organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(2,2-Dioxo-3,4-di­hydro­benzo[e][1,2,3]oxa­thiazin-4-yl)-3-fluoro-1-phenyl­indolin-2-one

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, People's Republic of China
*Correspondence e-mail: lingyan.chen@hotmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 19 May 2020; accepted 24 July 2020; online 31 July 2020)

The title compound, C21H15FN2O4S, contains two chiral carbon centres, but crystal symmetry generates a racemic mixture. The crystal structure features N—H⋯O hydrogen bonding. The sulfonate group is disordered with an occupancy ratio of 0.933 (4):0.067 (4).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The incorporation of one or more fluorine atoms into an organic mol­ecule can result in improved thermal/metabolic stability, bioactivity and lipophilicity (Purser et al., 2008[Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320-330.]). In this context, the β-fluoro­amine motif is an important structural feature and has been found in a number of drug candidates (Zhao et al., 2019[Zhao, J., Li, Y., Chen, L.-Y. & Ren, X. (2019). J. Org. Chem. 84, 5099-5108.]). Consequently, the synthesis of chiral mol­ecules with a fluorinated carbon center has attracted recent attention (Shang et al., 2015[Shang, H., Li, Y., Li, X. & Ren, X. (2015). J. Org. Chem. 80, 8739-8747.]; Chen et al., 2017[Chen, X., Li, Y., Zhao, J., Zheng, B., Lu, Q. & Ren, X. (2017). Adv. Synth. Catal. 359, 3057-3062.]; Paladhi et al., 2017[Paladhi, S., Park, S. Y., Yang, J.-W. & Song, C.-E. (2017). Org. Lett. 19, 5336-5339.]; Zheng et al., 2018[Zheng, B.-Q., Chen, L.-Y., Zhao, J.-B., Ji, J., Qiu, Z.-B., Ren, X. & Li, Y. (2018). Org. Biomol. Chem. 16, 8989-8993.]). As part of our work in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder component is shown

The geometric parameters do not show any unusual features. In the crystal, mol­ecules are connected by pairwise N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]) to generate centrosymmetric R22(12) loops.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H12⋯O1i 0.89 (3) 1.99 (3) 2.868 (2) 166 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A view of the packing diagram showing the centrosymmetric dimers with N—H⋯O hydrogen bonds as dashed lines.

Synthesis and crystallization

Under an N2 atmosphere, a 10 mL reaction tube was charged with 3-fluoro-1-phenyl­indolin-2-one (0.24 mmol), catalyst 4-[(S)-(benz­yloxy)(1S,2R,4S,5R)-5-vinyl­quinuclidin-2-yl]meth­yl)quinolin-6-ol (12.0 mg, 0.03 mmol) and dried CHCl3 (2.0 ml). The reaction mixture was cooled to 0°C, followed by the addition of benzo[e][1,2,3]oxa­thia­zine 2,2-dioxide (0.2 mmol). The reaction mixture was stirred at 0°C until the complete conversion of benzo[e][1,2,3]oxa­thiazine 2,2-dioxide, and was then purified by flash chromatography to give the desired product (80.4 mg, 98%). Crystals were grown from petroleum ether/ethyl acetate solution. Data: [α]22D= −32.9 (c = 0.54, CHCl3); m.p. 210.2–211.3°C. 1H NMR (500 MHz, DMSO-d6) δ 9.37 (s, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 6.7 Hz, 3H), 7.36 (t, J = 7.7 Hz, 1H), 7.24 (d, J = 8.2 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 7.9 Hz, 1H), 6.51 (d, J = 7.4 Hz, 1H), 5.52 (d, J = 12.6 Hz, 1H). 19F NMR (471 MHz, DMSO-d6) δ −150.20 (s). 13C NMR (126 MHz, DMSO-d6) δ 169.95 (d, J = 20.0 Hz), 151.80 (s), 145.74 (d, J = 6.2 Hz), 133.63 (s), 132.67 (d, J = 3.2 Hz), 131.46 (s), 130.38 (s), 129.20 (s), 129.00 (d, J = 7.7 Hz), 126.93 (s), 126.21 (d, J = 4.5 Hz), 123.76 (d, J = 2.9 Hz), 122.17 (s), 122.03 (s), 119.37 (s), 118.12 (d, J = 1.7 Hz), 110.44 (s), 93.67 (d, J = 190.8 Hz), 58.82 (d, J = 35.1 Hz).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The disordered sulfonate group was treated using a PART command in the refinement. The occupancy factors were restrained to sum to unity. The refined occupancy ratio is 0.933 (4):0.067 (4). Atomic displacement parameters of S1 and O3 were restrained using a DELU command.

Table 2
Experimental details

Crystal data
Chemical formula C21H15FN2O4S
Mr 410.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 292
a, b, c (Å) 9.8726 (4), 15.8054 (7), 11.8345 (4)
β (°) 94.679 (1)
V3) 1840.51 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.18 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.671, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9057, 3596, 2580
Rint 0.030
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.08
No. of reflections 3596
No. of parameters 351
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.21, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

3-(2,2-Dioxo-3,4-dihydrobenzo[e][1,2,3]oxathiazin-4-yl)-3-fluoro-1-phenylindolin-2-one top
Crystal data top
C21H15FN2O4SF(000) = 848
Mr = 410.41Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8726 (4) ÅCell parameters from 3064 reflections
b = 15.8054 (7) Åθ = 4.9–54.4°
c = 11.8345 (4) ŵ = 0.22 mm1
β = 94.679 (1)°T = 292 K
V = 1840.51 (13) Å3Prismatic, colorless
Z = 40.18 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2580 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 2.9°
Tmin = 0.671, Tmax = 0.746h = 1212
9057 measured reflectionsk = 1916
3596 independent reflectionsl = 1314
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.4204P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.21 e Å3
3596 reflectionsΔρmin = 0.23 e Å3
351 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.022 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The position of H(2) atom was found from the diagram of differential Fourier synthesis.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.37546 (9)0.45878 (11)0.17560 (7)0.0574 (4)0.933 (4)
O20.2617 (2)0.39173 (17)0.13707 (18)0.0585 (7)0.933 (4)
O40.3356 (2)0.53877 (14)0.12761 (16)0.0804 (8)0.933 (4)
O30.50142 (19)0.42592 (16)0.15129 (17)0.0930 (8)
S1'0.3792 (17)0.4087 (16)0.1887 (14)0.079 (5)0.067 (4)
O2'0.251 (4)0.452 (3)0.118 (3)0.075 (11)0.067 (4)
O4'0.373 (3)0.3271 (18)0.191 (2)0.076 (11)0.067 (4)
F10.13032 (11)0.39571 (8)0.51531 (10)0.0450 (4)
O10.40253 (15)0.45785 (9)0.58419 (12)0.0448 (4)
N10.45048 (16)0.32572 (11)0.51448 (13)0.0363 (4)
N20.36500 (19)0.45557 (12)0.31047 (15)0.0437 (5)
C10.37823 (19)0.26508 (13)0.44351 (16)0.0339 (5)
C20.4208 (2)0.18520 (14)0.41621 (18)0.0410 (5)
C30.3295 (2)0.13620 (15)0.3496 (2)0.0486 (6)
C40.2019 (3)0.16596 (15)0.3120 (2)0.0499 (6)
C50.1611 (2)0.24676 (14)0.34049 (18)0.0412 (5)
C60.25100 (19)0.29646 (13)0.40678 (16)0.0344 (5)
C70.24062 (19)0.38483 (13)0.45012 (16)0.0332 (5)
C80.37284 (19)0.39541 (14)0.52730 (16)0.0347 (5)
C90.59230 (19)0.31952 (13)0.55089 (17)0.0368 (5)
C100.6346 (2)0.31418 (17)0.66367 (19)0.0522 (6)
C110.7729 (3)0.31052 (19)0.6958 (2)0.0633 (8)
C120.8648 (3)0.31018 (17)0.6165 (2)0.0564 (7)
C130.8220 (2)0.31587 (18)0.5039 (2)0.0588 (7)
C140.6849 (2)0.32088 (17)0.4702 (2)0.0512 (6)
C150.2332 (2)0.45561 (14)0.36026 (17)0.0361 (5)
C160.1135 (2)0.44411 (13)0.27349 (18)0.0383 (5)
C170.0177 (2)0.45994 (15)0.3006 (2)0.0505 (6)
C180.1280 (3)0.44404 (17)0.2237 (3)0.0631 (8)
C190.1082 (3)0.41453 (19)0.1173 (3)0.0696 (8)
C200.0215 (3)0.39940 (19)0.0871 (2)0.0664 (8)
C210.1298 (2)0.41352 (15)0.16628 (19)0.0490 (6)
H10.2197 (19)0.5066 (14)0.3987 (17)0.037 (5)*
H20.651 (2)0.3249 (15)0.393 (2)0.060 (7)*
H30.071 (2)0.2662 (13)0.3161 (16)0.040 (6)*
H40.508 (2)0.1655 (13)0.4453 (16)0.040 (6)*
H50.357 (2)0.0802 (15)0.3293 (18)0.049 (6)*
H60.803 (3)0.3077 (17)0.774 (2)0.078 (8)*
H80.217 (3)0.4545 (17)0.244 (2)0.080 (9)*
H90.137 (2)0.1290 (16)0.266 (2)0.061 (7)*
H100.887 (3)0.3167 (17)0.447 (2)0.075 (8)*
H110.962 (3)0.3091 (16)0.642 (2)0.074 (8)*
H120.427 (3)0.4894 (16)0.346 (2)0.065 (8)*
H130.183 (3)0.4066 (19)0.062 (2)0.090 (9)*
H140.032 (2)0.4815 (16)0.374 (2)0.066 (8)*
H150.568 (2)0.3155 (15)0.716 (2)0.062 (7)*
H170.044 (3)0.3776 (17)0.015 (2)0.078 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0534 (5)0.0792 (9)0.0403 (4)0.0260 (5)0.0085 (3)0.0133 (5)
O20.0526 (13)0.0712 (17)0.0521 (12)0.0169 (13)0.0062 (10)0.0275 (12)
O40.0994 (17)0.0848 (17)0.0546 (12)0.0396 (13)0.0075 (11)0.0232 (11)
O30.0565 (12)0.148 (2)0.0774 (13)0.0243 (13)0.0253 (10)0.0428 (14)
S1'0.090 (8)0.065 (12)0.087 (10)0.045 (9)0.042 (8)0.014 (8)
O2'0.08 (2)0.09 (3)0.052 (17)0.03 (2)0.006 (14)0.014 (18)
O4'0.11 (3)0.046 (18)0.08 (2)0.015 (16)0.025 (17)0.000 (14)
F10.0324 (7)0.0573 (8)0.0462 (7)0.0019 (6)0.0095 (5)0.0056 (6)
O10.0440 (9)0.0443 (9)0.0449 (8)0.0035 (7)0.0032 (7)0.0136 (7)
N10.0284 (9)0.0409 (10)0.0387 (9)0.0014 (8)0.0017 (7)0.0056 (8)
N20.0416 (11)0.0496 (12)0.0398 (10)0.0153 (9)0.0023 (8)0.0045 (9)
C10.0319 (10)0.0379 (12)0.0319 (10)0.0037 (9)0.0027 (8)0.0028 (9)
C20.0370 (12)0.0399 (13)0.0458 (12)0.0033 (10)0.0023 (9)0.0013 (10)
C30.0546 (15)0.0343 (13)0.0560 (14)0.0024 (11)0.0001 (11)0.0080 (11)
C40.0523 (15)0.0365 (13)0.0585 (14)0.0045 (11)0.0094 (11)0.0091 (11)
C50.0358 (12)0.0388 (13)0.0474 (12)0.0027 (10)0.0061 (10)0.0038 (10)
C60.0310 (10)0.0358 (12)0.0363 (10)0.0006 (9)0.0016 (8)0.0006 (9)
C70.0274 (10)0.0368 (12)0.0356 (10)0.0001 (8)0.0039 (8)0.0063 (9)
C80.0315 (11)0.0425 (13)0.0302 (10)0.0035 (9)0.0027 (8)0.0034 (9)
C90.0285 (10)0.0408 (13)0.0405 (11)0.0007 (9)0.0012 (8)0.0002 (10)
C100.0428 (13)0.0735 (18)0.0399 (12)0.0008 (12)0.0002 (10)0.0076 (12)
C110.0528 (16)0.083 (2)0.0511 (15)0.0011 (14)0.0157 (13)0.0125 (15)
C120.0349 (13)0.0544 (16)0.0777 (18)0.0001 (11)0.0087 (12)0.0057 (13)
C130.0360 (13)0.0709 (19)0.0704 (17)0.0016 (12)0.0094 (12)0.0001 (15)
C140.0384 (13)0.0725 (18)0.0426 (13)0.0039 (12)0.0025 (10)0.0009 (12)
C150.0377 (12)0.0318 (12)0.0384 (11)0.0001 (9)0.0005 (9)0.0067 (9)
C160.0398 (12)0.0289 (12)0.0446 (12)0.0013 (9)0.0058 (9)0.0012 (9)
C170.0475 (14)0.0420 (14)0.0605 (16)0.0092 (11)0.0047 (12)0.0008 (12)
C180.0441 (15)0.0549 (17)0.087 (2)0.0062 (13)0.0149 (14)0.0103 (15)
C190.0598 (19)0.0663 (19)0.077 (2)0.0114 (15)0.0303 (16)0.0128 (16)
C200.072 (2)0.072 (2)0.0518 (15)0.0189 (16)0.0151 (14)0.0037 (14)
C210.0480 (14)0.0524 (15)0.0458 (13)0.0107 (11)0.0023 (10)0.0028 (11)
Geometric parameters (Å, º) top
S1—O31.399 (2)C6—C71.494 (3)
S1—O41.428 (3)C7—C81.540 (3)
S1—O21.584 (2)C7—C151.541 (3)
S1—N21.6086 (19)C9—C101.368 (3)
O2—C211.417 (3)C9—C141.375 (3)
O3—S1'1.346 (14)C10—C111.389 (3)
S1'—O4'1.29 (4)C10—H150.94 (2)
S1'—O2'1.62 (4)C11—C121.358 (4)
S1'—N21.636 (16)C11—H60.95 (3)
O2'—C211.50 (4)C12—C131.367 (4)
F1—C71.396 (2)C12—H110.98 (3)
O1—C81.217 (2)C13—C141.382 (3)
N1—C81.357 (3)C13—H100.97 (3)
N1—C11.427 (2)C14—H20.95 (2)
N1—C91.434 (2)C15—C161.513 (3)
N2—C151.471 (3)C15—H10.94 (2)
N2—H120.89 (3)C16—C211.380 (3)
C1—C21.377 (3)C16—C171.382 (3)
C1—C61.387 (3)C17—C181.383 (3)
C2—C31.385 (3)C17—H140.96 (3)
C2—H40.95 (2)C18—C191.372 (4)
C3—C41.383 (3)C18—H80.94 (3)
C3—H50.96 (2)C19—C201.378 (4)
C4—C51.389 (3)C19—H130.96 (3)
C4—H90.99 (2)C20—C211.382 (3)
C5—C61.381 (3)C20—H170.97 (3)
C5—H30.96 (2)
O3—S1—O4117.89 (16)O1—C8—C7124.78 (18)
O3—S1—O2108.28 (17)N1—C8—C7107.73 (16)
O4—S1—O2108.17 (16)C10—C9—C14120.7 (2)
O3—S1—N2108.81 (13)C10—C9—N1120.65 (18)
O4—S1—N2112.62 (14)C14—C9—N1118.59 (18)
O2—S1—N299.39 (13)C9—C10—C11119.0 (2)
C21—O2—S1114.28 (18)C9—C10—H15117.9 (15)
O4'—S1'—O3105 (2)C11—C10—H15123.1 (15)
O4'—S1'—O2'114 (3)C12—C11—C10120.6 (2)
O3—S1'—O2'115 (2)C12—C11—H6119.8 (16)
O4'—S1'—N2115.1 (18)C10—C11—H6119.6 (16)
O3—S1'—N2110.0 (11)C11—C12—C13120.2 (2)
O2'—S1'—N298.2 (19)C11—C12—H11118.4 (15)
C21—O2'—S1'104 (2)C13—C12—H11121.3 (15)
C8—N1—C1110.56 (16)C12—C13—C14120.2 (2)
C8—N1—C9124.62 (17)C12—C13—H10121.0 (16)
C1—N1—C9124.05 (16)C14—C13—H10118.9 (16)
C15—N2—S1121.86 (15)C9—C14—C13119.3 (2)
C15—N2—S1'119.7 (6)C9—C14—H2117.8 (14)
C15—N2—H12114.1 (17)C13—C14—H2122.8 (14)
S1—N2—H12110.6 (17)N2—C15—C16113.32 (17)
S1'—N2—H12125.5 (18)N2—C15—C7106.41 (16)
C2—C1—C6122.69 (19)C16—C15—C7111.82 (17)
C2—C1—N1127.34 (18)N2—C15—H1111.1 (12)
C6—C1—N1109.93 (17)C16—C15—H1107.3 (12)
C1—C2—C3116.7 (2)C7—C15—H1106.8 (12)
C1—C2—H4119.9 (12)C21—C16—C17117.3 (2)
C3—C2—H4123.3 (12)C21—C16—C15121.5 (2)
C4—C3—C2121.7 (2)C17—C16—C15121.1 (2)
C4—C3—H5120.3 (13)C16—C17—C18121.1 (3)
C2—C3—H5117.9 (13)C16—C17—H14119.1 (15)
C3—C4—C5120.6 (2)C18—C17—H14119.8 (15)
C3—C4—H9120.2 (14)C19—C18—C17120.1 (3)
C5—C4—H9119.2 (14)C19—C18—H8120.0 (18)
C6—C5—C4118.4 (2)C17—C18—H8119.9 (18)
C6—C5—H3121.6 (12)C18—C19—C20120.2 (3)
C4—C5—H3120.0 (12)C18—C19—H13120.7 (18)
C5—C6—C1119.89 (19)C20—C19—H13119.0 (18)
C5—C6—C7131.90 (19)C19—C20—C21118.7 (3)
C1—C6—C7108.20 (17)C19—C20—H17125.3 (16)
F1—C7—C6112.54 (15)C21—C20—H17116.0 (16)
F1—C7—C8108.70 (14)C16—C21—C20122.6 (2)
C6—C7—C8103.09 (16)C16—C21—O2119.2 (2)
F1—C7—C15107.28 (15)C20—C21—O2118.1 (2)
C6—C7—C15116.26 (16)C16—C21—O2'111.3 (15)
C8—C7—C15108.69 (16)C20—C21—O2'113.9 (12)
O1—C8—N1127.38 (18)
O3—S1—O2—C21174.48 (19)C1—N1—C9—C10119.0 (2)
O4—S1—O2—C2156.7 (2)C8—N1—C9—C14106.6 (2)
N2—S1—O2—C2161.0 (3)C1—N1—C9—C1462.4 (3)
O4'—S1'—O2'—C2151 (3)C14—C9—C10—C110.3 (4)
O3—S1'—O2'—C21172.2 (14)N1—C9—C10—C11178.3 (2)
N2—S1'—O2'—C2171 (3)C9—C10—C11—C121.6 (4)
O3—S1—N2—C15157.38 (18)C10—C11—C12—C131.9 (4)
O4—S1—N2—C1570.0 (2)C11—C12—C13—C140.9 (4)
O2—S1—N2—C1544.3 (2)C10—C9—C14—C130.7 (4)
O4'—S1'—N2—C1570 (2)N1—C9—C14—C13179.3 (2)
O3—S1'—N2—C15171.6 (11)C12—C13—C14—C90.4 (4)
O2'—S1'—N2—C1551 (2)S1—N2—C15—C169.7 (3)
C8—N1—C1—C2176.2 (2)S1'—N2—C15—C1623.9 (11)
C9—N1—C1—C213.4 (3)S1—N2—C15—C7132.95 (18)
C8—N1—C1—C61.3 (2)S1'—N2—C15—C799.4 (11)
C9—N1—C1—C6169.02 (17)F1—C7—C15—N2167.10 (15)
C6—C1—C2—C30.2 (3)C6—C7—C15—N266.0 (2)
N1—C1—C2—C3177.03 (19)C8—C7—C15—N249.7 (2)
C1—C2—C3—C40.1 (3)F1—C7—C15—C1668.7 (2)
C2—C3—C4—C50.0 (4)C6—C7—C15—C1658.3 (2)
C3—C4—C5—C60.1 (3)C8—C7—C15—C16173.96 (16)
C4—C5—C6—C10.2 (3)N2—C15—C16—C2116.9 (3)
C4—C5—C6—C7178.8 (2)C7—C15—C16—C21103.4 (2)
C2—C1—C6—C50.3 (3)N2—C15—C16—C17166.4 (2)
N1—C1—C6—C5177.37 (18)C7—C15—C16—C1773.3 (3)
C2—C1—C6—C7178.93 (18)C21—C16—C17—C181.3 (4)
N1—C1—C6—C73.4 (2)C15—C16—C17—C18175.6 (2)
C5—C6—C7—F157.8 (3)C16—C17—C18—C192.1 (4)
C1—C6—C7—F1123.05 (17)C17—C18—C19—C201.0 (4)
C5—C6—C7—C8174.7 (2)C18—C19—C20—C210.8 (4)
C1—C6—C7—C86.1 (2)C17—C16—C21—C200.6 (4)
C5—C6—C7—C1566.5 (3)C15—C16—C21—C20177.4 (2)
C1—C6—C7—C15112.66 (19)C17—C16—C21—O2176.3 (2)
C1—N1—C8—O1178.27 (19)C15—C16—C21—O20.5 (3)
C9—N1—C8—O111.5 (3)C17—C16—C21—O2'140.5 (14)
C1—N1—C8—C75.3 (2)C15—C16—C21—O2'42.6 (14)
C9—N1—C8—C7165.00 (16)C19—C20—C21—C161.6 (4)
F1—C7—C8—O156.9 (2)C19—C20—C21—O2175.3 (3)
C6—C7—C8—O1176.50 (18)C19—C20—C21—O2'140.6 (17)
C15—C7—C8—O159.6 (2)S1—O2—C21—C1644.5 (3)
F1—C7—C8—N1126.54 (17)S1—O2—C21—C20138.4 (2)
C6—C7—C8—N16.9 (2)S1'—O2'—C21—C1673 (2)
C15—C7—C8—N1117.00 (18)S1'—O2'—C21—C20143.7 (16)
C8—N1—C9—C1072.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12···O1i0.89 (3)1.99 (3)2.868 (2)166 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

Financial support by the Students Innovation Program of Shanghai University of Engineering Science (cs1604002) is gratefully acknowledged.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Li, Y., Zhao, J., Zheng, B., Lu, Q. & Ren, X. (2017). Adv. Synth. Catal. 359, 3057–3062.  CrossRef CAS Google Scholar
First citationPaladhi, S., Park, S. Y., Yang, J.-W. & Song, C.-E. (2017). Org. Lett. 19, 5336–5339.  CrossRef CAS PubMed Google Scholar
First citationPurser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShang, H., Li, Y., Li, X. & Ren, X. (2015). J. Org. Chem. 80, 8739–8747.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhao, J., Li, Y., Chen, L.-Y. & Ren, X. (2019). J. Org. Chem. 84, 5099–5108.  CrossRef CAS PubMed Google Scholar
First citationZheng, B.-Q., Chen, L.-Y., Zhao, J.-B., Ji, J., Qiu, Z.-B., Ren, X. & Li, Y. (2018). Org. Biomol. Chem. 16, 8989–8993.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds