metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[[μ-trans-1,2-bis­­(pyridin-4-yl)ethene-κ2N:N′]-μ-iodido-copper(I)]–trans-1,2-bis­­(pyridin-4-yl)ethene (1/0.25)]

CROSSMARK_Color_square_no_text.svg

aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bRigaku Oxford Diffraction, 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 3 June 2020; accepted 20 July 2020; online 24 July 2020)

The title compound, {[CuI(bpe)]·0.25(bpe)}n, was synthesized similarly to (CuI)2(bpe) [Neal et al. (2019[Neal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). IUCrData, 4, x190122.]). IUCrData, 4, x190122] with red crystals grown from aceto­nitrile solutions of CuI and the bpe ligand [bpe = 1,2-bis­(pyridin-4-yl)ethene, C12H10N2]. The structure of the title compound is a type 1 complex in the Graham nomenclature [Graham et al. (2000[Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121-5132.]). Inorg. Chem. 39, 5121–5132], having rhombic dimers of Cu2I2 that are bridged by two bpe ligands, to form oligomeric ribbons arranged as stairsteps. The step height is 2.8072 (11) Å, which is the Cu—Ii distance of the dimer [symmetry code (i): 1 − x, 2 − y, 1 − z]. The resulting polymer displays a two-dimensional honeycomb framework along the (01[\overline1]) plane, and disordered free bpe mol­ecules fill the voids in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The structure of the title compound contains discrete rhombic dimers of Cu2I2, where the Cu—I distance is 2.6891 (9) Å, the distance across the dimer (Cu—Ii distance) is 2.8072 (11) Å, and the Cu⋯Cui separation is 3.544 (1) Å [symmetry code (i): 1 − x, 2 − y, 1 − z]. The approximately tetra­hedral geometry around the CuI atoms has an N—Cu—N angle of 127.33 (17)° and I—Cu—Ii angle of 99.74 (3)°. Each bpe ligand connects two copper(I) atoms to form oligomeric zigzag ribbons of CuI(bpe), which can be classified as a type 1 complex (Graham et al., 2000[Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121-5132.]), where bpe is 1,2-bis­(pyridin-4-yl)ethene. These ribbons are arranged as stairsteps with each stair resulting from the Cu2I2 dimer, hence the step height is 2.8072 (11) Å (the Cu—Ii distance, Fig. 1[link]). This packing is quite different from the analogous CuI(4,4′-bipyrid­yl) complex, where tetra­meric units, composed of two Cu2I2 dimers bridged by two 4,4′-bipyridyl ligands, are linked by additional 4,4′-bipyridyl ligands to form inter­penetrating hexa­gonal honeycomb sheets (Blake et al., 1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181-195.]).

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) of all non-H atoms for the oligomeric ribbons of Cu2I2 dimers bridged by bpe and arranged as stairsteps with 2.8072 (11) Å height (the Cu—Ii distance). Cu—I and Cu—Ii distances are shown. Guest bpe mol­ecule are omitted for clarity.

The title compound is quite similar to structures of [CuI(bpe)] containing guest aniline or p-toluidine mol­ecules (Yang et al., 2011[Yang, Z., Chen, Y., Ni, C.-Y., Ren, Z.-G., Wang, H.-F., Li, H.-X. & Lang, J.-P. (2011). Inorg. Chem. Commun. 14, 1537-1540.]), except that it contains a bpe mol­ecule, which is disordered over two inversion centers, with occupancy of 0.25. In attempts at identifying this guest mol­ecule, we considered bpe and aceto­nitrile (crystallization solvent). Refinements on either mol­ecule required substantial restraints and yielded unsatisfactory results. The final model for both, however, gave normal displacement parameters. A lack of C≡N vibrations in the IR spectra of crystals ultimately led towards assigning the guest as a disordered bpe mol­ecule. The use of SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) also seemed less ideal as the position of the guest was evident in difference maps.

Synthesis and crystallization

The title compound was synthesized using the same procedure as reported in the synthesis of polymeric [(CuI)2(bpe)] (Neal et al., 2019[Neal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). IUCrData, 4, x190122.]; Parmeggiani & Sacchetti, 2012[Parmeggiani, F. & Sacchetti, A. (2012). J. Chem. Educ. 89, 946-949.]). Red crystals were grown by layering an aceto­nitrile solution containing freshly prepared CuI, ascorbic acid and KI with another aceto­nitrile solution containing bpe in a thin tube. The concentration of bpe in this tube is inferred to be greater than the concentration of CuI to afford the red type 1 complexes of [CuI(bpe)] rather than the aforementioned complexes of [(CuI)2(bpe)], which are type 2 (Graham et al., 2000[Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121-5132.]). Similar structures of [(CuI)(bpe)] were reported with guest aniline or p-toluidine mol­ecules but were made from solvothermal reactions (Yang et al., 2011[Yang, Z., Chen, Y., Ni, C.-Y., Ren, Z.-G., Wang, H.-F., Li, H.-X. & Lang, J.-P. (2011). Inorg. Chem. Commun. 14, 1537-1540.]).

Refinement

Details of the crystal data, data collection, and structure refinement are summarized in Table 1[link]. One-half of the guest bpe mol­ecule is placed close to an inversion center, and its occupancy was fixed to 0.5. As a result, the amount of guest bpe for each CuI(bpe) monomer is 0.25. The geometry of the disordered guest mol­ecule was fully restrained using 1,2 and 1,3 distances from a known target. This mol­ecule was also restrained to be flat, with standard deviation of 0.1 Å3, while displacement parameters were restrained, with effective standard deviation of 0.1 Å2 to approximate an isotropic behaviour. Finally, rigid bond restraints were applied to the guest bpe mol­ecule (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 1
Experimental details

Crystal data
Chemical formula [CuI(C12H10N2)·0.25C12H10N2
Mr 418.21
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.9004 (2), 10.4260 (3), 10.5078 (3)
α, β, γ (°) 99.903 (2), 104.930 (2), 110.061 (3)
V3) 752.55 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.49
Crystal size (mm) 0.14 × 0.10 × 0.06
 
Data collection
Diffractometer Rigaku XtaLAB Mini II
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.838, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16024, 2683, 2021
Rint 0.033
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.03
No. of reflections 2683
No. of parameters 200
No. of restraints 87
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −1.01
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[[µ-trans-1,2-bis(pyridin-4-yl)ethene-κ2N:N']-µ-iodido-copper(I)]–trans-1,2-bis(pyridin-4-yl)ethene (1/0.25)] top
Crystal data top
[CuI(C12H10N2)·0.25C12H10N2Z = 2
Mr = 418.21F(000) = 404
Triclinic, P1Dx = 1.846 Mg m3
a = 7.9004 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4260 (3) ÅCell parameters from 6736 reflections
c = 10.5078 (3) Åθ = 2.1–24.7°
α = 99.903 (2)°µ = 3.49 mm1
β = 104.930 (2)°T = 293 K
γ = 110.061 (3)°Block, red
V = 752.55 (4) Å30.14 × 0.10 × 0.06 mm
Data collection top
Rigaku XtaLAB Mini II
diffractometer
2683 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source2021 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.033
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis Pro; Rigaku OD, 2019)
h = 99
Tmin = 0.838, Tmax = 1.000k = 1212
16024 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.4132P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2683 reflectionsΔρmax = 0.60 e Å3
200 parametersΔρmin = 1.01 e Å3
87 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0018 (8)
Primary atom site location: dual
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.26536 (6)0.84672 (5)0.33204 (4)0.06679 (19)
Cu10.47272 (12)0.86742 (10)0.58757 (8)0.0777 (3)
N10.6174 (6)0.7452 (5)0.5719 (5)0.0605 (12)
N20.3214 (6)0.8771 (5)0.7122 (4)0.0515 (10)
C10.6526 (9)0.6715 (7)0.6588 (6)0.0683 (16)
H10.6034380.6748850.7301520.082*
C20.7563 (8)0.5909 (6)0.6505 (6)0.0657 (16)
H20.7737350.5403430.7139490.079*
C30.8346 (8)0.5847 (6)0.5482 (6)0.0572 (14)
C40.7964 (9)0.6579 (7)0.4552 (7)0.0743 (18)
H40.8436180.6555220.3827770.089*
C50.6875 (9)0.7351 (7)0.4697 (7)0.0752 (18)
H50.6617500.7825440.4047760.090*
C60.9505 (8)0.5005 (6)0.5415 (6)0.0614 (15)
H60.9537050.4437930.6005780.074*
C70.0594 (8)0.9694 (6)1.0045 (5)0.0578 (14)
H70.0934270.9429771.0842130.069*
C80.3474 (10)0.8408 (8)0.8268 (6)0.090 (2)
H80.4270470.7929990.8444600.108*
C90.2652 (10)0.8686 (8)0.9223 (6)0.089 (2)
H90.2908390.8401431.0018010.107*
C100.1457 (7)0.9378 (5)0.9018 (5)0.0470 (12)
C110.1145 (8)0.9735 (6)0.7811 (6)0.0625 (15)
H110.0340061.0200250.7602520.075*
C120.2020 (8)0.9406 (6)0.6906 (6)0.0643 (16)
H120.1754980.9645830.6086840.077*
C130.9182 (15)0.4586 (15)1.002 (3)0.207 (11)0.5
H130.9011390.3637301.0056120.248*0.5
C140.7563 (17)0.4951 (16)0.9907 (15)0.157 (8)0.5
C150.7591 (17)0.6220 (15)1.0534 (17)0.173 (9)0.5
H150.8733660.7088591.0900840.207*0.5
C160.5871 (15)0.6190 (9)1.0550 (15)0.265 (11)
H160.5873570.7073401.1004020.318*0.5
H0.2981370.2959300.9241520.318*0.5
N170.4132 (18)0.5088 (14)1.002 (3)0.268 (16)0.5
C180.5760 (17)0.3832 (16)0.926 (2)0.161 (8)0.5
H180.5681670.3002600.8638810.193*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0821 (3)0.0961 (3)0.0635 (3)0.0621 (3)0.0395 (2)0.0464 (2)
Cu10.0954 (6)0.1227 (7)0.0726 (5)0.0872 (6)0.0535 (4)0.0401 (5)
N10.068 (3)0.084 (3)0.065 (3)0.056 (3)0.039 (2)0.030 (2)
N20.061 (3)0.068 (3)0.053 (2)0.045 (2)0.033 (2)0.025 (2)
C10.081 (4)0.100 (5)0.067 (4)0.067 (4)0.043 (3)0.039 (3)
C20.075 (4)0.084 (4)0.076 (4)0.057 (4)0.041 (3)0.039 (3)
C30.055 (3)0.064 (3)0.077 (4)0.043 (3)0.032 (3)0.028 (3)
C40.091 (4)0.104 (5)0.085 (4)0.076 (4)0.059 (4)0.046 (4)
C50.098 (5)0.106 (5)0.082 (4)0.081 (4)0.058 (4)0.052 (4)
C60.064 (4)0.064 (3)0.086 (4)0.044 (3)0.041 (3)0.034 (3)
C70.073 (4)0.088 (4)0.047 (3)0.055 (3)0.036 (3)0.034 (3)
C80.123 (6)0.162 (7)0.073 (4)0.123 (6)0.062 (4)0.064 (4)
C90.129 (6)0.160 (7)0.065 (4)0.122 (6)0.061 (4)0.070 (4)
C100.050 (3)0.063 (3)0.046 (3)0.035 (3)0.026 (2)0.021 (2)
C110.082 (4)0.093 (4)0.067 (3)0.071 (4)0.050 (3)0.046 (3)
C120.094 (4)0.094 (4)0.064 (3)0.073 (4)0.054 (3)0.050 (3)
C130.23 (2)0.15 (2)0.20 (2)0.062 (19)0.00 (2)0.10 (2)
C140.27 (2)0.124 (12)0.066 (11)0.082 (13)0.017 (13)0.050 (10)
C150.162 (16)0.099 (11)0.17 (2)0.014 (12)0.024 (16)0.035 (12)
C160.229 (17)0.209 (17)0.233 (19)0.099 (14)0.031 (15)0.085 (14)
N170.192 (18)0.28 (3)0.23 (3)0.106 (17)0.02 (2)0.12 (2)
C180.24 (2)0.124 (14)0.120 (17)0.089 (14)0.042 (17)0.043 (12)
Geometric parameters (Å, º) top
I1—Cu12.6891 (9)C9—C101.370 (7)
I1—Cu1i2.8072 (11)C9—H90.9300
Cu1—N11.996 (4)C10—C111.368 (7)
Cu1—N22.000 (4)C11—C121.374 (6)
N1—C11.326 (7)C11—H110.9300
N1—C51.333 (6)C12—H120.9300
N2—C81.311 (7)C13—C13iv1.300 (10)
N2—C121.322 (6)C13—C141.437 (9)
C1—C21.367 (7)C13—H130.9609
C1—H10.9300C14—N17v1.348 (15)
C2—C31.375 (7)C14—C151.363 (9)
C2—H20.9300C14—C181.394 (9)
C3—C41.376 (8)C15—C161.353 (9)
C3—C61.475 (7)C15—N17v1.45 (2)
C4—C51.383 (7)C15—H150.9607
C4—H40.9300C15—Hv1.11 (2)
C5—H50.9300C16—C18v1.348 (9)
C6—C6ii1.314 (10)C16—N171.350 (9)
C6—H60.9300C16—N17v1.362 (9)
C7—C7iii1.297 (9)C16—H160.9608
C7—C101.466 (6)C16—Hv0.967 (18)
C7—H70.9300N17—C18v1.21 (2)
C8—C91.370 (7)N17—N17v1.45 (2)
C8—H80.9300C18—H180.9607
Cu1—I1—Cu1i80.26 (3)N17v—C14—C1564.6 (10)
N1—Cu1—N2127.33 (17)N17v—C14—C1852.3 (10)
N1—Cu1—I1108.03 (13)C15—C14—C18116.2 (10)
N2—Cu1—I1109.45 (12)N17v—C14—C13160.3 (17)
N1—Cu1—I1i107.96 (15)C15—C14—C13126.9 (13)
N2—Cu1—I1i100.67 (13)C18—C14—C13116.2 (11)
I1—Cu1—I1i99.74 (3)C16—C15—C14115.2 (10)
C1—N1—C5115.8 (4)C16—C15—N17v58.1 (6)
C1—N1—Cu1124.3 (3)C14—C15—N17v57.2 (8)
C5—N1—Cu1119.9 (4)C16—C15—H15121.9
C8—N2—C12115.1 (4)C14—C15—H15122.8
C8—N2—Cu1124.8 (3)N17v—C15—H15179.9
C12—N2—Cu1119.5 (3)C16—C15—Hv44.9 (10)
N1—C1—C2124.4 (5)C14—C15—Hv157.2 (16)
N1—C1—H1117.8N17v—C15—Hv102.3 (13)
C2—C1—H1117.8H15—C15—Hv77.6
C1—C2—C3119.9 (5)C18v—C16—N1753.2 (10)
C1—C2—H2120.1C18v—C16—C15172.4 (16)
C3—C2—H2120.1N17—C16—C15129.2 (11)
C2—C3—C4116.6 (4)C18v—C16—N17v116.9 (11)
C2—C3—C6119.8 (5)N17—C16—N17v64.9 (11)
C4—C3—C6123.5 (5)C15—C16—N17v64.5 (9)
C3—C4—C5119.8 (5)C18v—C16—H1662.0
C3—C4—H4120.1N17—C16—H16114.6
C5—C4—H4120.1C15—C16—H16116.1
N1—C5—C4123.5 (5)N17v—C16—H16176.3
N1—C5—H5118.3C18v—C16—Hv125.1 (15)
C4—C5—H5118.3N17—C16—Hv168 (3)
C6ii—C6—C3125.1 (7)C15—C16—Hv54.4 (13)
C6ii—C6—H6117.4N17v—C16—Hv118.0 (18)
C3—C6—H6117.4H16—C16—Hv63.3
C7iii—C7—C10126.7 (6)C18v—N17—C14v65.8 (8)
C7iii—C7—H7116.7C18v—N17—C1663.3 (7)
C10—C7—H7116.7C14v—N17—C16128.9 (12)
N2—C8—C9124.4 (5)C18v—N17—C16v168 (3)
N2—C8—H8117.8C14v—N17—C16v115.6 (11)
C9—C8—H8117.8C16—N17—C16v115.1 (11)
C10—C9—C8120.6 (5)C18v—N17—C15v123.2 (12)
C10—C9—H9119.7C14v—N17—C15v58.2 (7)
C8—C9—H9119.7C16—N17—C15v172.1 (15)
C11—C10—C9115.5 (4)C16v—N17—C15v57.5 (7)
C11—C10—C7123.8 (4)C18v—N17—N17v120.1 (14)
C9—C10—C7120.8 (4)C14v—N17—N17v171 (3)
C10—C11—C12120.1 (5)C16—N17—N17v58.0 (7)
C10—C11—H11120.0C16v—N17—N17v57.1 (7)
C12—C11—H11120.0C15v—N17—N17v114.5 (11)
N2—C12—C11124.4 (5)N17v—C18—C16v63.5 (7)
N2—C12—H12117.8N17v—C18—C1461.9 (9)
C11—C12—H12117.8C16v—C18—C14125.2 (12)
C13iv—C13—C14124.7 (16)N17v—C18—H18176.4
C13iv—C13—H13117.5C16v—C18—H18117.6
C14—C13—H13117.6C14—C18—H18117.2
C5—N1—C1—C21.2 (10)C13iv—C13—C14—C1543 (5)
Cu1—N1—C1—C2178.1 (5)C13iv—C13—C14—C18147 (3)
N1—C1—C2—C31.1 (11)N17v—C14—C15—C162.9 (18)
C1—C2—C3—C42.4 (9)C18—C14—C15—C165.8 (16)
C1—C2—C3—C6178.5 (6)C13—C14—C15—C16164.1 (18)
C2—C3—C4—C51.4 (10)C18—C14—C15—N17v8.7 (18)
C6—C3—C4—C5179.5 (6)C13—C14—C15—N17v161 (2)
C1—N1—C5—C42.3 (10)C14—C15—C16—N171 (2)
Cu1—N1—C5—C4177.0 (5)N17v—C15—C16—N174 (3)
C3—C4—C5—N11.0 (11)C14—C15—C16—N17v2.9 (18)
C2—C3—C6—C6ii172.0 (8)C15—C16—N17—C18v171 (2)
C4—C3—C6—C6ii8.9 (12)N17v—C16—N17—C18v167 (3)
C12—N2—C8—C92.1 (11)C18v—C16—N17—C14v6 (2)
Cu1—N2—C8—C9169.2 (6)C15—C16—N17—C14v177 (2)
N2—C8—C9—C100.4 (13)N17v—C16—N17—C14v173 (5)
C8—C9—C10—C110.9 (11)C18v—C16—N17—C16v167 (3)
C8—C9—C10—C7179.2 (7)C15—C16—N17—C16v4 (3)
C7iii—C7—C10—C111.9 (12)N17v—C16—N17—C16v0.001 (1)
C7iii—C7—C10—C9178.0 (8)C18v—C16—N17—N17v167 (3)
C9—C10—C11—C120.5 (9)C15—C16—N17—N17v4 (3)
C7—C10—C11—C12179.6 (6)C15—C14—C18—N17v10 (2)
C8—N2—C12—C112.6 (10)C13—C14—C18—N17v161 (2)
Cu1—N2—C12—C11169.2 (5)N17v—C14—C18—C16v5 (2)
C10—C11—C12—N21.3 (10)C15—C14—C18—C16v15 (3)
C13iv—C13—C14—N17v163 (4)C13—C14—C18—C16v156 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x, y+2, z+2; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+2.
 

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department at Austin College); Jerry Taylor and Nancy Bryant Foundation (gift to Austin College Science Division).

References

First citationBlake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181–195.  CSD CrossRef CAS Google Scholar
First citationGraham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121–5132.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). IUCrData, 4, x190122.  Google Scholar
First citationParmeggiani, F. & Sacchetti, A. (2012). J. Chem. Educ. 89, 946–949.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Chen, Y., Ni, C.-Y., Ren, Z.-G., Wang, H.-F., Li, H.-X. & Lang, J.-P. (2011). Inorg. Chem. Commun. 14, 1537–1540.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds