organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7a-Phenyl­tetra­hydro­pyrrolo­[2,1-b]oxazol-5(6H)-one

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, N.G. Chernyshevsky National Research Saratov State University, Ulitsa Astrakhanskaya, 83, Saratov 410012, Russian Federation, and bInstitute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
*Correspondence e-mail: grinev@ibppm.ru

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 June 2020; accepted 6 July 2020; online 10 July 2020)

In the title compound, C12H13NO2, the pyrrolidinone moiety is almost flat while the oxazole ring adopts an envelope conformation with the carbon atom bearing the phenyl substituent as the flap: the angle between the mean planes of the fused heterocyclic rings is 45.47 (19)°. In the crystal, C—H⋯O and C—H⋯π contacts link the mol­ecules into infinite [010] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C12H13NO2, has been reported in the literature several times (Aeberli & Houlihan, 1969[Aeberli, P. & Houlihan, W. J. (1969). J. Org. Chem. 34, 165-170.]; Aeberli et al., 1976[Aeberli, P., Gogerty, J. H., Houlihan, W. J. & Iorio, L. C. (1976). J. Med. Chem. 19, 436-438.]; Amal'chieva & Egorova, 2006[Amal'chieva, O. A. & Egorova, A. Yu. (2006). Russ. J. Org. Chem. 42, 1340-1343.]). It has been also reported for its anti-depressant (Aeberli et al., 1976[Aeberli, P., Gogerty, J. H., Houlihan, W. J. & Iorio, L. C. (1976). J. Med. Chem. 19, 436-438.]) and anti-convulsant activities (Trapani et al., 1996[Trapani, G., Franco, M., Latrofa, A., Carotti, A., Cellamare, S., Serra, M., Ghiani, C. A., Tuligi, G., Biggio, G. & Liso, G. (1996). J. Pharm. Pharmacol. 48, 834-840.]) as well as the synthetic potential to obtain 4,5-di­hydro-2H-pyridazin-3-ones (Lim et al., 2003[Lim, Y. J., Angela, M. & Buonora, P. T. (2003). Tetrahedron Lett. 44, 7799-7801.]). We now describe its crystal structure.

Mol­ecules of title compound consist of pyrrolidinone and oxazole rings fused via the C3—N1 edge into a bicyclic system (Fig. 1[link]). The pyrrolidinone moiety is almost flat (r.m.s. deviation = 0.054 Å) with a maximum torsion angle N1—C6—C5—C4 of 13.4 (5)°, whereas the minimum torsion angle C5—C4—C3—N1 is 2.7 (5)°. The oxazole ring is more twisted and adopts an envelope conformation with atom C3 as the flap and a maximum torsion angle C2—O1—C3—N1 of −35.7 (4)°. The heterocyclic rings are fused with a dihedral angle between their mean planes of 45.47 (19)°. The phenyl substituent is located orthogonally to the mean plane of the whole bicycle [dihedral angle = 89.28 (14)°].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.

In contrast to closely related pyrrolo­pyrimidino­nes (Grinev et al., 2020[Grinev, V. S., Linkova, E. I., Krainov, M. N., Dmitriev, M. V. & Yegorova, A. Y. (2020). Acta Cryst. C76, 483-489.]), there is no classical hydrogen bonding in the crystal of the title mol­ecule, obviously due to the absence of NH groups (Fig. 2[link]). The mol­ecules are connected via weak C5—H5A⋯O2 links (Table 1[link]) to generate infinite chains directed along [010]. The H5A⋯O2 distance of 2.58 Å is significantly longer than the corresponding distance in pyrrolo­pyrimidino­nes [2.28 (5)–2.306 (18) Å]. Moreover, there are C10—H10⋯π contacts to an adjacent phenyl ring (Fig. 3[link]), which reinforce the [010] chains.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2i 0.97 2.58 3.346 (6) 136
C10—H10⋯Cg3ii 0.93 2.88 3.734 (6) 154
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The packing of the title compound viewed down [100] showing hydrogen bonds as red dashed lines.
[Figure 3]
Figure 3
The packing of the title compound showing C—H⋯π inter­actions.

Synthesis and crystallization

5-Phenyl­furan-2(3H)-one (1 g, 6 mmol) and ethano­lamine (0.34 g, 6 mmol) were placed in a round-bottomed flask equipped with Dean–Stark apparatus. Dry benzene (30 ml) was added and the reaction mixture refluxed for 3–4 h. After being left to stand overnight, the separated crystals and precipitate were washed with benzene and acetone and the solid placed in a vacuum desiccator for drying (yield 0.91 g, 75%; m.p. 65–67°C). The single crystal used for data collection was obtained directly from the cooled reaction mixture.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H13NO2
Mr 203.23
Crystal system, space group Monoclinic, P21
Temperature (K) 295
a, b, c (Å) 5.7173 (17), 7.346 (3), 12.436 (4)
β (°) 93.07 (3)
V3) 521.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.55 × 0.1 × 0.08
 
Data collection
Diffractometer Agilent Technologies New Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, USA.])
Tmin, Tmax 0.217, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5059, 2406, 1462
Rint 0.048
(sin θ/λ)max−1) 0.691
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.160, 1.06
No. of reflections 2406
No. of parameters 137
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

7a-Phenyltetrahydropyrrolo[2,1-b]oxazol-5(6H)-one top
Crystal data top
C12H13NO2F(000) = 216
Mr = 203.23Dx = 1.294 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.7173 (17) ÅCell parameters from 1357 reflections
b = 7.346 (3) Åθ = 3.5–22.6°
c = 12.436 (4) ŵ = 0.09 mm1
β = 93.07 (3)°T = 295 K
V = 521.5 (3) Å3Needle, clear colourless
Z = 20.55 × 0.1 × 0.08 mm
Data collection top
Agilent Technologies New Xcalibur, Ruby
diffractometer
2406 independent reflections
Radiation source: Enhance (Mo) X-ray Source1462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.4752 pixels mm-1θmax = 29.4°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 99
Tmin = 0.217, Tmax = 1.000l = 1611
5059 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0638P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
2406 reflectionsΔρmin = 0.15 e Å3
137 parametersExtinction correction: SHELXL2018/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.094 (18)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4191 (7)0.8471 (7)0.1967 (3)0.0669 (12)
H1A0.4405370.9418500.1437660.080*
H1B0.5635900.8310270.2401520.080*
N10.3418 (5)0.6763 (5)0.1455 (2)0.0560 (9)
O10.0340 (4)0.7581 (5)0.2424 (2)0.0666 (9)
C20.2140 (7)0.8897 (6)0.2663 (3)0.0694 (13)
H2A0.2643330.8838830.3419240.083*
H2B0.1553011.0113340.2506890.083*
O20.4289 (5)0.7275 (5)0.0288 (2)0.0743 (10)
C30.1537 (6)0.6008 (6)0.2049 (3)0.0545 (10)
C40.0033 (7)0.4983 (8)0.1217 (3)0.0750 (13)
H4A0.0179040.3713650.1416690.090*
H4B0.1582900.5522820.1152470.090*
C50.1181 (7)0.5165 (7)0.0181 (3)0.0686 (12)
H5A0.1804680.3997550.0030260.082*
H5B0.0091140.5590030.0389270.082*
C60.3109 (7)0.6501 (6)0.0374 (3)0.0559 (10)
C70.2432 (6)0.4828 (5)0.2990 (3)0.0489 (9)
C80.4440 (6)0.3789 (6)0.2926 (3)0.0622 (11)
H80.5299670.3841890.2313060.075*
C90.5168 (7)0.2675 (6)0.3775 (4)0.0712 (12)
H90.6530850.1993870.3730660.085*
C100.3912 (8)0.2559 (7)0.4680 (4)0.0724 (12)
H100.4411080.1799170.5245180.087*
C110.1929 (9)0.3565 (8)0.4745 (3)0.0746 (13)
H110.1075070.3493040.5359340.090*
C120.1163 (7)0.4699 (6)0.3904 (3)0.0633 (11)
H120.0203430.5373120.3956070.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (2)0.072 (3)0.061 (3)0.019 (3)0.005 (2)0.004 (2)
N10.0587 (17)0.066 (2)0.0439 (19)0.0115 (16)0.0075 (13)0.0058 (16)
O10.0574 (14)0.0675 (18)0.076 (2)0.0055 (15)0.0118 (13)0.0046 (16)
C20.075 (3)0.063 (3)0.070 (3)0.005 (2)0.005 (2)0.000 (2)
O20.090 (2)0.082 (2)0.0525 (18)0.0011 (18)0.0205 (15)0.0124 (16)
C30.0511 (19)0.063 (2)0.050 (2)0.0077 (18)0.0097 (16)0.001 (2)
C40.075 (3)0.088 (4)0.061 (3)0.026 (3)0.002 (2)0.003 (3)
C50.078 (2)0.068 (3)0.060 (2)0.003 (2)0.006 (2)0.012 (2)
C60.061 (2)0.060 (3)0.047 (2)0.008 (2)0.0061 (16)0.005 (2)
C70.0494 (19)0.051 (2)0.047 (2)0.0065 (17)0.0098 (14)0.0002 (19)
C80.060 (2)0.073 (3)0.055 (2)0.001 (2)0.0119 (18)0.006 (2)
C90.064 (2)0.068 (3)0.082 (3)0.005 (2)0.007 (2)0.012 (3)
C100.098 (3)0.062 (3)0.057 (3)0.011 (3)0.002 (2)0.013 (2)
C110.106 (3)0.069 (3)0.052 (2)0.003 (3)0.028 (2)0.009 (2)
C120.070 (2)0.062 (3)0.059 (2)0.003 (2)0.0219 (18)0.002 (2)
Geometric parameters (Å, º) top
C1—H1A0.9700C4—C51.502 (6)
C1—H1B0.9700C5—H5A0.9700
C1—N11.464 (6)C5—H5B0.9700
C1—C21.527 (6)C5—C61.486 (6)
N1—C31.447 (5)C7—C81.384 (5)
N1—C61.361 (5)C7—C121.385 (5)
O1—C21.432 (5)C8—H80.9300
O1—C31.434 (5)C8—C91.382 (6)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C9—C101.370 (6)
O2—C61.230 (5)C10—H100.9300
C3—C41.531 (5)C10—C111.359 (7)
C3—C71.523 (5)C11—H110.9300
C4—H4A0.9700C11—C121.389 (6)
C4—H4B0.9700C12—H120.9300
H1A—C1—H1B109.3C4—C5—H5A110.3
N1—C1—H1A111.5C4—C5—H5B110.3
N1—C1—H1B111.5H5A—C5—H5B108.6
N1—C1—C2101.5 (3)C6—C5—C4107.0 (4)
C2—C1—H1A111.5C6—C5—H5A110.3
C2—C1—H1B111.5C6—C5—H5B110.3
C3—N1—C1108.8 (3)N1—C6—C5108.0 (4)
C6—N1—C1124.8 (4)O2—C6—N1123.3 (4)
C6—N1—C3112.9 (3)O2—C6—C5128.7 (4)
C2—O1—C3105.2 (3)C8—C7—C3121.1 (3)
C1—C2—H2A110.1C8—C7—C12118.8 (4)
C1—C2—H2B110.1C12—C7—C3120.0 (3)
O1—C2—C1108.0 (3)C7—C8—H8120.0
O1—C2—H2A110.1C9—C8—C7120.0 (4)
O1—C2—H2B110.1C9—C8—H8120.0
H2A—C2—H2B108.4C8—C9—H9119.5
N1—C3—C4105.6 (3)C10—C9—C8121.0 (4)
N1—C3—C7112.5 (3)C10—C9—H9119.5
O1—C3—N1103.8 (3)C9—C10—H10120.3
O1—C3—C4110.1 (3)C11—C10—C9119.4 (4)
O1—C3—C7110.8 (3)C11—C10—H10120.3
C7—C3—C4113.6 (4)C10—C11—H11119.6
C3—C4—H4A110.8C10—C11—C12120.8 (4)
C3—C4—H4B110.8C12—C11—H11119.6
H4A—C4—H4B108.9C7—C12—C11120.1 (4)
C5—C4—C3104.8 (3)C7—C12—H12120.0
C5—C4—H4A110.8C11—C12—H12120.0
C5—C4—H4B110.8
C1—N1—C3—O133.1 (3)C3—O1—C2—C125.9 (4)
C1—N1—C3—C4148.9 (4)C3—C4—C5—C69.5 (5)
C1—N1—C3—C786.7 (4)C3—C7—C8—C9177.5 (4)
C1—N1—C6—O232.0 (6)C3—C7—C12—C11177.4 (4)
C1—N1—C6—C5148.2 (4)C4—C3—C7—C885.8 (4)
N1—C1—C2—O15.7 (4)C4—C3—C7—C1290.5 (4)
N1—C3—C4—C52.7 (5)C4—C5—C6—N113.4 (5)
N1—C3—C7—C834.1 (5)C4—C5—C6—O2166.8 (4)
N1—C3—C7—C12149.6 (4)C6—N1—C3—O1109.9 (4)
O1—C3—C4—C5114.1 (4)C6—N1—C3—C45.9 (5)
O1—C3—C7—C8149.7 (3)C6—N1—C3—C7130.3 (4)
O1—C3—C7—C1234.0 (5)C7—C3—C4—C5121.0 (4)
C2—C1—N1—C316.7 (4)C7—C8—C9—C100.9 (6)
C2—C1—N1—C6120.9 (4)C8—C7—C12—C111.0 (6)
C2—O1—C3—N135.7 (4)C8—C9—C10—C110.4 (7)
C2—O1—C3—C4148.3 (3)C9—C10—C11—C120.2 (7)
C2—O1—C3—C785.2 (3)C10—C11—C12—C70.5 (7)
C3—N1—C6—O2168.1 (4)C12—C7—C8—C91.1 (5)
C3—N1—C6—C512.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.972.583.346 (6)136
C10—H10···Cg3ii0.932.883.734 (6)154
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y1/2, z+1.
 

Funding information

Funding for this research was provided by: Russian Foundation for Basic Research (grant No. 19-33-90157 to Alevtina Yu. Yegorova).

References

First citationAeberli, P., Gogerty, J. H., Houlihan, W. J. & Iorio, L. C. (1976). J. Med. Chem. 19, 436–438.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAeberli, P. & Houlihan, W. J. (1969). J. Org. Chem. 34, 165–170.  CrossRef CAS Web of Science Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, USA.  Google Scholar
First citationAmal'chieva, O. A. & Egorova, A. Yu. (2006). Russ. J. Org. Chem. 42, 1340–1343.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrinev, V. S., Linkova, E. I., Krainov, M. N., Dmitriev, M. V. & Yegorova, A. Y. (2020). Acta Cryst. C76, 483–489.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLim, Y. J., Angela, M. & Buonora, P. T. (2003). Tetrahedron Lett. 44, 7799–7801.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrapani, G., Franco, M., Latrofa, A., Carotti, A., Cellamare, S., Serra, M., Ghiani, C. A., Tuligi, G., Biggio, G. & Liso, G. (1996). J. Pharm. Pharmacol. 48, 834–840.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds