organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­­(1H-indole-2-carboxyl­ate)

CROSSMARK_Color_square_no_text.svg

aTargeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China, and bCollege of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 June 2020; accepted 3 July 2020; online 10 July 2020)

In the title compound, C29H25FN2O4, the mean planes of the indole ring systems are approximately perpendicular to one another [dihedral angle = 88.3 (4)°]. The benzene ring is twisted with respect to the indole ring systems by 49.8 (5) and 77.6 (3)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers which are further linked into supra­molecular chains propagating along the [110] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

There are abundant bis­(indol­yl)methane derivatives in various terrestrial and marine natural resources (Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]). As part of our ongoing studies of bis­(indoyl)methane compounds, we now report the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The indole ring systems are nearly perpendicular to one another [dihedral angle = 88.3 (4)°] while the benzene ring (C2–C7) is twisted with respect to the N1/C8–C15 and N2/C19–C26 indole ring systems with dihedral angles of 49.8 (5) and 77.6 (3)°, respectively. The carboxyl groups are approximately co-planar with their attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of the N1/C8–C15 and N2/C19–C26 indole ring systems being 6.2 (5) and 6.4 (4)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with displacement ellipsoids drawn at the 30% probability level.

In the crystal, pairwise N1—H1A⋯O1i and N2—H2A⋯O4ii hydrogen bonds both generate R22(8) loops; together these lead to [110] chains of mol­ecules. A weak C11—H11A⋯O4iii inter­action also occurs, which links the chains into (001) sheets (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.16 2.918 (11) 147
N2—H2A⋯O4ii 0.86 2.08 2.904 (9) 159
C11—H11A⋯O4iii 0.93 2.58 3.498 (13) 171
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Several similar structures have been reported previously, viz. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.]), dimethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]), dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2015[Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140-1142.]) and dimethyl 3,3′-[(2-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2017[Lu, X.-H., Sun, H.-S., Cai, Y., Chen, L.-L. & Chen, Y.-F. (2017). Acta Cryst. E73, 1790-1792.]). In these structures, the indole ring systems are also nearly perpendicular to one another, making dihedral angles of 82.0 (5), 87.8 (5), 84.0 (5) and 86.0 (5)°, respectively.

Synthesis and crystallization

Ethyl indole-2-carboxyl­ate (1.88 g, 10 mmol) was dissolved in 20 ml of ethanol and 3-fluoro­benzaldehyde (0.62 g, 5 mmol) and concentrated HCl (0.5 ml) was added. The mixture was heated to reflux temperature for 2 h. After cooling, the white product was filtered off and washed thoroughly with ethanol (yield = 92%). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C29H25FN2O4
Mr 484.51
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.9960 (18), 15.921 (3), 18.297 (4)
β (°) 102.59 (3)
V3) 2557.6 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.982, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 5000, 4685, 1424
Rint 0.131
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.143, 0.306, 1.30
No. of reflections 4685
No. of parameters 319
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.72
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diethyl 3,3'-[(3-fluorophenyl)methylene]bis(1H-indole-2-carboxylate) top
Crystal data top
C29H25FN2O4F(000) = 1016
Mr = 484.51Dx = 1.258 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9960 (18) ÅCell parameters from 25 reflections
b = 15.921 (3) Åθ = 9–12°
c = 18.297 (4) ŵ = 0.09 mm1
β = 102.59 (3)°T = 293 K
V = 2557.6 (9) Å3Block, colorless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1424 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.131
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.982, Tmax = 0.991l = 2221
5000 measured reflections3 standard reflections every 200 reflections
4685 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.143Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.306H atoms treated by a mixture of independent and constrained refinement
S = 1.30 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
4685 reflections(Δ/σ)max = 0.009
319 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms. The constraint Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C) was applied in all cases.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.5574 (10)0.2828 (5)0.1783 (4)0.154 (4)
O10.1733 (8)0.0523 (4)0.5601 (4)0.080 (2)
N10.0972 (9)0.0284 (4)0.4084 (5)0.063 (2)
H1A0.04680.00280.43270.076*
C10.3860 (9)0.1906 (5)0.3962 (5)0.045 (2)
H1B0.45610.17630.44340.054*
N20.3321 (8)0.4124 (4)0.4463 (4)0.054 (2)
H2A0.36340.45970.46680.064*
O20.3615 (8)0.1390 (4)0.5478 (4)0.078 (2)
C20.4782 (11)0.1845 (6)0.3395 (6)0.049 (3)
O30.6571 (7)0.2781 (3)0.4797 (3)0.0609 (19)
C30.5727 (12)0.1140 (8)0.3428 (7)0.094 (5)
H3A0.57700.07530.38120.112*
O40.6412 (7)0.4138 (4)0.5044 (4)0.071 (2)
C40.659 (2)0.1009 (11)0.2907 (12)0.143 (7)
H4A0.71970.05310.29450.172*
C50.6584 (19)0.1558 (11)0.2334 (11)0.129 (7)
H5A0.71510.14710.19720.155*
C60.5694 (16)0.2231 (10)0.2335 (7)0.092 (4)
C70.4733 (12)0.2417 (7)0.2840 (6)0.071 (3)
H7A0.41210.28930.27920.086*
C80.2671 (10)0.1236 (5)0.3855 (6)0.050 (3)
C90.1838 (10)0.0882 (5)0.3150 (6)0.051 (3)
C100.1875 (12)0.1021 (6)0.2409 (7)0.080 (4)
H10A0.25240.14200.22760.096*
C110.0911 (12)0.0547 (7)0.1867 (6)0.082 (4)
H11A0.09290.06260.13660.099*
C120.0061 (14)0.0033 (7)0.2053 (7)0.088 (4)
H12A0.06780.03410.16730.105*
C130.0162 (12)0.0175 (6)0.2762 (7)0.077 (3)
H13A0.08440.05650.28780.092*
C140.0816 (11)0.0295 (6)0.3329 (7)0.058 (3)
C150.2065 (11)0.0855 (6)0.4391 (6)0.057 (3)
C160.2487 (12)0.0887 (6)0.5223 (7)0.061 (3)
C170.4070 (12)0.1489 (9)0.6278 (6)0.108 (5)
H17A0.36620.20100.64270.129*
H17B0.36730.10290.65250.129*
C180.5630 (13)0.1500 (7)0.6483 (7)0.112
H18A0.59400.15650.70160.168*
H18B0.60150.19600.62410.168*
H18C0.60270.09820.63370.168*
C190.3282 (9)0.2778 (5)0.4087 (5)0.039 (2)
C200.1817 (11)0.3129 (5)0.3856 (5)0.049 (3)
C210.0406 (12)0.2819 (6)0.3459 (6)0.069 (3)
H21A0.03150.22680.32860.082*
C220.0847 (13)0.3351 (7)0.3330 (6)0.077 (4)
H22A0.17890.31520.30730.092*
C230.0710 (13)0.4196 (7)0.3585 (6)0.089 (4)
H23A0.15600.45440.34900.106*
C240.0652 (12)0.4502 (6)0.3968 (6)0.071 (3)
H24A0.07490.50560.41310.085*
C250.1893 (11)0.3958 (5)0.4105 (5)0.054 (3)
C260.4231 (11)0.3414 (5)0.4456 (5)0.044 (2)
C270.5740 (11)0.3489 (5)0.4795 (5)0.045 (2)
C280.8156 (10)0.2802 (6)0.5124 (6)0.075 (3)
H28A0.83240.29420.56510.089*
H28B0.86620.32180.48770.089*
C290.8750 (12)0.1962 (7)0.5028 (6)0.101 (4)
H29A0.98240.19480.52410.152*
H29B0.85730.18300.45040.152*
H29C0.82420.15570.52760.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.256 (10)0.129 (7)0.088 (6)0.081 (7)0.063 (6)0.033 (5)
O10.085 (6)0.085 (5)0.073 (6)0.020 (4)0.022 (4)0.013 (4)
N10.076 (6)0.026 (4)0.088 (7)0.012 (4)0.016 (6)0.001 (5)
C10.050 (6)0.033 (5)0.053 (7)0.012 (5)0.011 (5)0.000 (5)
N20.058 (5)0.031 (4)0.065 (6)0.009 (4)0.001 (5)0.015 (4)
O20.081 (5)0.091 (6)0.060 (5)0.032 (5)0.014 (4)0.005 (4)
C20.057 (7)0.035 (6)0.065 (8)0.025 (5)0.033 (6)0.021 (5)
O30.068 (5)0.036 (4)0.072 (5)0.002 (4)0.001 (4)0.004 (3)
C30.068 (8)0.109 (11)0.117 (12)0.005 (8)0.049 (8)0.068 (9)
O40.079 (5)0.030 (4)0.093 (5)0.004 (4)0.008 (4)0.016 (4)
C40.132 (15)0.105 (14)0.18 (2)0.017 (12)0.016 (15)0.038 (13)
C50.132 (14)0.101 (13)0.169 (19)0.033 (12)0.065 (14)0.106 (13)
C60.113 (11)0.097 (11)0.066 (10)0.081 (9)0.022 (9)0.013 (9)
C70.079 (8)0.067 (8)0.077 (9)0.039 (7)0.036 (7)0.046 (7)
C80.062 (7)0.025 (5)0.061 (7)0.011 (5)0.013 (6)0.002 (5)
C90.063 (7)0.025 (5)0.069 (8)0.017 (5)0.023 (6)0.012 (6)
C100.104 (9)0.053 (7)0.077 (9)0.029 (6)0.009 (8)0.024 (7)
C110.097 (9)0.081 (8)0.070 (9)0.023 (7)0.021 (7)0.029 (7)
C120.105 (10)0.074 (9)0.084 (10)0.019 (8)0.023 (9)0.040 (8)
C130.084 (8)0.034 (6)0.112 (10)0.010 (6)0.019 (8)0.028 (7)
C140.063 (7)0.032 (6)0.076 (9)0.006 (5)0.006 (7)0.015 (6)
C150.069 (7)0.031 (6)0.067 (8)0.007 (5)0.010 (7)0.003 (6)
C160.053 (7)0.039 (6)0.094 (10)0.010 (6)0.022 (7)0.006 (6)
C170.062 (8)0.200 (14)0.058 (9)0.006 (8)0.008 (7)0.030 (9)
C180.1120.1120.1120.0000.0240.000
C190.041 (6)0.026 (5)0.049 (6)0.005 (4)0.010 (5)0.006 (4)
C200.065 (7)0.032 (5)0.047 (6)0.009 (5)0.008 (6)0.004 (5)
C210.072 (8)0.042 (6)0.085 (9)0.001 (6)0.003 (7)0.010 (6)
C220.089 (9)0.061 (8)0.070 (8)0.002 (7)0.008 (7)0.015 (6)
C230.086 (9)0.072 (8)0.098 (10)0.028 (7)0.002 (8)0.001 (8)
C240.068 (8)0.039 (6)0.097 (9)0.002 (6)0.003 (7)0.013 (6)
C250.054 (7)0.036 (6)0.063 (7)0.001 (5)0.007 (6)0.004 (5)
C260.053 (6)0.036 (5)0.044 (6)0.003 (5)0.009 (5)0.001 (5)
C270.060 (7)0.030 (5)0.042 (6)0.006 (5)0.001 (5)0.008 (5)
C280.053 (7)0.056 (7)0.100 (9)0.015 (6)0.016 (7)0.001 (6)
C290.097 (9)0.099 (9)0.104 (10)0.053 (8)0.012 (8)0.007 (8)
Geometric parameters (Å, º) top
F—C61.374 (13)C11—C121.365 (13)
O1—C161.216 (10)C11—H11A0.9300
N1—C141.356 (11)C12—C131.339 (13)
N1—C151.367 (10)C12—H12A0.9300
N1—H1A0.8600C13—C141.418 (12)
C1—C21.464 (11)C13—H13A0.9300
C1—C81.492 (10)C15—C161.488 (13)
C1—C191.517 (10)C17—C181.371 (12)
C1—H1B0.9800C17—H17A0.9700
N2—C251.335 (10)C17—H17B0.9700
N2—C261.398 (9)C18—H18A0.9600
N2—H2A0.8600C18—H18B0.9600
O2—C161.297 (10)C18—H18C0.9600
O2—C171.440 (11)C19—C261.399 (10)
C2—C71.359 (13)C19—C201.409 (11)
C2—C31.401 (13)C20—C251.394 (11)
O3—C271.351 (9)C20—C211.407 (11)
O3—C281.421 (9)C21—C221.389 (12)
C3—C41.370 (18)C21—H21A0.9300
C3—H3A0.9300C22—C231.420 (12)
O4—C271.234 (9)C22—H22A0.9300
C4—C51.363 (19)C23—C241.361 (12)
C4—H4A0.9300C23—H23A0.9300
C5—C61.339 (18)C24—C251.392 (11)
C5—H5A0.9300C24—H24A0.9300
C6—C71.426 (15)C26—C271.370 (11)
C7—H7A0.9300C28—C291.465 (11)
C8—C151.364 (11)C28—H28A0.9700
C8—C91.457 (12)C28—H28B0.9700
C9—C101.382 (12)C29—H29A0.9600
C9—C141.400 (11)C29—H29B0.9600
C10—C111.389 (12)C29—H29C0.9600
C10—H10A0.9300
C14—N1—C15108.4 (9)C8—C15—C16131.9 (10)
C14—N1—H1A125.8O1—C16—O2125.4 (11)
C15—N1—H1A125.8O1—C16—C15121.1 (10)
C2—C1—C8111.1 (7)O2—C16—C15113.2 (10)
C2—C1—C19115.7 (7)C18—C17—O2109.1 (10)
C8—C1—C19114.4 (7)C18—C17—H17A109.9
C2—C1—H1B104.7O2—C17—H17A109.9
C8—C1—H1B104.7C18—C17—H17B109.9
C19—C1—H1B104.7O2—C17—H17B109.9
C25—N2—C26109.7 (7)H17A—C17—H17B108.3
C25—N2—H2A125.1C17—C18—H18A109.5
C26—N2—H2A125.1C17—C18—H18B109.5
C16—O2—C17117.4 (9)H18A—C18—H18B109.5
C7—C2—C3119.2 (11)C17—C18—H18C109.5
C7—C2—C1123.7 (10)H18A—C18—H18C109.5
C3—C2—C1117.1 (10)H18B—C18—H18C109.5
C27—O3—C28119.0 (7)C26—C19—C20106.9 (7)
C4—C3—C2121.6 (15)C26—C19—C1122.8 (8)
C4—C3—H3A119.2C20—C19—C1130.2 (7)
C2—C3—H3A119.2C25—C20—C21118.4 (9)
C3—C4—C5122.0 (19)C25—C20—C19107.5 (8)
C3—C4—H4A119.0C21—C20—C19134.1 (8)
C5—C4—H4A119.0C22—C21—C20118.8 (9)
C6—C5—C4114.4 (18)C22—C21—H21A120.6
C6—C5—H5A122.8C20—C21—H21A120.6
C4—C5—H5A122.8C21—C22—C23120.8 (10)
C5—C6—F120.2 (17)C21—C22—H22A119.6
C5—C6—C7127.9 (14)C23—C22—H22A119.6
F—C6—C7111.8 (15)C24—C23—C22120.8 (10)
C2—C7—C6114.8 (11)C24—C23—H23A119.6
C2—C7—H7A122.6C22—C23—H23A119.6
C6—C7—H7A122.6C23—C24—C25117.8 (9)
C15—C8—C9104.8 (8)C23—C24—H24A121.1
C15—C8—C1127.7 (9)C25—C24—H24A121.1
C9—C8—C1127.4 (9)N2—C25—C24127.8 (9)
C10—C9—C14119.6 (10)N2—C25—C20108.8 (8)
C10—C9—C8133.6 (9)C24—C25—C20123.4 (9)
C14—C9—C8106.8 (9)C27—C26—N2116.7 (8)
C11—C10—C9117.9 (10)C27—C26—C19136.2 (8)
C11—C10—H10A121.0N2—C26—C19107.1 (7)
C9—C10—H10A121.0O4—C27—O3118.1 (8)
C12—C11—C10121.6 (11)O4—C27—C26126.7 (8)
C12—C11—H11A119.2O3—C27—C26114.9 (8)
C10—C11—H11A119.2O3—C28—C29106.7 (8)
C13—C12—C11122.5 (12)O3—C28—H28A110.4
C13—C12—H12A118.7C29—C28—H28A110.4
C11—C12—H12A118.7O3—C28—H28B110.4
C12—C13—C14117.2 (11)C29—C28—H28B110.4
C12—C13—H13A121.4H28A—C28—H28B108.6
C14—C13—H13A121.4C28—C29—H29A109.5
N1—C14—C9108.6 (9)C28—C29—H29B109.5
N1—C14—C13130.4 (11)H29A—C29—H29B109.5
C9—C14—C13121.0 (11)C28—C29—H29C109.5
N1—C15—C8111.4 (9)H29A—C29—H29C109.5
N1—C15—C16116.3 (10)H29B—C29—H29C109.5
C8—C1—C2—C7110.8 (9)C17—O2—C16—O13.8 (15)
C19—C1—C2—C721.8 (13)C17—O2—C16—C15177.6 (9)
C8—C1—C2—C367.4 (11)N1—C15—C16—O111.3 (14)
C19—C1—C2—C3159.9 (8)C8—C15—C16—O1176.3 (10)
C7—C2—C3—C40.8 (16)N1—C15—C16—O2174.6 (8)
C1—C2—C3—C4177.5 (11)C8—C15—C16—O22.1 (15)
C2—C3—C4—C51 (2)C16—O2—C17—C18138.6 (11)
C3—C4—C5—C61 (2)C2—C1—C19—C2672.7 (11)
C4—C5—C6—F179.3 (12)C8—C1—C19—C26156.2 (8)
C4—C5—C6—C73 (2)C2—C1—C19—C20104.3 (11)
C3—C2—C7—C60.4 (13)C8—C1—C19—C2026.8 (14)
C1—C2—C7—C6178.6 (8)C26—C19—C20—C251.7 (10)
C5—C6—C7—C22.2 (17)C1—C19—C20—C25179.0 (9)
F—C6—C7—C2179.2 (8)C26—C19—C20—C21179.0 (10)
C2—C1—C8—C15149.4 (10)C1—C19—C20—C211.6 (18)
C19—C1—C8—C1577.3 (12)C25—C20—C21—C220.2 (15)
C2—C1—C8—C934.5 (13)C19—C20—C21—C22179.5 (10)
C19—C1—C8—C998.8 (11)C20—C21—C22—C230.8 (16)
C15—C8—C9—C10177.8 (11)C21—C22—C23—C240.5 (18)
C1—C8—C9—C101.0 (17)C22—C23—C24—C250.6 (17)
C15—C8—C9—C141.5 (10)C26—N2—C25—C24177.8 (10)
C1—C8—C9—C14178.2 (8)C26—N2—C25—C200.5 (11)
C14—C9—C10—C111.9 (15)C23—C24—C25—N2179.7 (10)
C8—C9—C10—C11178.9 (10)C23—C24—C25—C201.7 (16)
C9—C10—C11—C120.9 (16)C21—C20—C25—N2179.8 (8)
C10—C11—C12—C130.7 (19)C19—C20—C25—N20.7 (11)
C11—C12—C13—C141.2 (18)C21—C20—C25—C241.4 (15)
C15—N1—C14—C90.3 (10)C19—C20—C25—C24179.1 (9)
C15—N1—C14—C13179.8 (9)C25—N2—C26—C27179.2 (8)
C10—C9—C14—N1178.7 (9)C25—N2—C26—C191.5 (10)
C8—C9—C14—N10.7 (10)C20—C19—C26—C27179.0 (11)
C10—C9—C14—C131.4 (14)C1—C19—C26—C271.4 (16)
C8—C9—C14—C13179.2 (8)C20—C19—C26—N21.9 (10)
C12—C13—C14—N1179.8 (10)C1—C19—C26—N2179.5 (8)
C12—C13—C14—C90.1 (15)C28—O3—C27—O43.8 (13)
C14—N1—C15—C81.3 (11)C28—O3—C27—C26178.8 (8)
C14—N1—C15—C16175.3 (8)N2—C26—C27—O47.4 (14)
C9—C8—C15—N11.7 (10)C19—C26—C27—O4173.6 (10)
C1—C8—C15—N1178.5 (8)N2—C26—C27—O3178.1 (7)
C9—C8—C15—C16174.4 (9)C19—C26—C27—O31.0 (16)
C1—C8—C15—C168.8 (16)C27—O3—C28—C29178.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.162.918 (11)147
N2—H2A···O4ii0.862.082.904 (9)159
C11—H11A···O4iii0.932.583.498 (13)171
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Funding information

Funding for this research was provided by: Natural Science Foundation of Jiangsu Province (grant No. BK20181486); Natural Science Foundation of the Jiangsu Higher Education Institutions (grant No. 17KJB320001); Training program of Students Innovation and Entrepreneurship in Jiangsu Province (grant No. 201812920002Y); Overseas Training Program for Excellent Young Teachers and Principals of Jiangsu Province; Qing Lan Project of Jiangsu Province; Natural Science Foundation of Nanjing Polytechnic Institute (grant No. NHKY-2019-07).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLu, X.-H., Sun, H.-S., Cai, Y., Chen, L.-L. & Chen, Y.-F. (2017). Acta Cryst. E73, 1790–1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595.  CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds