organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 10α-hy­dr­oxy-4,9-di­methyl-14-oxo-3,8,15-trioxa­tetra­cyclo­[10.3.0.02,4.07,9]penta­decane-13-spiro-5′-pyrazole-3′-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Organic and Analytical Chemistry, Faculty of Sciences and Technics, Sultan Moulay Slimane University, BP 523, Béni-Mellal, Morocco, bLaboratoire de Chimie Physique et Chimie Biorganique, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, BP 146 Mohammedia, Morocco, and cLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: fatimaoutahar@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 3 July 2020; accepted 10 July 2020; online 21 July 2020)

The ten-membered ring in the title mol­ecule, C25H29ClN2O7, adopts an approximate chair–chair conformation, whereas the five-membered furan and pyrazole rings display envelope conformations. The mean plane of the furan ring is almost perpendicular to that of the pyrazole ring, as indicated by the dihedral angle between them of 86.45 (9)°. The pyrazole ring is slightly inclined to the plane of the attached phenyl ring, subtending a dihedral angle of 16.88 (8)°. The conformation of the mol­ecule is stabilized by six intra­molecular hydrogen bonds and crystal cohesion is ensured by five C—H⋯O hydrogen bonds, in addition to C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Anvillea radiata is an endemic plant that grows in northern Africa, particularly in the two Maghreb countries Morocco and Algeria. It belongs to the Asteraceae family and is widely used in Moroccan and Algerian traditional medicine for the treatment of dysentery and gastrointestinal disorders (Bellakhdar, 1997[Bellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272-274. Paris: Edition Ibis Press.]). It also exhibits hypoglycemic activity (Qureshi et al., 1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]), and has been reported to possess anti­tumoral activity (Abdel Sattar et al.,1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]). We have previously shown that the aerial parts of anvillea radiata could be used as a renewable source of 9α-hy­droxy­parthenolide (El Hassany et al., 2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidour, A. & Barrero, A. F. (2004). Fitoterapia, 75, 573-576.]). In order to prepare products with high added value that can be used in the pharmacology and cosmetics industries, we have developed a synthesis of a new spiro-pyrazole by 1,3-dipolar cyclo­addition. Treating 9α-hy­droxy-1β,10α-ep­oxy­parthenolide with 1.2 equivalents amount of N-para-chloro­phenyl­hydrazono α-bromo­glyoxylate at room temperature gives the title compound ethyl 10α-hy­droxy-4,9-dimethyl-14-oxo-3,8,15-trioxa­tetra­cyclo­[10.3.0.02,4.07,9]penta­decane-13-spiro-5′-pyrazole-3′-carb­oxyl­ate. The structure of this new product was confirmed by single-crystal X-ray diffraction.

The mol­ecule is built up from two fused five- and ten-membered rings, with two additional ep­oxy ring systems and a 4,5-di­hydro-3-phenyl­pyrazole group as a substituent (Fig. 1[link]). The ten-membered ring adopts an approximate chair–chair conformation, while the pyrazole and the furan rings adopt envelope conformations, with the C13 and C9 atoms as the, respective flaps. The dihedral angle between the mean plan of the pyrazole ring and that of the furan ring is of 86.45 (9)°. The phenyl ring is inclined to the plane of the attached furan ring by a dihedral angle of 16.88 (8)°. The conformation of the mol­ecule is stabilized by six intra­molecular hydrogen bonds (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O7i 0.97 2.51 3.340 (2) 144
C8—H8B⋯N2 0.97 2.52 2.928 (2) 105
C5—H5⋯O3 0.98 2.50 2.853 (2) 101
C9—H9⋯O3 0.98 2.35 2.850 (2) 111
C11—H11A⋯O7i 0.96 2.48 3.316 (3) 145
C15—H15B⋯O1ii 0.97 2.49 3.326 (2) 144
C19—H19B⋯O2iii 0.96 2.52 3.434 (3) 158
C21—H21⋯O4 0.93 2.53 3.340 (2) 145
C25—H25⋯N1 0.93 2.38 2.713 (2) 101
C22—H22⋯O3iv 0.93 2.49 3.295 (2) 146
O3—H3⋯O2 0.82 2.26 2.713 (2) 115
C18—H18BCg5v 0.97 3.07 3.436 104
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{5\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) x+1, y, z.
[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme showing the intra­molecular hydrogen bonds (dashed bonds). Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the mol­ecules are linked together through five hydrogen bonds (Table 1[link]) and one C—H⋯π inter­action to build an aggregate as shown in Fig. 2[link]. An overall view of the crystal packing is shown in Fig. 3[link].

[Figure 2]
Figure 2
A projection showing the mol­ecules connected by hydrogen bonds (dashed cyan lines) and a C—H⋯π inter­action (dashed green line).
[Figure 3]
Figure 3
Crystal packing of the title compound showing the mol­ecules stacked approximately along the b axis.

Synthesis and crystallization

The title compound was obtained by the treatment of 9α-hy­droxy­parthenolide (500 mg) with m-chloro­perbenzoic acid (250 mg) in CH2Cl2 (75 ml). The mixture was stirred for 30 min at room temperature and treated with an aqueous solution of Na2CO3 (10%), then extracted with CH2Cl2. The residue obtained after evaporation of CH2Cl2 was chromatographed on a silica gel column with hexa­ne–ethyl acetate (60/40) as eluent to isolate 350 mg of 9α-hy­droxy-1β,10α-ep­oxy­parthenolide. To 300 mg of this compound dissolved in 50 ml of di­chloro­methane was added 1.2 equivalents of N-para-chloro­phenyl­hydrazono α-bromo­glyoxylate in the presence of 0.3 equivalents of caesium carbonate (Cs2CO3). The reaction mixture was stirred at room temperature for 3 h, and then the reaction was stopped by adding water (20 ml) and extracted three times with di­chloro­methane (3 × 30 ml). The organic phase was dried over sodium sulfate and then evaporated under vacuum. Chromatography of the residue obtained on silica gel column eluting with hexane ethyl acetate (70/30), allowed us to obtain the title compound in a 94% yield. Crystallization was carried out at room temperature from an ethyl acetate solution (m.p. 438–440 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C25H29ClN2O7
Mr 504.95
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 9.2324 (3), 11.1656 (4), 23.3497 (8)
V3) 2407.01 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.37 × 0.29 × 0.22
 
Data collection
Diffractometer Bruker X8 APEX3
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.680, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 72348, 9629, 8323
Rint 0.041
(sin θ/λ)max−1) 0.781
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.04
No. of reflections 9629
No. of parameters 319
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.20
Absolute structure Flack x determined using 3371 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.009 (13)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: WinGX and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Ethyl 10α-hydroxy-4,9-dimethyl-14-oxo-3,8,15-trioxatetracyclo[10.3.0.02,4.07,9]pentadecane-13-spiro-5'-pyrazole-3'-carboxylate top
Crystal data top
C25H29ClN2O7Dx = 1.393 Mg m3
Mr = 504.95Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9629 reflections
a = 9.2324 (3) Åθ = 2.5–33.7°
b = 11.1656 (4) ŵ = 0.21 mm1
c = 23.3497 (8) ÅT = 296 K
V = 2407.01 (14) Å3Block, colourless
Z = 40.37 × 0.29 × 0.22 mm
F(000) = 1064
Data collection top
Bruker X8 APEX3
diffractometer
9629 independent reflections
Radiation source: fine-focus sealed tube8323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 33.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.680, Tmax = 0.748k = 1617
72348 measured reflectionsl = 3636
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.1273P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.29 e Å3
9629 reflectionsΔρmin = 0.20 e Å3
319 parametersAbsolute structure: Flack x determined using 3371 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.009 (13)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7150 (2)0.67174 (15)0.52147 (6)0.0358 (3)
H10.8161460.6966580.5258740.043*
C20.6528 (2)0.61025 (18)0.57192 (7)0.0398 (4)
C30.7498 (2)0.59497 (19)0.62349 (7)0.0431 (4)
H3A0.6913330.5968450.6579810.052*
H3B0.8175340.6613130.6252300.052*
C40.8344 (2)0.4771 (2)0.62139 (7)0.0452 (4)
H4A0.9034390.4746560.6526980.054*
H4B0.7681350.4103610.6259310.054*
C50.91385 (19)0.46530 (17)0.56510 (7)0.0387 (3)
H50.9565020.5404040.5514150.046*
C60.8807 (2)0.37932 (14)0.51919 (7)0.0353 (3)
C70.92537 (18)0.40590 (14)0.45781 (7)0.0325 (3)
H70.9512810.3289820.4403870.039*
C80.80988 (19)0.46221 (13)0.41933 (6)0.0327 (3)
H8A0.7175320.4254180.4284330.039*
H8B0.8324840.4417350.3799600.039*
C90.79126 (15)0.59873 (13)0.42294 (5)0.0260 (2)
H90.8823220.6313580.4378270.031*
C100.66934 (18)0.64761 (13)0.46090 (6)0.0303 (3)
H100.5860340.5932260.4602470.036*
C110.5270 (3)0.5249 (3)0.56737 (10)0.0630 (7)
H11A0.4719150.5269590.6022150.095*
H11B0.5626510.4451520.5611030.095*
H11C0.4663410.5480480.5358750.095*
C120.7689 (4)0.2822 (2)0.52444 (10)0.0658 (7)
H12A0.8079430.2083990.5100440.099*
H12B0.6846120.3036660.5026760.099*
H12C0.7427730.2724110.5639580.099*
C130.76350 (15)0.65963 (12)0.36420 (5)0.0251 (2)
C140.67465 (18)0.77038 (14)0.38029 (7)0.0319 (3)
C150.90386 (16)0.69343 (14)0.33170 (6)0.0298 (3)
H15A0.8995530.7746320.3170380.036*
H15B0.9886810.6848240.3558640.036*
C160.90345 (15)0.60317 (14)0.28410 (6)0.0278 (2)
C171.02307 (16)0.57542 (14)0.24392 (6)0.0299 (3)
C181.26216 (17)0.62649 (17)0.21770 (8)0.0381 (3)
H18A1.2751570.5412980.2113930.046*
H18B1.3483720.6568880.2364730.046*
C191.2428 (2)0.6883 (2)0.16137 (9)0.0523 (5)
H19A1.1660450.6504050.1403870.078*
H19B1.3311070.6833190.1397850.078*
H19C1.2188790.7709020.1677930.078*
C200.55559 (14)0.52443 (13)0.32367 (6)0.0268 (2)
C210.44150 (17)0.56677 (15)0.35754 (7)0.0333 (3)
H210.4534880.6365010.3787970.040*
C220.31002 (16)0.50546 (17)0.35975 (7)0.0355 (3)
H220.2351070.5332220.3828290.043*
C230.29220 (15)0.40303 (15)0.32729 (7)0.0327 (3)
C240.40232 (18)0.36072 (16)0.29257 (8)0.0376 (3)
H240.3885800.2921860.2705980.045*
C250.53355 (17)0.42143 (15)0.29079 (7)0.0341 (3)
H250.6076680.3931860.2674440.041*
Cl10.12664 (5)0.32803 (5)0.32768 (2)0.04545 (11)
N10.78250 (14)0.54795 (13)0.27844 (5)0.0302 (2)
N20.68834 (13)0.58649 (12)0.31991 (5)0.0294 (2)
O10.6144 (2)0.73304 (15)0.55821 (6)0.0593 (4)
O21.0048 (2)0.36152 (17)0.55599 (7)0.0592 (4)
O31.05034 (14)0.47806 (14)0.45565 (7)0.0471 (3)
H31.0771140.4934260.4883230.071*
O40.63046 (15)0.76298 (11)0.43545 (5)0.0379 (3)
O50.64470 (18)0.85384 (13)0.35076 (6)0.0503 (3)
O61.13655 (12)0.64598 (11)0.25448 (5)0.0344 (2)
O71.01925 (16)0.49953 (14)0.20772 (6)0.0481 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0502 (9)0.0350 (7)0.0223 (6)0.0008 (6)0.0083 (6)0.0050 (5)
C20.0431 (8)0.0529 (9)0.0235 (6)0.0019 (7)0.0103 (6)0.0016 (6)
C30.0520 (10)0.0554 (10)0.0218 (6)0.0080 (8)0.0058 (6)0.0037 (6)
C40.0549 (10)0.0544 (10)0.0262 (6)0.0055 (9)0.0030 (7)0.0020 (7)
C50.0371 (7)0.0463 (9)0.0326 (7)0.0033 (7)0.0037 (6)0.0004 (6)
C60.0423 (8)0.0345 (7)0.0290 (6)0.0011 (6)0.0021 (6)0.0044 (5)
C70.0360 (7)0.0302 (6)0.0312 (6)0.0053 (5)0.0047 (5)0.0003 (5)
C80.0461 (8)0.0270 (6)0.0251 (6)0.0038 (6)0.0025 (6)0.0038 (5)
C90.0321 (6)0.0270 (6)0.0189 (5)0.0023 (5)0.0027 (4)0.0017 (4)
C100.0386 (7)0.0307 (6)0.0214 (5)0.0032 (5)0.0066 (5)0.0009 (5)
C110.0445 (10)0.108 (2)0.0362 (9)0.0203 (12)0.0057 (8)0.0106 (11)
C120.102 (2)0.0489 (11)0.0470 (11)0.0351 (13)0.0123 (12)0.0013 (9)
C130.0279 (5)0.0279 (6)0.0196 (5)0.0006 (5)0.0026 (4)0.0014 (4)
C140.0359 (7)0.0314 (7)0.0284 (6)0.0045 (6)0.0046 (5)0.0004 (5)
C150.0310 (6)0.0348 (7)0.0237 (5)0.0048 (5)0.0048 (5)0.0035 (5)
C160.0279 (6)0.0362 (6)0.0192 (5)0.0014 (5)0.0029 (4)0.0010 (5)
C170.0291 (6)0.0381 (7)0.0225 (6)0.0017 (5)0.0040 (5)0.0005 (5)
C180.0272 (6)0.0469 (8)0.0403 (8)0.0042 (6)0.0079 (6)0.0079 (7)
C190.0459 (10)0.0685 (13)0.0424 (9)0.0081 (10)0.0093 (8)0.0156 (9)
C200.0235 (5)0.0342 (6)0.0227 (5)0.0012 (5)0.0004 (4)0.0026 (5)
C210.0278 (6)0.0410 (8)0.0311 (7)0.0008 (6)0.0032 (5)0.0049 (6)
C220.0254 (6)0.0477 (8)0.0335 (7)0.0014 (6)0.0035 (5)0.0017 (6)
C230.0258 (5)0.0414 (7)0.0309 (6)0.0026 (5)0.0030 (5)0.0067 (6)
C240.0344 (7)0.0391 (8)0.0393 (8)0.0029 (6)0.0002 (6)0.0058 (6)
C250.0287 (6)0.0376 (7)0.0360 (7)0.0008 (6)0.0035 (5)0.0052 (6)
Cl10.03149 (17)0.0572 (3)0.0476 (2)0.01126 (17)0.00022 (16)0.00024 (19)
N10.0288 (5)0.0417 (6)0.0200 (4)0.0019 (5)0.0030 (4)0.0039 (4)
N20.0257 (5)0.0410 (6)0.0213 (5)0.0025 (5)0.0030 (4)0.0052 (4)
O10.0854 (12)0.0599 (9)0.0325 (6)0.0294 (9)0.0141 (7)0.0095 (6)
O20.0627 (9)0.0719 (10)0.0430 (7)0.0267 (8)0.0159 (7)0.0009 (7)
O30.0330 (6)0.0561 (8)0.0522 (8)0.0009 (5)0.0109 (6)0.0037 (6)
O40.0488 (6)0.0357 (5)0.0292 (5)0.0145 (5)0.0090 (5)0.0007 (4)
O50.0651 (9)0.0426 (7)0.0433 (7)0.0187 (7)0.0090 (6)0.0122 (6)
O60.0281 (5)0.0439 (6)0.0311 (5)0.0027 (4)0.0051 (4)0.0025 (4)
O70.0467 (7)0.0599 (8)0.0378 (6)0.0109 (6)0.0138 (5)0.0204 (6)
Geometric parameters (Å, º) top
C1—O11.438 (2)C12—H12C0.9600
C1—C21.479 (2)C13—N21.4893 (18)
C1—C101.500 (2)C13—C141.531 (2)
C1—H10.9800C13—C151.5484 (19)
C2—O11.452 (3)C14—O51.192 (2)
C2—C111.506 (3)C14—O41.3535 (19)
C2—C31.510 (3)C15—C161.500 (2)
C3—C41.531 (3)C15—H15A0.9700
C3—H3A0.9700C15—H15B0.9700
C3—H3B0.9700C16—N11.2823 (19)
C4—C51.511 (3)C16—C171.4819 (19)
C4—H4A0.9700C17—O71.198 (2)
C4—H4B0.9700C17—O61.3339 (19)
C5—O21.447 (2)C18—O61.4594 (19)
C5—C61.471 (2)C18—C191.496 (3)
C5—H50.9800C18—H18A0.9700
C6—O21.446 (2)C18—H18B0.9700
C6—C121.502 (3)C19—H19A0.9600
C6—C71.521 (2)C19—H19B0.9600
C7—O31.408 (2)C19—H19C0.9600
C7—C81.530 (2)C20—C251.398 (2)
C7—H70.9800C20—C211.399 (2)
C8—C91.536 (2)C20—N21.4107 (17)
C8—H8A0.9700C21—C221.395 (2)
C8—H8B0.9700C21—H210.9300
C9—C101.5333 (19)C22—C231.382 (3)
C9—C131.5522 (18)C22—H220.9300
C9—H90.9800C23—C241.383 (2)
C10—O41.4635 (19)C23—Cl11.7429 (15)
C10—H100.9800C24—C251.389 (2)
C11—H11A0.9600C24—H240.9300
C11—H11B0.9600C25—H250.9300
C11—H11C0.9600N1—N21.3706 (16)
C12—H12A0.9600O3—H30.8200
C12—H12B0.9600
O1—C1—C259.68 (12)C6—C12—H12A109.5
O1—C1—C10117.82 (16)C6—C12—H12B109.5
C2—C1—C10123.95 (16)H12A—C12—H12B109.5
O1—C1—H1114.7C6—C12—H12C109.5
C2—C1—H1114.7H12A—C12—H12C109.5
C10—C1—H1114.7H12B—C12—H12C109.5
O1—C2—C158.73 (11)N2—C13—C14111.33 (12)
O1—C2—C11113.2 (2)N2—C13—C15100.56 (10)
C1—C2—C11122.45 (16)C14—C13—C15111.83 (12)
O1—C2—C3115.30 (16)N2—C13—C9116.76 (12)
C1—C2—C3117.21 (16)C14—C13—C9103.04 (10)
C11—C2—C3116.23 (17)C15—C13—C9113.68 (11)
C2—C3—C4111.96 (15)O5—C14—O4121.89 (15)
C2—C3—H3A109.2O5—C14—C13127.88 (14)
C4—C3—H3A109.2O4—C14—C13110.23 (12)
C2—C3—H3B109.2C16—C15—C13101.37 (11)
C4—C3—H3B109.2C16—C15—H15A111.5
H3A—C3—H3B107.9C13—C15—H15A111.5
C5—C4—C3110.50 (15)C16—C15—H15B111.5
C5—C4—H4A109.6C13—C15—H15B111.5
C3—C4—H4A109.6H15A—C15—H15B109.3
C5—C4—H4B109.6N1—C16—C17118.89 (13)
C3—C4—H4B109.6N1—C16—C15113.68 (12)
H4A—C4—H4B108.1C17—C16—C15127.41 (12)
O2—C5—C659.40 (12)O7—C17—O6124.86 (14)
O2—C5—C4118.64 (16)O7—C17—C16124.96 (14)
C6—C5—C4126.13 (16)O6—C17—C16110.18 (12)
O2—C5—H5113.8O6—C18—C19110.71 (15)
C6—C5—H5113.8O6—C18—H18A109.5
C4—C5—H5113.8C19—C18—H18A109.5
O2—C6—C559.45 (12)O6—C18—H18B109.5
O2—C6—C12113.36 (17)C19—C18—H18B109.5
C5—C6—C12123.69 (16)H18A—C18—H18B108.1
O2—C6—C7111.83 (15)C18—C19—H19A109.5
C5—C6—C7120.19 (14)C18—C19—H19B109.5
C12—C6—C7113.85 (16)H19A—C19—H19B109.5
O3—C7—C6111.58 (14)C18—C19—H19C109.5
O3—C7—C8108.36 (13)H19A—C19—H19C109.5
C6—C7—C8116.41 (14)H19B—C19—H19C109.5
O3—C7—H7106.7C25—C20—C21118.60 (13)
C6—C7—H7106.7C25—C20—N2119.77 (13)
C8—C7—H7106.6C21—C20—N2121.55 (13)
C7—C8—C9116.98 (13)C22—C21—C20120.68 (15)
C7—C8—H8A108.1C22—C21—H21119.7
C9—C8—H8A108.1C20—C21—H21119.7
C7—C8—H8B108.1C23—C22—C21119.32 (14)
C9—C8—H8B108.1C23—C22—H22120.3
H8A—C8—H8B107.3C21—C22—H22120.3
C10—C9—C8117.84 (13)C22—C23—C24121.10 (14)
C10—C9—C13103.52 (11)C22—C23—Cl1119.95 (12)
C8—C9—C13113.88 (11)C24—C23—Cl1118.92 (13)
C10—C9—H9107.0C23—C24—C25119.47 (15)
C8—C9—H9107.0C23—C24—H24120.3
C13—C9—H9107.0C25—C24—H24120.3
O4—C10—C1107.08 (12)C24—C25—C20120.81 (14)
O4—C10—C9104.98 (11)C24—C25—H25119.6
C1—C10—C9113.75 (13)C20—C25—H25119.6
O4—C10—H10110.3C16—N1—N2109.17 (12)
C1—C10—H10110.3N1—N2—C20116.16 (12)
C9—C10—H10110.3N1—N2—C13111.55 (11)
C2—C11—H11A109.5C20—N2—C13129.12 (11)
C2—C11—H11B109.5C1—O1—C261.59 (11)
H11A—C11—H11B109.5C6—O2—C561.15 (11)
C2—C11—H11C109.5C7—O3—H3109.5
H11A—C11—H11C109.5C14—O4—C10111.49 (11)
H11B—C11—H11C109.5C17—O6—C18115.30 (13)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O7i0.972.513.340 (2)144
C8—H8B···N20.972.522.928 (2)105
C5—H5···O30.982.502.853 (2)101
C9—H9···O30.982.352.850 (2)111
C11—H11A···O7i0.962.483.316 (3)145
C15—H15B···O1ii0.972.493.326 (2)144
C19—H19B···O2iii0.962.523.434 (3)158
C21—H21···O40.932.533.340 (2)145
C25—H25···N10.932.382.713 (2)101
C22—H22···O3iv0.932.493.295 (2)146
O3—H3···O20.822.262.713 (2)115
C18—H18B···Cg5v0.973.073.436104
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+5/2, y+1, z1/2; (iv) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray measurements.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidour, A. & Barrero, A. F. (2004). Fitoterapia, 75, 573–576.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds