metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[5,10,15,20-Tetra­kis­(penta­fluoro­phen­yl)porphyrin­ato]zinc(II) benzene disolvate

CROSSMARK_Color_square_no_text.svg

aCollege of Materials Science and Opto-electronic Technology, CAS Center for Excellence in Topological Quantum Computation & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
*Correspondence e-mail: jfli@ucas.ac.cn

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 6 June 2020; accepted 30 June 2020; online 10 July 2020)

Single crystals of the title zinc porphyrinato complex, [Zn(C44H8F20N4)]·2C6H6, were obtained by the solvent evaporation method. The molecular complex exhibits point group symmetry [\overline1] with the central ZnII atom located on an inversion centre. The porphyrinato core is approximately planar, and the cation has no other ligating atoms than the four porphyrinato N atoms. ππ inter­actions between benzene solvent mol­ecules and [Zn(TFPP)] units lead to multilayer packing structures. In addition, inter­molecular C—H⋯F hydrogen bonding is observed between [Zn(TFPP)] mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metalloporphyrin derivatives have been investigated extensively, not only as heme models but also as functional building blocks of mol­ecular materials and devices. Zinc porphyrins have been employed as photosensitizers (Liu et al., 2006[Liu, X., Yeow, E. K. L., Velate, S. & Steer, R. P. (2006). Phys. Chem. Chem. Phys. 8, 1298-1309.]) and chemical sensors (Wu et al., 2016[Wu, Y., Ma, P., Liu, S. & Chen, Y. (2016). New J. Chem. 40, 3323-3329.]) because of their good photoelectronic and chemical stabilities. In 1995, Gray and co-workers published the first zinc porphyrin crystal structure, (5,10,15,20-tetra­kis­(penta­fluoro­phen­yl)porphyrinato)zinc(II) n-hexane solvate, which crystallizes in the space group P21/c and shows a planar conformation of the porphyrin ligand (Birnbaum et al., 1995[Birnbaum, E. R., Hodge, J. A., Grinstaff, M. W., Schaefer, W. P., Henling, L., Labinger, J. A., Bercaw, J. E. & Gray, H. B. (1995). Inorg. Chem. 34, 3625-3632.]). In this work, a new zinc penta­fluoro­phenyl-porphyrin crystal structure, [Zn(TFPP)]·2C6H6 (TFPP is the tetrakis(penta­fluor­phenyl)porphyrinato ligand), is reported.

The mol­ecular entities of the title compound are shown in Fig. 1[link]. The structural features of the current complex are similar to those of the previously reported [Zn(TFPP)] n-hexane solvate (Birnbaum et al., 1995[Birnbaum, E. R., Hodge, J. A., Grinstaff, M. W., Schaefer, W. P., Henling, L., Labinger, J. A., Bercaw, J. E. & Gray, H. B. (1995). Inorg. Chem. 34, 3625-3632.]). As can be seen, the porphyrinato core is approximately planar (r.m.s. deviation = 0.03 Å). Two benzene solvent mol­ecules are found besides the [Zn(TFPP)] units. One of them is found to be disordered (CS1–CS6) over two positions. ππ stacking inter­actions are observed between the disordered benzene mol­ecules and [Zn(TFPP)] moieties, as illustrated in Fig. 2[link]. The distance between the centroid of the benzene ring (Xcent) and the porphyrinato plane is 3.098 Å, which is consistent with the reported values for related complexes (about 3.33–3.45 Å; Uno et al., 2003[Uno, H., Masumoto, A. & Ono, N. (2003). J. Am. Chem. Soc. 125, 12082-12083.]).

[Figure 1]
Figure 1
ORTEP diagram of the mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Only one orientation of the disordered solvent benzene mol­ecule (CS1–CS6) is shown. H atoms are omitted for clarity.
[Figure 2]
Figure 2
Schematic illustration of ππ stacking in the crystal structure of the title compound showing the distance between the centroid of benzene ring (Xcent) and the porphyrinato plane.

Inter­molecular non-bonding inter­actions are also found for the title compound. As given in Fig. 3[link] and Table 1[link], the distance between CB3 and F4, HB3 and F4 are 3.276 and 2.36 Å, respectively, being consistent with C–H⋯F hydrogen bonds (3.455 and 2.53 Å, respectively; Thamotharan et al., 2003[Thamotharan, S., Parthasarathi, V., Gupta, R., Jindal, D. P. & Linden, A. (2003). Acta Cryst. C59, o724-o726.]). The packing pattern of the title compound is shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
CB3—HB3⋯F4i 0.95 2.36 3.276 (2) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
C—H⋯F hydrogen bonds in the crystal structure of the title compound.
[Figure 4]
Figure 4
A view of the packing pattern of the title compound with the unit cell indicated by orange lines. H atoms are omitted for clarity.

Synthesis and crystallization

General Information. All operations were accomplished by standard Schlenk techniques unless otherwise specified. Benzene, which was used for crystallization of the final products, was washed with concentrated sulfuric acid and then with sodium bicarbonate solution at least three times, dried with anhydrous magnesium sulfate and distilled with calcium hydride, sodium and di­phenyl­ketone, sequentially under argon atmosphere. The precursor compound H2(TFPP) was synthesized by the method reported by Lindsey et al. (1987[Lindsey, J. S., Schreiman, I. C., Hsu, H. C., Kearney, P. C. & Marguerettaz, A. M. (1987). J. Org. Chem. 52, 827-836.]).

Synthesis of [5,10,15,20-tetra­kis­(penta­fluoro­phen­yl)porphyrinato]zinc(II) benzene disolvate

H2(TFPP) (500 mg, 0.51 mmol) and Zn(Ac)2·2H2O (2.25 g, 10.26 mmol) were dissolved in 250 ml of CH3OH and 250 ml of CHCl3. After the solution had been transferred to a conical flask (1000 ml), it was refluxed under stirring for 4 h under argon. The raw products were washed with deionized water to remove the remaining zinc salts. The organic phases were dried and purified by column chromatography using silica and eluting the product with hexa­ne/di­chloro­methane (2:1). Red–pink [Zn(TFPP)] powder (yield 489 mg, 0.47 mmol, 91.8%), was obtained after solvent evaporation. Red single crystals of the title compound were grown by slow solvent evaporation of a solution of the title compound in freshly distilled benzene at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A solvent benzene mol­ecule is observed to be disordered over two positions of equal occupancy (CS1–CS6). These atoms and corresponding bonds were restrained by ISOR and RIGU commands, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C44H8F20N4)]·2C6H6
Mr 1194.13
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 34.176 (7), 6.3699 (13), 26.382 (5)
β (°) 123.428 (6)
V3) 4793.4 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.42 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker D8 QUEST System
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.656, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22042, 5287, 4369
Rint 0.044
(sin θ/λ)max−1) 0.645
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.119, 0.91
No. of reflections 5287
No. of parameters 367
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT2014/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: enCIFer (Allen et al., 2004).

[5,10,15,20-Tetrakis(pentafluorophenyl)porphyrinato]zinc(II) benzene disolvate top
Crystal data top
[Zn(C44H8F20N4)]·2C6H6F(000) = 2376
Mr = 1194.13Dx = 1.655 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 34.176 (7) ÅCell parameters from 9674 reflections
b = 6.3699 (13) Åθ = 2.9–27.1°
c = 26.382 (5) ŵ = 0.64 mm1
β = 123.428 (6)°T = 100 K
V = 4793.4 (17) Å3Block, red
Z = 40.42 × 0.14 × 0.12 mm
Data collection top
Bruker D8 QUEST System
diffractometer
4369 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
f\ and ω scansθmax = 27.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 4243
Tmin = 0.656, Tmax = 0.746k = 88
22042 measured reflectionsl = 3333
5287 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
5287 reflectionsΔρmax = 0.38 e Å3
367 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All of hydrogen atoms were placed in calculated positions (C–H = 0.95 Å for aryl hydrogen atoms) and were refined using a riding model with fixed isotropic displacement parameters of Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.0000000.5000000.0000000.01507 (8)
F10.12626 (4)0.03956 (18)0.20870 (5)0.0382 (3)
F20.20705 (5)0.0107 (2)0.31796 (6)0.0552 (4)
F30.27217 (4)0.2974 (2)0.36575 (5)0.0529 (4)
F40.25736 (4)0.6539 (2)0.30139 (5)0.0505 (4)
F50.17700 (4)0.70796 (18)0.19275 (5)0.0360 (3)
F60.04641 (5)0.0847 (2)0.14163 (6)0.0527 (3)
F70.09198 (7)0.0230 (3)0.19701 (7)0.0770 (5)
F80.15178 (5)0.3220 (3)0.18992 (7)0.0782 (6)
F90.16562 (5)0.6763 (3)0.12718 (7)0.0732 (5)
F100.12069 (5)0.7385 (2)0.07077 (6)0.0499 (3)
N10.01956 (5)0.4839 (2)0.08851 (6)0.0164 (3)
N20.06745 (5)0.4424 (2)0.02711 (6)0.0171 (3)
C10.14878 (6)0.3755 (3)0.19688 (7)0.0203 (3)
C20.15802 (6)0.1941 (3)0.23036 (8)0.0268 (4)
C30.19933 (7)0.1660 (3)0.28668 (8)0.0341 (5)
C40.23254 (6)0.3214 (4)0.31069 (7)0.0341 (5)
C50.22491 (6)0.5017 (3)0.27841 (8)0.0323 (4)
C60.18339 (6)0.5273 (3)0.22238 (8)0.0250 (4)
C70.08204 (6)0.4135 (3)0.10438 (8)0.0280 (4)
C80.07564 (7)0.2338 (4)0.13712 (9)0.0373 (5)
C90.09912 (9)0.2002 (4)0.16577 (10)0.0505 (7)
C100.12929 (8)0.3496 (5)0.16194 (10)0.0525 (7)
C110.13627 (8)0.5295 (4)0.13032 (10)0.0488 (7)
C120.11267 (7)0.5597 (4)0.10180 (9)0.0365 (5)
C(A10.00926 (6)0.5061 (3)0.10911 (7)0.0196 (3)
C(A20.06336 (6)0.4409 (3)0.13817 (7)0.0179 (3)
C(A30.10493 (6)0.4068 (3)0.08512 (7)0.0194 (3)
C(A40.08383 (6)0.4208 (3)0.00964 (7)0.0212 (3)
C(B10.01740 (6)0.4734 (3)0.17401 (7)0.0279 (4)
H(B10.0056860.4788690.1993340.034*
C(B20.06203 (6)0.4336 (3)0.19194 (7)0.0259 (4)
H(B20.0876860.4060870.2322320.031*
C(B30.14611 (6)0.3610 (3)0.08474 (8)0.0290 (4)
H(B30.1765940.3309890.1190560.035*
C(B40.13301 (6)0.3690 (3)0.02628 (8)0.0305 (4)
H(B40.1525110.3450890.0115820.037*
C(M10.10343 (5)0.4091 (3)0.13702 (7)0.0178 (3)
C(M20.05699 (6)0.4455 (3)0.07278 (7)0.0219 (4)
C(S10.0408 (4)0.950 (2)0.0123 (6)0.061 (2)0.5
H(S10.0634030.9190400.0215080.073*0.5
C(S20.0044 (4)1.008 (2)0.0588 (6)0.051 (2)0.5
H(S20.0121831.0134460.0993680.061*0.5
C(S30.0380 (3)1.0566 (19)0.0472 (5)0.044 (2)0.5
H(S30.0686341.0986030.0789450.053*0.5
C(S70.23680 (11)0.9084 (5)0.45930 (12)0.0655 (8)
H(S70.2274371.0204890.4311410.079*
C(S80.25387 (8)0.7307 (5)0.45095 (10)0.0526 (6)
H(S80.2565390.7173650.4171070.063*
C(S90.26728 (10)0.5702 (5)0.49140 (12)0.0621 (7)
H(S90.2793760.4441780.4859160.075*
C(S40.0252 (4)1.042 (2)0.0146 (6)0.056 (2)0.5
H(S40.0472271.0734300.0246830.067*0.5
C(S50.0196 (4)0.981 (2)0.0585 (6)0.055 (3)0.5
H(S50.0282850.9684000.0993030.066*0.5
C(S60.0526 (4)0.938 (2)0.0447 (6)0.059 (3)0.5
H(S60.0836460.9004160.0760630.071*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01178 (13)0.01950 (14)0.01282 (12)0.00114 (10)0.00607 (10)0.00089 (10)
F10.0328 (6)0.0353 (7)0.0349 (6)0.0018 (5)0.0113 (5)0.0102 (5)
F20.0484 (8)0.0659 (9)0.0353 (7)0.0174 (7)0.0130 (6)0.0308 (6)
F30.0218 (6)0.1041 (11)0.0158 (5)0.0120 (7)0.0003 (5)0.0052 (6)
F40.0253 (6)0.0807 (10)0.0319 (6)0.0229 (6)0.0070 (5)0.0161 (6)
F50.0313 (6)0.0373 (6)0.0319 (6)0.0102 (5)0.0126 (5)0.0000 (5)
F60.0606 (9)0.0553 (8)0.0539 (8)0.0003 (7)0.0390 (7)0.0154 (7)
F70.0994 (14)0.0922 (13)0.0626 (10)0.0365 (10)0.0592 (10)0.0045 (8)
F80.0732 (11)0.1355 (15)0.0649 (9)0.0625 (10)0.0627 (9)0.0491 (10)
F90.0530 (9)0.1079 (13)0.0862 (11)0.0131 (9)0.0558 (9)0.0405 (10)
F100.0426 (8)0.0614 (9)0.0549 (8)0.0066 (6)0.0326 (7)0.0057 (7)
N10.0126 (6)0.0205 (7)0.0149 (6)0.0002 (5)0.0068 (5)0.0004 (5)
N20.0126 (7)0.0224 (7)0.0141 (6)0.0013 (5)0.0061 (5)0.0019 (5)
C10.0142 (8)0.0306 (9)0.0158 (7)0.0029 (7)0.0080 (6)0.0012 (6)
C20.0200 (9)0.0366 (11)0.0218 (8)0.0025 (8)0.0103 (7)0.0040 (7)
C30.0278 (10)0.0502 (12)0.0220 (9)0.0134 (9)0.0122 (8)0.0140 (8)
C40.0142 (9)0.0689 (15)0.0126 (8)0.0074 (9)0.0032 (7)0.0016 (8)
C50.0152 (8)0.0577 (13)0.0211 (8)0.0088 (9)0.0083 (7)0.0105 (9)
C60.0178 (8)0.0373 (11)0.0191 (8)0.0011 (7)0.0095 (7)0.0007 (7)
C70.0191 (9)0.0490 (11)0.0184 (8)0.0120 (8)0.0118 (7)0.0094 (8)
C80.0342 (11)0.0547 (13)0.0280 (10)0.0143 (10)0.0203 (9)0.0055 (9)
C90.0555 (15)0.0727 (17)0.0333 (11)0.0347 (13)0.0308 (11)0.0130 (11)
C100.0469 (14)0.091 (2)0.0399 (12)0.0413 (14)0.0370 (12)0.0326 (13)
C110.0287 (11)0.0841 (19)0.0445 (12)0.0188 (11)0.0272 (10)0.0344 (13)
C120.0265 (10)0.0562 (14)0.0299 (10)0.0113 (9)0.0175 (9)0.0131 (9)
C(A10.0176 (8)0.0261 (9)0.0158 (7)0.0002 (7)0.0096 (6)0.0002 (6)
C(A20.0152 (8)0.0211 (8)0.0146 (7)0.0011 (6)0.0064 (6)0.0009 (6)
C(A30.0146 (8)0.0232 (9)0.0174 (7)0.0020 (7)0.0070 (6)0.0022 (6)
C(A40.0170 (8)0.0288 (9)0.0192 (8)0.0039 (7)0.0108 (7)0.0027 (7)
C(B10.0203 (9)0.0476 (12)0.0167 (8)0.0051 (8)0.0106 (7)0.0024 (7)
C(B20.0188 (9)0.0414 (10)0.0144 (8)0.0024 (8)0.0072 (7)0.0009 (7)
C(B30.0157 (9)0.0482 (12)0.0207 (8)0.0095 (8)0.0084 (7)0.0069 (8)
C(B40.0193 (9)0.0510 (12)0.0230 (9)0.0111 (8)0.0130 (8)0.0067 (8)
C(M10.0140 (8)0.0208 (8)0.0146 (7)0.0006 (6)0.0053 (6)0.0007 (6)
C(M20.0179 (8)0.0319 (10)0.0185 (8)0.0029 (7)0.0117 (7)0.0021 (7)
C(S10.067 (5)0.021 (3)0.084 (4)0.005 (4)0.035 (4)0.009 (3)
C(S20.065 (5)0.022 (3)0.058 (4)0.010 (4)0.030 (4)0.009 (3)
C(S30.048 (5)0.019 (3)0.056 (3)0.010 (4)0.022 (3)0.001 (2)
C(S70.075 (2)0.0692 (19)0.0419 (14)0.0035 (16)0.0254 (14)0.0182 (13)
C(S80.0390 (13)0.082 (2)0.0325 (11)0.0139 (13)0.0172 (10)0.0024 (12)
C(S90.0566 (17)0.0699 (18)0.0503 (15)0.0061 (14)0.0235 (13)0.0037 (13)
C(S40.065 (5)0.026 (4)0.072 (4)0.014 (4)0.035 (4)0.007 (3)
C(S50.066 (6)0.023 (4)0.059 (4)0.009 (5)0.024 (4)0.000 (3)
C(S60.062 (5)0.024 (3)0.071 (4)0.010 (4)0.023 (4)0.006 (3)
Geometric parameters (Å, º) top
Zn1—N12.0470 (13)C(A1—C(B11.444 (2)
Zn1—N1i2.0469 (13)C(A1—C(M2i1.397 (2)
Zn1—N2i2.0355 (14)C(A2—C(B21.445 (2)
Zn1—N22.0354 (14)C(A2—C(M11.401 (2)
F1—C21.338 (2)C(A3—C(B31.443 (2)
F2—C31.333 (2)C(A3—C(M11.398 (2)
F3—C41.342 (2)C(A4—C(B41.441 (2)
F4—C51.340 (2)C(A4—C(M21.399 (2)
F5—C61.340 (2)C(B1—H(B10.9500
F6—C81.336 (3)C(B1—C(B21.349 (3)
F7—C91.338 (3)C(B2—H(B20.9500
F8—C101.338 (2)C(B3—H(B30.9500
F9—C111.340 (3)C(B3—C(B41.350 (2)
F10—C121.340 (3)C(B4—H(B40.9500
N1—C(A11.370 (2)C(S1—H(S10.9500
N1—C(A21.368 (2)C(S1—C(S21.390 (13)
N2—C(A31.369 (2)C(S1—C(S61.327 (16)
N2—C(A41.368 (2)C(S2—H(S20.9500
C1—C21.381 (2)C(S2—C(S31.378 (11)
C1—C61.382 (2)C(S3—H(S30.9500
C1—C(M11.498 (2)C(S3—C(S41.438 (15)
C2—C31.386 (2)C(S7—H(S70.9500
C3—C41.370 (3)C(S7—C(S81.345 (4)
C4—C51.367 (3)C(S7—C(S9ii1.389 (4)
C5—C61.383 (2)C(S8—H(S80.9500
C7—C81.376 (3)C(S8—C(S91.362 (4)
C7—C121.375 (3)C(S9—H(S90.9500
C7—C(M21.502 (2)C(S4—H(S40.9500
C8—C91.389 (3)C(S4—C(S51.371 (14)
C9—C101.366 (4)C(S5—H(S50.9500
C10—C111.359 (4)C(S5—C(S61.390 (12)
C11—C121.386 (3)C(S6—H(S60.9500
N1i—Zn1—N1180.0C(M1—C(A2—C(B2125.19 (15)
N2i—Zn1—N1i89.73 (5)N2—C(A3—C(B3109.96 (14)
N2i—Zn1—N190.27 (5)N2—C(A3—C(M1125.19 (15)
N2—Zn1—N189.73 (5)C(M1—C(A3—C(B3124.83 (15)
N2—Zn1—N1i90.27 (5)N2—C(A4—C(B4109.97 (14)
N2—Zn1—N2i180.0N2—C(A4—C(M2125.22 (15)
C(A1—N1—Zn1126.40 (10)C(M2—C(A4—C(B4124.81 (15)
C(A2—N1—Zn1126.86 (10)C(A1—C(B1—H(B1126.4
C(A2—N1—C(A1106.70 (12)C(B2—C(B1—C(A1107.21 (15)
C(A3—N2—Zn1127.14 (11)C(B2—C(B1—H(B1126.4
C(A4—N2—Zn1126.56 (11)C(A2—C(B2—H(B2126.6
C(A4—N2—C(A3106.22 (13)C(B1—C(B2—C(A2106.90 (14)
C2—C1—C6116.16 (15)C(B1—C(B2—H(B2126.6
C2—C1—C(M1122.19 (15)C(A3—C(B3—H(B3126.6
C6—C1—C(M1121.64 (15)C(B4—C(B3—C(A3106.83 (15)
F1—C2—C1119.77 (15)C(B4—C(B3—H(B3126.6
F1—C2—C3118.04 (16)C(A4—C(B4—H(B4126.5
C1—C2—C3122.19 (17)C(B3—C(B4—C(A4107.01 (15)
F2—C3—C2120.67 (19)C(B3—C(B4—H(B4126.5
F2—C3—C4119.50 (17)C(A2—C(M1—C1116.98 (14)
C4—C3—C2119.82 (18)C(A3—C(M1—C1117.13 (14)
F3—C4—C3120.24 (19)C(A3—C(M1—C(A2125.90 (14)
F3—C4—C5120.15 (19)C(A1i—C(M2—C7117.14 (14)
C5—C4—C3119.61 (16)C(A1i—C(M2—C(A4126.41 (15)
F4—C5—C4119.98 (17)C(A4—C(M2—C7116.44 (15)
F4—C5—C6120.29 (18)C(S2—C(S1—H(S1119.6
C4—C5—C6119.72 (17)C(S6—C(S1—H(S1119.6
F5—C6—C1119.74 (15)C(S6—C(S1—C(S2120.8 (10)
F5—C6—C5117.77 (16)C(S1—C(S2—H(S2119.3
C1—C6—C5122.49 (17)C(S3—C(S2—C(S1121.3 (10)
C8—C7—C(M2121.29 (18)C(S3—C(S2—H(S2119.3
C12—C7—C8116.60 (17)C(S2—C(S3—H(S3121.1
C12—C7—C(M2122.11 (18)C(S2—C(S3—C(S4117.7 (9)
F6—C8—C7119.98 (16)C(S4—C(S3—H(S3121.1
F6—C8—C9118.0 (2)C(S8—C(S7—H(S7119.6
C7—C8—C9122.0 (2)C(S8—C(S7—C(S9ii120.8 (3)
F7—C9—C8120.1 (2)C(S9ii—C(S7—H(S7119.6
F7—C9—C10120.5 (2)C(S7—C(S8—H(S8120.3
C10—C9—C8119.4 (2)C(S7—C(S8—C(S9119.5 (2)
F8—C10—C9120.5 (3)C(S9—C(S8—H(S8120.3
F8—C10—C11119.3 (3)C(S7ii—C(S9—H(S9120.1
C11—C10—C9120.21 (19)C(S8—C(S9—C(S7ii119.7 (3)
F9—C11—C10119.9 (2)C(S8—C(S9—H(S9120.1
F9—C11—C12120.6 (3)C(S3—C(S4—H(S4120.7
C10—C11—C12119.5 (2)C(S5—C(S4—C(S3118.6 (8)
F10—C12—C7120.01 (17)C(S5—C(S4—H(S4120.7
F10—C12—C11117.7 (2)C(S4—C(S5—H(S5119.3
C7—C12—C11122.3 (2)C(S4—C(S5—C(S6121.5 (11)
N1—C(A1—C(B1109.49 (14)C(S6—C(S5—H(S5119.3
N1—C(A1—C(M2i125.00 (14)C(S1—C(S6—C(S5120.1 (11)
C(M2i—C(A1—C(B1125.51 (15)C(S1—C(S6—H(S6119.9
N1—C(A2—C(B2109.69 (14)C(S5—C(S6—H(S6119.9
N1—C(A2—C(M1125.11 (14)
Zn1—N1—C(A1—C(B1177.00 (11)C7—C8—C9—C100.5 (3)
Zn1—N1—C(A1—C(M2i3.4 (2)C8—C7—C12—F10179.99 (17)
Zn1—N1—C(A2—C(B2177.07 (11)C8—C7—C12—C110.2 (3)
Zn1—N1—C(A2—C(M13.0 (2)C8—C7—C(M2—C(A1i74.3 (2)
Zn1—N2—C(A3—C(B3176.82 (12)C8—C7—C(M2—C(A4104.8 (2)
Zn1—N2—C(A3—C(M11.7 (2)C8—C9—C10—F8179.00 (18)
Zn1—N2—C(A4—C(B4176.65 (12)C8—C9—C10—C110.0 (3)
Zn1—N2—C(A4—C(M23.5 (3)C9—C10—C11—F9179.4 (2)
F1—C2—C3—F20.3 (3)C9—C10—C11—C120.3 (3)
F1—C2—C3—C4179.38 (17)C10—C11—C12—F10179.60 (19)
F2—C3—C4—F31.2 (3)C10—C11—C12—C70.2 (3)
F2—C3—C4—C5179.30 (17)C12—C7—C8—F6179.98 (18)
F3—C4—C5—F40.9 (3)C12—C7—C8—C90.5 (3)
F3—C4—C5—C6178.28 (16)C12—C7—C(M2—C(A1i106.3 (2)
F4—C5—C6—F50.4 (3)C12—C7—C(M2—C(A474.6 (2)
F4—C5—C6—C1179.69 (16)C(A1—N1—C(A2—C(B20.59 (18)
F6—C8—C9—F70.4 (3)C(A1—N1—C(A2—C(M1179.32 (16)
F6—C8—C9—C10179.91 (19)C(A1—C(B1—C(B2—C(A20.1 (2)
F7—C9—C10—F80.7 (3)C(A2—N1—C(A1—C(B10.67 (18)
F7—C9—C10—C11179.8 (2)C(A2—N1—C(A1—C(M2i178.91 (17)
F8—C10—C11—F90.4 (3)C(A3—N2—C(A4—C(B40.3 (2)
F8—C10—C11—C12179.32 (18)C(A3—N2—C(A4—C(M2179.58 (17)
F9—C11—C12—F100.7 (3)C(A3—C(B3—C(B4—C(A40.3 (2)
F9—C11—C12—C7179.52 (18)C(A4—N2—C(A3—C(B30.10 (19)
N1—C(A1—C(B1—C(B20.5 (2)C(A4—N2—C(A3—C(M1178.62 (17)
N1—C(A2—C(B2—C(B10.3 (2)C(B2—C(A2—C(M1—C13.2 (3)
N1—C(A2—C(M1—C1176.69 (15)C(B2—C(A2—C(M1—C(A3177.12 (17)
N1—C(A2—C(M1—C(A33.0 (3)C(B3—C(A3—C(M1—C14.3 (3)
N2—C(A3—C(B3—C(B40.1 (2)C(B3—C(A3—C(M1—C(A2176.03 (17)
N2—C(A3—C(M1—C1177.39 (16)C(B4—C(A4—C(M2—C70.5 (3)
N2—C(A3—C(M1—C(A22.3 (3)C(B4—C(A4—C(M2—C(A1i179.43 (18)
N2—C(A4—C(B4—C(B30.4 (2)C(M1—C1—C2—F11.5 (2)
N2—C(A4—C(M2—C7179.70 (17)C(M1—C1—C2—C3177.79 (16)
N2—C(A4—C(M2—C(A1i0.7 (3)C(M1—C1—C6—F51.2 (2)
C1—C2—C3—F2179.67 (17)C(M1—C1—C6—C5178.05 (16)
C1—C2—C3—C40.1 (3)C(M1—C(A2—C(B2—C(B1179.63 (17)
C2—C1—C6—F5179.83 (15)C(M1—C(A3—C(B3—C(B4178.40 (18)
C2—C1—C6—C50.5 (3)C(M2—C7—C8—F60.5 (3)
C2—C1—C(M1—C(A270.4 (2)C(M2—C7—C8—C9178.91 (18)
C2—C1—C(M1—C(A3109.85 (19)C(M2—C7—C12—F100.5 (3)
C2—C3—C4—F3178.53 (16)C(M2—C7—C12—C11179.22 (17)
C2—C3—C4—C51.0 (3)C(M2i—C(A1—C(B1—C(B2179.08 (18)
C3—C4—C5—F4179.54 (17)C(M2—C(A4—C(B4—C(B3179.49 (19)
C3—C4—C5—C61.2 (3)C(S1—C(S2—C(S3—C(S41.3 (19)
C4—C5—C6—F5178.84 (16)C(S2—C(S1—C(S6—C(S51 (2)
C4—C5—C6—C10.5 (3)C(S2—C(S3—C(S4—C(S50.3 (17)
C6—C1—C2—F1179.89 (15)C(S3—C(S4—C(S5—C(S61.2 (19)
C6—C1—C2—C30.8 (3)C(S7—C(S8—C(S9—C(S7ii0.0 (5)
C6—C1—C(M1—C(A2108.05 (19)C(S9ii—C(S7—C(S8—C(S90.0 (5)
C6—C1—C(M1—C(A371.7 (2)C(S4—C(S5—C(S6—C(S12 (2)
C7—C8—C9—F7179.81 (18)C(S6—C(S1—C(S2—C(S31 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C(B3—H(B3···F4iii0.952.363.276 (2)163
Symmetry code: (iii) x+1/2, y1/2, z+1/2.
 

Funding information

The authors thank the National Natural Science Foundation of China (grant Nos. 21771176, 21977093 to JL) for support. This work was supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences, grant No. XDB28000000.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBirnbaum, E. R., Hodge, J. A., Grinstaff, M. W., Schaefer, W. P., Henling, L., Labinger, J. A., Bercaw, J. E. & Gray, H. B. (1995). Inorg. Chem. 34, 3625–3632.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLindsey, J. S., Schreiman, I. C., Hsu, H. C., Kearney, P. C. & Marguerettaz, A. M. (1987). J. Org. Chem. 52, 827–836.  CrossRef CAS Web of Science Google Scholar
First citationLiu, X., Yeow, E. K. L., Velate, S. & Steer, R. P. (2006). Phys. Chem. Chem. Phys. 8, 1298–1309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThamotharan, S., Parthasarathi, V., Gupta, R., Jindal, D. P. & Linden, A. (2003). Acta Cryst. C59, o724–o726.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationUno, H., Masumoto, A. & Ono, N. (2003). J. Am. Chem. Soc. 125, 12082–12083.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, Y., Ma, P., Liu, S. & Chen, Y. (2016). New J. Chem. 40, 3323–3329.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds