber, J., Hegetschweiler, K., Meienberger, M. D., Joho, F., Leoni, S., Nesper, R., Reiss, G. J., Frank, W., Kolesov, B. A., Fedin, V. P. & Fedorov, V. P. (1998). Inorg. Chem. 37, 2633–2644.  Web of Science PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, M.-F., Guo, G.-C., Huang, J.-S., Zhuang, H.-H., Zhang, Q.-E. & Lu, J.-X. (1994). Jiegou Huaxue, 13, 221–225.  CAS Google Scholar
First citationZimmermann, H., Hegetschweiler, K., Keller, T., Gramlich, V., Schmalle, H. W., Petter, W. & Schneider, W. (1991). Inorg. Chem. 30, 4336–4341.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds