metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Diamminebis(1,2-di­cyano­ethene-1,2-di­thiol­ato)platinum(IV)

CROSSMARK_Color_square_no_text.svg

aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bDepartment of Chemistry, University of North Texas, 1508 W. Mulberry, Denton, TX, 76201, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by R. J. Butcher, Howard University, USA (Received 3 July 2020; accepted 17 July 2020; online 28 July 2020)

The title compound, [Pt(C4N2S2)2(NH3)2], represents an octa­hedral platinum(IV) complex with two trans-ammine and two mnt (mnt = 1,2-di­cyano­ethene-1,2-di­thiol­ato) ligands. The Pt—N and Pt—S distances are consistent with those in other platinum(IV) complexes. As a result of a slight canting of the coordination of the mnt ligand to the platinum(IV) atom, the nitrile nitro­gen atoms are positioned suitably to hydrogen-bond with adjacent ammines.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The neutral title complex contains two ammine and two mnt ligands forming an octa­hedral platinum(IV) complex. The C—S distances of 1.747 (3) and 1.744 (3) Å and the C=C distance of 1.358 (4) Å support the ene-1,2-di­thiol­ate form of the mnt ligand (Güntner et al., 1989[Güntner, W., Gliemann, G., Klement, U. & Zabel, M. (1989). Inorg. Chim. Acta, 165, 51-56.]; Chandrasekaran et al., 2014[Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192-9205.]). The two ammine ligands are trans with a Pt—N bond length of 2.055 (2) Å, which is consistent with the Pt—N distances in other platinum(IV) complexes of 2.056 (9) (Fanwick & Huckaby, 1982[Fanwick, P. E. & Huckaby, J. L. (1982). Inorg. Chem. 21, 3067-3071.]) and 2.053 (5) Å (Brawner et al., 1978[Brawner, S. A., Lin, I. J. B., Kim, J.-H. & Everett, G. W. (1978). Inorg. Chem. 17, 1304-1308.]). The Pt—S distances of 2.3434 (8) and 2.3461 (7) Å are longer than in square-planar platinum complexes with mnt such as the PtII—S distances of 2.290 and 2.282 Å in [Pt(mnt)2]2− (Günter et al., 1989[Güntner, W., Gliemann, G., Klement, U. & Zabel, M. (1989). Inorg. Chim. Acta, 165, 51-56.]) or the PtIII—S distance of 2.262 Å in [Pt(mnt)2] (Mochida et al., 2010[Mochida, T., Nagabuchi, E. & Ueda, M. (2010). Inorg. Chim. Acta, 363, 4108-4111.]). This longer Pt—S bond is comparable, however, with the Pt—S distance of 2.3619 Å found in a similar octa­hedral platinum(IV) complex with two di­thiol­ene and two trans phosphine ligands (Chandrasekaran et al., 2014[Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192-9205.]). The coordination of the mnt ligands is slightly canted from the platinum(IV) atom, which allows for hydrogen bonding between the nitrile nitro­gen atoms and adjacent ammines (Fig. 1[link], Table 1[link]). These interactions lead to the formation of a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.89 2.16 3.016 (3) 160
N3—H3B⋯S2ii 0.89 2.73 3.610 (3) 171
N3—H3C⋯N1iii 0.89 2.26 3.011 (3) 142
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Displacement ellipsoid plot 50% probability of all non-H atoms showing N—H hydrogen bonding between nitrile nitro­gen atoms and hydrogen atoms on adjacent ammines. Symmetry codes: (i) −x, y − [{1\over 2}], −z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z + [{1\over 2}].

Synthesis and crystallization

A solution of 13.9 mg (7.46 × 10 −5mol) of Na2mnt dissolved in 10 mL of water was combined with a solution of 25 mg (7.48 × 10−5 mol) of tetra­ammineplatinum(II) chloride dissolved in 25 mL of water, and stirred for 2 h in air. The solvent was removed using a vacuum oven to give 26.5 mg of a brown product isolated [1H NMR (d-DMSO) 4.23ppm]. Light-orange crystals of the title compound were grown by liquid diffusion of diethyl ether into a methanol solution of the synthesized product in a tall, narrow tube that was covered with parafilm. The platinum(II) di­thiol­ene complex is presumed to oxidize to the ammine-stabilized octa­hedral platinum(IV) di­thiol­ene compound via air, demonstrating a synthetic route toward stable neutral PtIV di­thiol­ene complexes (Geiger et al., 2001[Geiger, W. E., Barrière, F., LeSuer, R. J. & Trupia, S. (2001). Inorg. Chem. 40, 2472-2473.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C4N2S2)2(NH3)2]
Mr 509.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.1778 (3), 7.7700 (4), 14.8862 (7)
β (°) 95.935 (4)
V3) 710.73 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.45
Crystal size (mm) 0.05 × 0.02 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.509, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8027, 1556, 1375
Rint 0.034
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.038, 1.05
No. of reflections 1556
No. of parameters 89
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.54
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-Diamminebis(1,2-dicyanoethene-1,2-dithiolato)platinum(IV) top
Crystal data top
[Pt(C4N2S2)2(NH3)2]F(000) = 476
Mr = 509.52Dx = 2.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1778 (3) ÅCell parameters from 5207 reflections
b = 7.7700 (4) Åθ = 2.7–29.7°
c = 14.8862 (7) ŵ = 10.45 mm1
β = 95.935 (4)°T = 100 K
V = 710.73 (6) Å3Plate, clear light orange
Z = 20.05 × 0.02 × 0.01 mm
Data collection top
Rigaku XtaLAB Synergy, Dualflex, HyPix
diffractometer
1556 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source1375 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.0000 pixels mm-1θmax = 27.1°, θmin = 2.8°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 99
Tmin = 0.509, Tmax = 1.000l = 1819
8027 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0154P)2 + 0.3678P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1556 reflectionsΔρmax = 0.62 e Å3
89 parametersΔρmin = 0.54 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.5000000.5000000.5000000.00819 (6)
S10.62740 (13)0.46855 (9)0.35800 (5)0.01208 (16)
S20.20123 (12)0.65846 (10)0.43437 (5)0.01294 (16)
N10.4195 (5)0.4964 (3)0.1195 (2)0.0179 (6)
N20.0905 (4)0.7217 (3)0.20727 (17)0.0182 (6)
N30.3182 (4)0.2794 (3)0.47944 (16)0.0125 (5)
H3A0.2838110.2635280.4204760.015*
H3B0.1970760.2891370.5065960.015*
H3C0.3951090.1898250.5023330.015*
C10.4056 (5)0.5506 (4)0.2889 (2)0.0110 (6)
C20.2301 (5)0.6263 (4)0.32026 (18)0.0116 (6)
C30.4129 (5)0.5226 (3)0.1948 (2)0.0120 (6)
C40.0516 (5)0.6804 (4)0.25742 (19)0.0124 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00671 (9)0.01158 (10)0.00598 (9)0.00083 (6)0.00073 (6)0.00050 (6)
S10.0099 (4)0.0183 (4)0.0079 (3)0.0023 (3)0.0005 (3)0.0006 (3)
S20.0104 (3)0.0193 (4)0.0088 (3)0.0045 (3)0.0006 (3)0.0021 (3)
N10.0231 (16)0.0163 (15)0.0136 (14)0.0000 (11)0.0009 (12)0.0000 (10)
N20.0171 (14)0.0228 (15)0.0143 (13)0.0030 (12)0.0008 (11)0.0019 (11)
N30.0099 (13)0.0157 (13)0.0117 (12)0.0002 (10)0.0008 (10)0.0027 (10)
C10.0123 (15)0.0119 (14)0.0085 (14)0.0017 (12)0.0010 (12)0.0009 (11)
C20.0136 (15)0.0119 (15)0.0086 (14)0.0020 (12)0.0028 (11)0.0024 (11)
C30.0149 (16)0.0076 (15)0.0124 (16)0.0001 (11)0.0035 (12)0.0008 (11)
C40.0135 (15)0.0111 (15)0.0127 (14)0.0019 (12)0.0014 (12)0.0002 (12)
Geometric parameters (Å, º) top
Pt1—S1i2.3434 (8)N1—C31.143 (4)
Pt1—S12.3434 (8)N2—C41.138 (4)
Pt1—S22.3461 (7)N3—H3A0.8900
Pt1—S2i2.3461 (7)N3—H3B0.8900
Pt1—N3i2.055 (2)N3—H3C0.8900
Pt1—N32.055 (2)C1—C21.358 (4)
S1—C11.747 (3)C1—C31.423 (4)
S2—C21.744 (3)C2—C41.433 (4)
S1i—Pt1—S1180.0C2—S2—Pt1100.09 (10)
S1i—Pt1—S289.87 (3)Pt1—N3—H3A109.5
S1—Pt1—S2i89.87 (3)Pt1—N3—H3B109.5
S1—Pt1—S290.13 (3)Pt1—N3—H3C109.5
S1i—Pt1—S2i90.13 (3)H3A—N3—H3B109.5
S2i—Pt1—S2180.0H3A—N3—H3C109.5
N3i—Pt1—S1i90.46 (7)H3B—N3—H3C109.5
N3—Pt1—S1i89.54 (7)C2—C1—S1124.1 (2)
N3—Pt1—S190.46 (7)C2—C1—C3120.8 (3)
N3i—Pt1—S189.54 (7)C3—C1—S1114.9 (2)
N3i—Pt1—S291.06 (7)C1—C2—S2124.2 (2)
N3—Pt1—S2i91.06 (7)C1—C2—C4119.4 (3)
N3—Pt1—S288.94 (7)C4—C2—S2116.4 (2)
N3i—Pt1—S2i88.94 (7)N1—C3—C1178.5 (3)
N3—Pt1—N3i180.0N2—C4—C2179.3 (3)
C1—S1—Pt1100.20 (11)
Pt1—S1—C1—C26.6 (3)S1—C1—C2—S21.7 (4)
Pt1—S1—C1—C3169.3 (2)S1—C1—C2—C4176.5 (2)
Pt1—S2—C2—C18.8 (3)C3—C1—C2—S2177.4 (2)
Pt1—S2—C2—C4169.4 (2)C3—C1—C2—C40.8 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2ii0.892.163.016 (3)160
N3—H3B···S2iii0.892.733.610 (3)171
N3—H3C···N1iv0.892.263.011 (3)142
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2.
 

Funding information

We are grateful of the Welch Foundation (AD-0007) for a department grant supporting undergraduate research and the NSF MRI for a Jeol ECZ-400 NMR at Austin College (CHE-1725651) and a Rigaku XtaLAB Synergy-S X-ray diffractometer at UNT (CHE-1726652).

References

First citationBrawner, S. A., Lin, I. J. B., Kim, J.-H. & Everett, G. W. (1978). Inorg. Chem. 17, 1304–1308.  CSD CrossRef CAS Google Scholar
First citationChandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192–9205.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFanwick, P. E. & Huckaby, J. L. (1982). Inorg. Chem. 21, 3067–3071.  CrossRef ICSD CAS Google Scholar
First citationGeiger, W. E., Barrière, F., LeSuer, R. J. & Trupia, S. (2001). Inorg. Chem. 40, 2472–2473.  CrossRef PubMed CAS Google Scholar
First citationGüntner, W., Gliemann, G., Klement, U. & Zabel, M. (1989). Inorg. Chim. Acta, 165, 51–56.  Google Scholar
First citationMochida, T., Nagabuchi, E. & Ueda, M. (2010). Inorg. Chim. Acta, 363, 4108–4111.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds