organic compounds
7a-Phenyltetrahydropyrrolo[2,1-b]oxazol-5(6H)-one
aInstitute of Chemistry, N.G. Chernyshevsky National Research Saratov State University, Ulitsa Astrakhanskaya, 83, Saratov 410012, Russian Federation, and bInstitute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
*Correspondence e-mail: grinev@ibppm.ru
In the title compound, C12H13NO2, the pyrrolidinone moiety is almost flat while the oxazole ring adopts an with the carbon atom bearing the phenyl substituent as the flap: the angle between the mean planes of the fused heterocyclic rings is 45.47 (19)°. In the crystal, C—H⋯O and C—H⋯π contacts link the molecules into infinite [010] chains.
CCDC reference: 2014300
Structure description
The title compound, C12H13NO2, has been reported in the literature several times (Aeberli & Houlihan, 1969; Aeberli et al., 1976; Amal'chieva & Egorova, 2006). It has been also reported for its anti-depressant (Aeberli et al., 1976) and anti-convulsant activities (Trapani et al., 1996) as well as the synthetic potential to obtain 4,5-dihydro-2H-pyridazin-3-ones (Lim et al., 2003). We now describe its crystal structure.
Molecules of title compound consist of pyrrolidinone and oxazole rings fused via the C3—N1 edge into a bicyclic system (Fig. 1). The pyrrolidinone moiety is almost flat (r.m.s. deviation = 0.054 Å) with a maximum torsion angle N1—C6—C5—C4 of 13.4 (5)°, whereas the minimum torsion angle C5—C4—C3—N1 is 2.7 (5)°. The oxazole ring is more twisted and adopts an with atom C3 as the flap and a maximum torsion angle C2—O1—C3—N1 of −35.7 (4)°. The heterocyclic rings are fused with a dihedral angle between their mean planes of 45.47 (19)°. The phenyl substituent is located orthogonally to the mean plane of the whole bicycle [dihedral angle = 89.28 (14)°].
In contrast to closely related pyrrolopyrimidinones (Grinev et al., 2020), there is no classical hydrogen bonding in the crystal of the title molecule, obviously due to the absence of NH groups (Fig. 2). The molecules are connected via weak C5—H5A⋯O2 links (Table 1) to generate infinite chains directed along [010]. The H5A⋯O2 distance of 2.58 Å is significantly longer than the corresponding distance in pyrrolopyrimidinones [2.28 (5)–2.306 (18) Å]. Moreover, there are C10—H10⋯π contacts to an adjacent phenyl ring (Fig. 3), which reinforce the [010] chains.
Synthesis and crystallization
5-Phenylfuran-2(3H)-one (1 g, 6 mmol) and ethanolamine (0.34 g, 6 mmol) were placed in a round-bottomed flask equipped with Dean–Stark apparatus. Dry benzene (30 ml) was added and the reaction mixture refluxed for 3–4 h. After being left to stand overnight, the separated crystals and precipitate were washed with benzene and acetone and the solid placed in a vacuum desiccator for drying (yield 0.91 g, 75%; m.p. 65–67°C). The single crystal used for data collection was obtained directly from the cooled reaction mixture.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2014300
https://doi.org/10.1107/S2414314620009190/hb4353sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620009190/hb4353Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620009190/hb4353Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C12H13NO2 | F(000) = 216 |
Mr = 203.23 | Dx = 1.294 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7173 (17) Å | Cell parameters from 1357 reflections |
b = 7.346 (3) Å | θ = 3.5–22.6° |
c = 12.436 (4) Å | µ = 0.09 mm−1 |
β = 93.07 (3)° | T = 295 K |
V = 521.5 (3) Å3 | Needle, clear colourless |
Z = 2 | 0.55 × 0.1 × 0.08 mm |
Agilent Technologies New Xcalibur, Ruby diffractometer | 2406 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1462 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 10.4752 pixels mm-1 | θmax = 29.4°, θmin = 3.2° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) | k = −9→9 |
Tmin = 0.217, Tmax = 1.000 | l = −16→11 |
5059 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.0638P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.160 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.16 e Å−3 |
2406 reflections | Δρmin = −0.15 e Å−3 |
137 parameters | Extinction correction: SHELXL2018/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.094 (18) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4191 (7) | 0.8471 (7) | 0.1967 (3) | 0.0669 (12) | |
H1A | 0.440537 | 0.941850 | 0.143766 | 0.080* | |
H1B | 0.563590 | 0.831027 | 0.240152 | 0.080* | |
N1 | 0.3418 (5) | 0.6763 (5) | 0.1455 (2) | 0.0560 (9) | |
O1 | 0.0340 (4) | 0.7581 (5) | 0.2424 (2) | 0.0666 (9) | |
C2 | 0.2140 (7) | 0.8897 (6) | 0.2663 (3) | 0.0694 (13) | |
H2A | 0.264333 | 0.883883 | 0.341924 | 0.083* | |
H2B | 0.155301 | 1.011334 | 0.250689 | 0.083* | |
O2 | 0.4289 (5) | 0.7275 (5) | −0.0288 (2) | 0.0743 (10) | |
C3 | 0.1537 (6) | 0.6008 (6) | 0.2049 (3) | 0.0545 (10) | |
C4 | −0.0033 (7) | 0.4983 (8) | 0.1217 (3) | 0.0750 (13) | |
H4A | −0.017904 | 0.371365 | 0.141669 | 0.090* | |
H4B | −0.158290 | 0.552282 | 0.115247 | 0.090* | |
C5 | 0.1181 (7) | 0.5165 (7) | 0.0181 (3) | 0.0686 (12) | |
H5A | 0.180468 | 0.399755 | −0.003026 | 0.082* | |
H5B | 0.009114 | 0.559003 | −0.038927 | 0.082* | |
C6 | 0.3109 (7) | 0.6501 (6) | 0.0374 (3) | 0.0559 (10) | |
C7 | 0.2432 (6) | 0.4828 (5) | 0.2990 (3) | 0.0489 (9) | |
C8 | 0.4440 (6) | 0.3789 (6) | 0.2926 (3) | 0.0622 (11) | |
H8 | 0.529967 | 0.384189 | 0.231306 | 0.075* | |
C9 | 0.5168 (7) | 0.2675 (6) | 0.3775 (4) | 0.0712 (12) | |
H9 | 0.653085 | 0.199387 | 0.373066 | 0.085* | |
C10 | 0.3912 (8) | 0.2559 (7) | 0.4680 (4) | 0.0724 (12) | |
H10 | 0.441108 | 0.179917 | 0.524518 | 0.087* | |
C11 | 0.1929 (9) | 0.3565 (8) | 0.4745 (3) | 0.0746 (13) | |
H11 | 0.107507 | 0.349304 | 0.535934 | 0.090* | |
C12 | 0.1163 (7) | 0.4699 (6) | 0.3904 (3) | 0.0633 (11) | |
H12 | −0.020343 | 0.537312 | 0.395607 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.068 (2) | 0.072 (3) | 0.061 (3) | −0.019 (3) | 0.005 (2) | −0.004 (2) |
N1 | 0.0587 (17) | 0.066 (2) | 0.0439 (19) | −0.0115 (16) | 0.0075 (13) | 0.0058 (16) |
O1 | 0.0574 (14) | 0.0675 (18) | 0.076 (2) | 0.0055 (15) | 0.0118 (13) | 0.0046 (16) |
C2 | 0.075 (3) | 0.063 (3) | 0.070 (3) | −0.005 (2) | 0.005 (2) | 0.000 (2) |
O2 | 0.090 (2) | 0.082 (2) | 0.0525 (18) | −0.0011 (18) | 0.0205 (15) | 0.0124 (16) |
C3 | 0.0511 (19) | 0.063 (2) | 0.050 (2) | −0.0077 (18) | 0.0097 (16) | 0.001 (2) |
C4 | 0.075 (3) | 0.088 (4) | 0.061 (3) | −0.026 (3) | −0.002 (2) | 0.003 (3) |
C5 | 0.078 (2) | 0.068 (3) | 0.060 (2) | −0.003 (2) | 0.006 (2) | −0.012 (2) |
C6 | 0.061 (2) | 0.060 (3) | 0.047 (2) | 0.008 (2) | 0.0061 (16) | 0.005 (2) |
C7 | 0.0494 (19) | 0.051 (2) | 0.047 (2) | −0.0065 (17) | 0.0098 (14) | 0.0002 (19) |
C8 | 0.060 (2) | 0.073 (3) | 0.055 (2) | −0.001 (2) | 0.0119 (18) | 0.006 (2) |
C9 | 0.064 (2) | 0.068 (3) | 0.082 (3) | 0.005 (2) | 0.007 (2) | 0.012 (3) |
C10 | 0.098 (3) | 0.062 (3) | 0.057 (3) | −0.011 (3) | −0.002 (2) | 0.013 (2) |
C11 | 0.106 (3) | 0.069 (3) | 0.052 (2) | −0.003 (3) | 0.028 (2) | 0.009 (2) |
C12 | 0.070 (2) | 0.062 (3) | 0.059 (2) | −0.003 (2) | 0.0219 (18) | 0.002 (2) |
C1—H1A | 0.9700 | C4—C5 | 1.502 (6) |
C1—H1B | 0.9700 | C5—H5A | 0.9700 |
C1—N1 | 1.464 (6) | C5—H5B | 0.9700 |
C1—C2 | 1.527 (6) | C5—C6 | 1.486 (6) |
N1—C3 | 1.447 (5) | C7—C8 | 1.384 (5) |
N1—C6 | 1.361 (5) | C7—C12 | 1.385 (5) |
O1—C2 | 1.432 (5) | C8—H8 | 0.9300 |
O1—C3 | 1.434 (5) | C8—C9 | 1.382 (6) |
C2—H2A | 0.9700 | C9—H9 | 0.9300 |
C2—H2B | 0.9700 | C9—C10 | 1.370 (6) |
O2—C6 | 1.230 (5) | C10—H10 | 0.9300 |
C3—C4 | 1.531 (5) | C10—C11 | 1.359 (7) |
C3—C7 | 1.523 (5) | C11—H11 | 0.9300 |
C4—H4A | 0.9700 | C11—C12 | 1.389 (6) |
C4—H4B | 0.9700 | C12—H12 | 0.9300 |
H1A—C1—H1B | 109.3 | C4—C5—H5A | 110.3 |
N1—C1—H1A | 111.5 | C4—C5—H5B | 110.3 |
N1—C1—H1B | 111.5 | H5A—C5—H5B | 108.6 |
N1—C1—C2 | 101.5 (3) | C6—C5—C4 | 107.0 (4) |
C2—C1—H1A | 111.5 | C6—C5—H5A | 110.3 |
C2—C1—H1B | 111.5 | C6—C5—H5B | 110.3 |
C3—N1—C1 | 108.8 (3) | N1—C6—C5 | 108.0 (4) |
C6—N1—C1 | 124.8 (4) | O2—C6—N1 | 123.3 (4) |
C6—N1—C3 | 112.9 (3) | O2—C6—C5 | 128.7 (4) |
C2—O1—C3 | 105.2 (3) | C8—C7—C3 | 121.1 (3) |
C1—C2—H2A | 110.1 | C8—C7—C12 | 118.8 (4) |
C1—C2—H2B | 110.1 | C12—C7—C3 | 120.0 (3) |
O1—C2—C1 | 108.0 (3) | C7—C8—H8 | 120.0 |
O1—C2—H2A | 110.1 | C9—C8—C7 | 120.0 (4) |
O1—C2—H2B | 110.1 | C9—C8—H8 | 120.0 |
H2A—C2—H2B | 108.4 | C8—C9—H9 | 119.5 |
N1—C3—C4 | 105.6 (3) | C10—C9—C8 | 121.0 (4) |
N1—C3—C7 | 112.5 (3) | C10—C9—H9 | 119.5 |
O1—C3—N1 | 103.8 (3) | C9—C10—H10 | 120.3 |
O1—C3—C4 | 110.1 (3) | C11—C10—C9 | 119.4 (4) |
O1—C3—C7 | 110.8 (3) | C11—C10—H10 | 120.3 |
C7—C3—C4 | 113.6 (4) | C10—C11—H11 | 119.6 |
C3—C4—H4A | 110.8 | C10—C11—C12 | 120.8 (4) |
C3—C4—H4B | 110.8 | C12—C11—H11 | 119.6 |
H4A—C4—H4B | 108.9 | C7—C12—C11 | 120.1 (4) |
C5—C4—C3 | 104.8 (3) | C7—C12—H12 | 120.0 |
C5—C4—H4A | 110.8 | C11—C12—H12 | 120.0 |
C5—C4—H4B | 110.8 | ||
C1—N1—C3—O1 | 33.1 (3) | C3—O1—C2—C1 | 25.9 (4) |
C1—N1—C3—C4 | 148.9 (4) | C3—C4—C5—C6 | −9.5 (5) |
C1—N1—C3—C7 | −86.7 (4) | C3—C7—C8—C9 | −177.5 (4) |
C1—N1—C6—O2 | 32.0 (6) | C3—C7—C12—C11 | 177.4 (4) |
C1—N1—C6—C5 | −148.2 (4) | C4—C3—C7—C8 | 85.8 (4) |
N1—C1—C2—O1 | −5.7 (4) | C4—C3—C7—C12 | −90.5 (4) |
N1—C3—C4—C5 | 2.7 (5) | C4—C5—C6—N1 | 13.4 (5) |
N1—C3—C7—C8 | −34.1 (5) | C4—C5—C6—O2 | −166.8 (4) |
N1—C3—C7—C12 | 149.6 (4) | C6—N1—C3—O1 | −109.9 (4) |
O1—C3—C4—C5 | 114.1 (4) | C6—N1—C3—C4 | 5.9 (5) |
O1—C3—C7—C8 | −149.7 (3) | C6—N1—C3—C7 | 130.3 (4) |
O1—C3—C7—C12 | 34.0 (5) | C7—C3—C4—C5 | −121.0 (4) |
C2—C1—N1—C3 | −16.7 (4) | C7—C8—C9—C10 | 0.9 (6) |
C2—C1—N1—C6 | 120.9 (4) | C8—C7—C12—C11 | 1.0 (6) |
C2—O1—C3—N1 | −35.7 (4) | C8—C9—C10—C11 | −0.4 (7) |
C2—O1—C3—C4 | −148.3 (3) | C9—C10—C11—C12 | 0.2 (7) |
C2—O1—C3—C7 | 85.2 (3) | C10—C11—C12—C7 | −0.5 (7) |
C3—N1—C6—O2 | 168.1 (4) | C12—C7—C8—C9 | −1.1 (5) |
C3—N1—C6—C5 | −12.2 (5) |
Cg3 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O2i | 0.97 | 2.58 | 3.346 (6) | 136 |
C10—H10···Cg3ii | 0.93 | 2.88 | 3.734 (6) | 154 |
Symmetry codes: (i) −x+1, y−1/2, −z; (ii) −x+1, y−1/2, −z+1. |
Funding information
Funding for this research was provided by: Russian Foundation for Basic Research (grant No. 19-33-90157 to Alevtina Yu. Yegorova).
References
Aeberli, P., Gogerty, J. H., Houlihan, W. J. & Iorio, L. C. (1976). J. Med. Chem. 19, 436–438. CrossRef PubMed CAS Web of Science Google Scholar
Aeberli, P. & Houlihan, W. J. (1969). J. Org. Chem. 34, 165–170. CrossRef CAS Web of Science Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies, USA. Google Scholar
Amal'chieva, O. A. & Egorova, A. Yu. (2006). Russ. J. Org. Chem. 42, 1340–1343. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grinev, V. S., Linkova, E. I., Krainov, M. N., Dmitriev, M. V. & Yegorova, A. Y. (2020). Acta Cryst. C76, 483–489. Web of Science CrossRef IUCr Journals Google Scholar
Lim, Y. J., Angela, M. & Buonora, P. T. (2003). Tetrahedron Lett. 44, 7799–7801. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Trapani, G., Franco, M., Latrofa, A., Carotti, A., Cellamare, S., Serra, M., Ghiani, C. A., Tuligi, G., Biggio, G. & Liso, G. (1996). J. Pharm. Pharmacol. 48, 834–840. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.