metal-organic compounds
Poly[[[μ-trans-1,2-bis(pyridin-4-yl)ethene-κ2N:N′]-μ-iodido-copper(I)]–trans-1,2-bis(pyridin-4-yl)ethene (1/0.25)]
aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bRigaku Oxford Diffraction, 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: bsmucker@austincollege.edu
The title compound, {[CuI(bpe)]·0.25(bpe)}n, was synthesized similarly to (CuI)2(bpe) [Neal et al. (2019). IUCrData, 4, x190122] with red crystals grown from acetonitrile solutions of CuI and the bpe ligand [bpe = 1,2-bis(pyridin-4-yl)ethene, C12H10N2]. The structure of the title compound is a type 1 complex in the Graham nomenclature [Graham et al. (2000). Inorg. Chem. 39, 5121–5132], having rhombic dimers of Cu2I2 that are bridged by two bpe ligands, to form oligomeric ribbons arranged as stairsteps. The step height is 2.8072 (11) Å, which is the Cu—Ii distance of the dimer [symmetry code (i): 1 − x, 2 − y, 1 − z]. The resulting polymer displays a two-dimensional honeycomb framework along the (01) plane, and disordered free bpe molecules fill the voids in the crystal.
Keywords: crystal structure; coordination polymer; CuI dimer; copper.
CCDC reference: 2017730
Structure description
The structure of the title compound contains discrete rhombic dimers of Cu2I2, where the Cu—I distance is 2.6891 (9) Å, the distance across the dimer (Cu—Ii distance) is 2.8072 (11) Å, and the Cu⋯Cui separation is 3.544 (1) Å [symmetry code (i): 1 − x, 2 − y, 1 − z]. The approximately tetrahedral geometry around the CuI atoms has an N—Cu—N angle of 127.33 (17)° and I—Cu—Ii angle of 99.74 (3)°. Each bpe ligand connects two copper(I) atoms to form oligomeric zigzag ribbons of CuI(bpe), which can be classified as a type 1 complex (Graham et al., 2000), where bpe is 1,2-bis(pyridin-4-yl)ethene. These ribbons are arranged as stairsteps with each stair resulting from the Cu2I2 dimer, hence the step height is 2.8072 (11) Å (the Cu—Ii distance, Fig. 1). This packing is quite different from the analogous CuI(4,4′-bipyridyl) complex, where tetrameric units, composed of two Cu2I2 dimers bridged by two 4,4′-bipyridyl ligands, are linked by additional 4,4′-bipyridyl ligands to form interpenetrating hexagonal honeycomb sheets (Blake et al., 1999).
The title compound is quite similar to structures of [CuI(bpe)] containing guest aniline or p-toluidine molecules (Yang et al., 2011), except that it contains a bpe molecule, which is disordered over two inversion centers, with occupancy of 0.25. In attempts at identifying this guest molecule, we considered bpe and acetonitrile (crystallization solvent). Refinements on either molecule required substantial restraints and yielded unsatisfactory results. The final model for both, however, gave normal displacement parameters. A lack of C≡N vibrations in the IR spectra of crystals ultimately led towards assigning the guest as a disordered bpe molecule. The use of SQUEEZE (Spek, 2015) also seemed less ideal as the position of the guest was evident in difference maps.
Synthesis and crystallization
The title compound was synthesized using the same procedure as reported in the synthesis of polymeric [(CuI)2(bpe)] (Neal et al., 2019; Parmeggiani & Sacchetti, 2012). Red crystals were grown by layering an acetonitrile solution containing freshly prepared CuI, ascorbic acid and KI with another acetonitrile solution containing bpe in a thin tube. The concentration of bpe in this tube is inferred to be greater than the concentration of CuI to afford the red type 1 complexes of [CuI(bpe)] rather than the aforementioned complexes of [(CuI)2(bpe)], which are type 2 (Graham et al., 2000). Similar structures of [(CuI)(bpe)] were reported with guest aniline or p-toluidine molecules but were made from solvothermal reactions (Yang et al., 2011).
Refinement
Details of the crystal data, data collection, and structure . One-half of the guest bpe molecule is placed close to an inversion center, and its occupancy was fixed to 0.5. As a result, the amount of guest bpe for each CuI(bpe) monomer is 0.25. The geometry of the disordered guest molecule was fully restrained using 1,2 and 1,3 distances from a known target. This molecule was also restrained to be flat, with standard deviation of 0.1 Å3, while displacement parameters were restrained, with effective standard deviation of 0.1 Å2 to approximate an isotropic behaviour. Finally, rigid bond restraints were applied to the guest bpe molecule (Sheldrick, 2015b).
are summarized in Table 1Structural data
CCDC reference: 2017730
https://doi.org/10.1107/S2414314620009980/bh4052sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620009980/bh4052Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620009980/bh4052Isup3.mol
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[CuI(C12H10N2)·0.25C12H10N2 | Z = 2 |
Mr = 418.21 | F(000) = 404 |
Triclinic, P1 | Dx = 1.846 Mg m−3 |
a = 7.9004 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.4260 (3) Å | Cell parameters from 6736 reflections |
c = 10.5078 (3) Å | θ = 2.1–24.7° |
α = 99.903 (2)° | µ = 3.49 mm−1 |
β = 104.930 (2)° | T = 293 K |
γ = 110.061 (3)° | Block, red |
V = 752.55 (4) Å3 | 0.14 × 0.10 × 0.06 mm |
Rigaku XtaLAB Mini II diffractometer | 2683 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 2021 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.033 |
ω scans | θmax = 25.1°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlis Pro; Rigaku OD, 2019) | h = −9→9 |
Tmin = 0.838, Tmax = 1.000 | k = −12→12 |
16024 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0389P)2 + 1.4132P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
2683 reflections | Δρmax = 0.60 e Å−3 |
200 parameters | Δρmin = −1.01 e Å−3 |
87 restraints | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.0018 (8) |
Primary atom site location: dual |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1 | 0.26536 (6) | 0.84672 (5) | 0.33204 (4) | 0.06679 (19) | |
Cu1 | 0.47272 (12) | 0.86742 (10) | 0.58757 (8) | 0.0777 (3) | |
N1 | 0.6174 (6) | 0.7452 (5) | 0.5719 (5) | 0.0605 (12) | |
N2 | 0.3214 (6) | 0.8771 (5) | 0.7122 (4) | 0.0515 (10) | |
C1 | 0.6526 (9) | 0.6715 (7) | 0.6588 (6) | 0.0683 (16) | |
H1 | 0.603438 | 0.674885 | 0.730152 | 0.082* | |
C2 | 0.7563 (8) | 0.5909 (6) | 0.6505 (6) | 0.0657 (16) | |
H2 | 0.773735 | 0.540343 | 0.713949 | 0.079* | |
C3 | 0.8346 (8) | 0.5847 (6) | 0.5482 (6) | 0.0572 (14) | |
C4 | 0.7964 (9) | 0.6579 (7) | 0.4552 (7) | 0.0743 (18) | |
H4 | 0.843618 | 0.655522 | 0.382777 | 0.089* | |
C5 | 0.6875 (9) | 0.7351 (7) | 0.4697 (7) | 0.0752 (18) | |
H5 | 0.661750 | 0.782544 | 0.404776 | 0.090* | |
C6 | 0.9505 (8) | 0.5005 (6) | 0.5415 (6) | 0.0614 (15) | |
H6 | 0.953705 | 0.443793 | 0.600578 | 0.074* | |
C7 | 0.0594 (8) | 0.9694 (6) | 1.0045 (5) | 0.0578 (14) | |
H7 | 0.093427 | 0.942977 | 1.084213 | 0.069* | |
C8 | 0.3474 (10) | 0.8408 (8) | 0.8268 (6) | 0.090 (2) | |
H8 | 0.427047 | 0.792999 | 0.844460 | 0.108* | |
C9 | 0.2652 (10) | 0.8686 (8) | 0.9223 (6) | 0.089 (2) | |
H9 | 0.290839 | 0.840143 | 1.001801 | 0.107* | |
C10 | 0.1457 (7) | 0.9378 (5) | 0.9018 (5) | 0.0470 (12) | |
C11 | 0.1145 (8) | 0.9735 (6) | 0.7811 (6) | 0.0625 (15) | |
H11 | 0.034006 | 1.020025 | 0.760252 | 0.075* | |
C12 | 0.2020 (8) | 0.9406 (6) | 0.6906 (6) | 0.0643 (16) | |
H12 | 0.175498 | 0.964583 | 0.608684 | 0.077* | |
C13 | 0.9182 (15) | 0.4586 (15) | 1.002 (3) | 0.207 (11) | 0.5 |
H13 | 0.901139 | 0.363730 | 1.005612 | 0.248* | 0.5 |
C14 | 0.7563 (17) | 0.4951 (16) | 0.9907 (15) | 0.157 (8) | 0.5 |
C15 | 0.7591 (17) | 0.6220 (15) | 1.0534 (17) | 0.173 (9) | 0.5 |
H15 | 0.873366 | 0.708859 | 1.090084 | 0.207* | 0.5 |
C16 | 0.5871 (15) | 0.6190 (9) | 1.0550 (15) | 0.265 (11) | |
H16 | 0.587357 | 0.707340 | 1.100402 | 0.318* | 0.5 |
H | 0.298137 | 0.295930 | 0.924152 | 0.318* | 0.5 |
N17 | 0.4132 (18) | 0.5088 (14) | 1.002 (3) | 0.268 (16) | 0.5 |
C18 | 0.5760 (17) | 0.3832 (16) | 0.926 (2) | 0.161 (8) | 0.5 |
H18 | 0.568167 | 0.300260 | 0.863881 | 0.193* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0821 (3) | 0.0961 (3) | 0.0635 (3) | 0.0621 (3) | 0.0395 (2) | 0.0464 (2) |
Cu1 | 0.0954 (6) | 0.1227 (7) | 0.0726 (5) | 0.0872 (6) | 0.0535 (4) | 0.0401 (5) |
N1 | 0.068 (3) | 0.084 (3) | 0.065 (3) | 0.056 (3) | 0.039 (2) | 0.030 (2) |
N2 | 0.061 (3) | 0.068 (3) | 0.053 (2) | 0.045 (2) | 0.033 (2) | 0.025 (2) |
C1 | 0.081 (4) | 0.100 (5) | 0.067 (4) | 0.067 (4) | 0.043 (3) | 0.039 (3) |
C2 | 0.075 (4) | 0.084 (4) | 0.076 (4) | 0.057 (4) | 0.041 (3) | 0.039 (3) |
C3 | 0.055 (3) | 0.064 (3) | 0.077 (4) | 0.043 (3) | 0.032 (3) | 0.028 (3) |
C4 | 0.091 (4) | 0.104 (5) | 0.085 (4) | 0.076 (4) | 0.059 (4) | 0.046 (4) |
C5 | 0.098 (5) | 0.106 (5) | 0.082 (4) | 0.081 (4) | 0.058 (4) | 0.052 (4) |
C6 | 0.064 (4) | 0.064 (3) | 0.086 (4) | 0.044 (3) | 0.041 (3) | 0.034 (3) |
C7 | 0.073 (4) | 0.088 (4) | 0.047 (3) | 0.055 (3) | 0.036 (3) | 0.034 (3) |
C8 | 0.123 (6) | 0.162 (7) | 0.073 (4) | 0.123 (6) | 0.062 (4) | 0.064 (4) |
C9 | 0.129 (6) | 0.160 (7) | 0.065 (4) | 0.122 (6) | 0.061 (4) | 0.070 (4) |
C10 | 0.050 (3) | 0.063 (3) | 0.046 (3) | 0.035 (3) | 0.026 (2) | 0.021 (2) |
C11 | 0.082 (4) | 0.093 (4) | 0.067 (3) | 0.071 (4) | 0.050 (3) | 0.046 (3) |
C12 | 0.094 (4) | 0.094 (4) | 0.064 (3) | 0.073 (4) | 0.054 (3) | 0.050 (3) |
C13 | 0.23 (2) | 0.15 (2) | 0.20 (2) | 0.062 (19) | 0.00 (2) | 0.10 (2) |
C14 | 0.27 (2) | 0.124 (12) | 0.066 (11) | 0.082 (13) | 0.017 (13) | 0.050 (10) |
C15 | 0.162 (16) | 0.099 (11) | 0.17 (2) | 0.014 (12) | −0.024 (16) | 0.035 (12) |
C16 | 0.229 (17) | 0.209 (17) | 0.233 (19) | 0.099 (14) | −0.031 (15) | −0.085 (14) |
N17 | 0.192 (18) | 0.28 (3) | 0.23 (3) | 0.106 (17) | 0.02 (2) | −0.12 (2) |
C18 | 0.24 (2) | 0.124 (14) | 0.120 (17) | 0.089 (14) | 0.042 (17) | 0.043 (12) |
I1—Cu1 | 2.6891 (9) | C9—C10 | 1.370 (7) |
I1—Cu1i | 2.8072 (11) | C9—H9 | 0.9300 |
Cu1—N1 | 1.996 (4) | C10—C11 | 1.368 (7) |
Cu1—N2 | 2.000 (4) | C11—C12 | 1.374 (6) |
N1—C1 | 1.326 (7) | C11—H11 | 0.9300 |
N1—C5 | 1.333 (6) | C12—H12 | 0.9300 |
N2—C8 | 1.311 (7) | C13—C13iv | 1.300 (10) |
N2—C12 | 1.322 (6) | C13—C14 | 1.437 (9) |
C1—C2 | 1.367 (7) | C13—H13 | 0.9609 |
C1—H1 | 0.9300 | C14—N17v | 1.348 (15) |
C2—C3 | 1.375 (7) | C14—C15 | 1.363 (9) |
C2—H2 | 0.9300 | C14—C18 | 1.394 (9) |
C3—C4 | 1.376 (8) | C15—C16 | 1.353 (9) |
C3—C6 | 1.475 (7) | C15—N17v | 1.45 (2) |
C4—C5 | 1.383 (7) | C15—H15 | 0.9607 |
C4—H4 | 0.9300 | C15—Hv | 1.11 (2) |
C5—H5 | 0.9300 | C16—C18v | 1.348 (9) |
C6—C6ii | 1.314 (10) | C16—N17 | 1.350 (9) |
C6—H6 | 0.9300 | C16—N17v | 1.362 (9) |
C7—C7iii | 1.297 (9) | C16—H16 | 0.9608 |
C7—C10 | 1.466 (6) | C16—Hv | 0.967 (18) |
C7—H7 | 0.9300 | N17—C18v | 1.21 (2) |
C8—C9 | 1.370 (7) | N17—N17v | 1.45 (2) |
C8—H8 | 0.9300 | C18—H18 | 0.9607 |
Cu1—I1—Cu1i | 80.26 (3) | N17v—C14—C15 | 64.6 (10) |
N1—Cu1—N2 | 127.33 (17) | N17v—C14—C18 | 52.3 (10) |
N1—Cu1—I1 | 108.03 (13) | C15—C14—C18 | 116.2 (10) |
N2—Cu1—I1 | 109.45 (12) | N17v—C14—C13 | 160.3 (17) |
N1—Cu1—I1i | 107.96 (15) | C15—C14—C13 | 126.9 (13) |
N2—Cu1—I1i | 100.67 (13) | C18—C14—C13 | 116.2 (11) |
I1—Cu1—I1i | 99.74 (3) | C16—C15—C14 | 115.2 (10) |
C1—N1—C5 | 115.8 (4) | C16—C15—N17v | 58.1 (6) |
C1—N1—Cu1 | 124.3 (3) | C14—C15—N17v | 57.2 (8) |
C5—N1—Cu1 | 119.9 (4) | C16—C15—H15 | 121.9 |
C8—N2—C12 | 115.1 (4) | C14—C15—H15 | 122.8 |
C8—N2—Cu1 | 124.8 (3) | N17v—C15—H15 | 179.9 |
C12—N2—Cu1 | 119.5 (3) | C16—C15—Hv | 44.9 (10) |
N1—C1—C2 | 124.4 (5) | C14—C15—Hv | 157.2 (16) |
N1—C1—H1 | 117.8 | N17v—C15—Hv | 102.3 (13) |
C2—C1—H1 | 117.8 | H15—C15—Hv | 77.6 |
C1—C2—C3 | 119.9 (5) | C18v—C16—N17 | 53.2 (10) |
C1—C2—H2 | 120.1 | C18v—C16—C15 | 172.4 (16) |
C3—C2—H2 | 120.1 | N17—C16—C15 | 129.2 (11) |
C2—C3—C4 | 116.6 (4) | C18v—C16—N17v | 116.9 (11) |
C2—C3—C6 | 119.8 (5) | N17—C16—N17v | 64.9 (11) |
C4—C3—C6 | 123.5 (5) | C15—C16—N17v | 64.5 (9) |
C3—C4—C5 | 119.8 (5) | C18v—C16—H16 | 62.0 |
C3—C4—H4 | 120.1 | N17—C16—H16 | 114.6 |
C5—C4—H4 | 120.1 | C15—C16—H16 | 116.1 |
N1—C5—C4 | 123.5 (5) | N17v—C16—H16 | 176.3 |
N1—C5—H5 | 118.3 | C18v—C16—Hv | 125.1 (15) |
C4—C5—H5 | 118.3 | N17—C16—Hv | 168 (3) |
C6ii—C6—C3 | 125.1 (7) | C15—C16—Hv | 54.4 (13) |
C6ii—C6—H6 | 117.4 | N17v—C16—Hv | 118.0 (18) |
C3—C6—H6 | 117.4 | H16—C16—Hv | 63.3 |
C7iii—C7—C10 | 126.7 (6) | C18v—N17—C14v | 65.8 (8) |
C7iii—C7—H7 | 116.7 | C18v—N17—C16 | 63.3 (7) |
C10—C7—H7 | 116.7 | C14v—N17—C16 | 128.9 (12) |
N2—C8—C9 | 124.4 (5) | C18v—N17—C16v | 168 (3) |
N2—C8—H8 | 117.8 | C14v—N17—C16v | 115.6 (11) |
C9—C8—H8 | 117.8 | C16—N17—C16v | 115.1 (11) |
C10—C9—C8 | 120.6 (5) | C18v—N17—C15v | 123.2 (12) |
C10—C9—H9 | 119.7 | C14v—N17—C15v | 58.2 (7) |
C8—C9—H9 | 119.7 | C16—N17—C15v | 172.1 (15) |
C11—C10—C9 | 115.5 (4) | C16v—N17—C15v | 57.5 (7) |
C11—C10—C7 | 123.8 (4) | C18v—N17—N17v | 120.1 (14) |
C9—C10—C7 | 120.8 (4) | C14v—N17—N17v | 171 (3) |
C10—C11—C12 | 120.1 (5) | C16—N17—N17v | 58.0 (7) |
C10—C11—H11 | 120.0 | C16v—N17—N17v | 57.1 (7) |
C12—C11—H11 | 120.0 | C15v—N17—N17v | 114.5 (11) |
N2—C12—C11 | 124.4 (5) | N17v—C18—C16v | 63.5 (7) |
N2—C12—H12 | 117.8 | N17v—C18—C14 | 61.9 (9) |
C11—C12—H12 | 117.8 | C16v—C18—C14 | 125.2 (12) |
C13iv—C13—C14 | 124.7 (16) | N17v—C18—H18 | 176.4 |
C13iv—C13—H13 | 117.5 | C16v—C18—H18 | 117.6 |
C14—C13—H13 | 117.6 | C14—C18—H18 | 117.2 |
C5—N1—C1—C2 | 1.2 (10) | C13iv—C13—C14—C15 | −43 (5) |
Cu1—N1—C1—C2 | −178.1 (5) | C13iv—C13—C14—C18 | 147 (3) |
N1—C1—C2—C3 | 1.1 (11) | N17v—C14—C15—C16 | −2.9 (18) |
C1—C2—C3—C4 | −2.4 (9) | C18—C14—C15—C16 | 5.8 (16) |
C1—C2—C3—C6 | 178.5 (6) | C13—C14—C15—C16 | −164.1 (18) |
C2—C3—C4—C5 | 1.4 (10) | C18—C14—C15—N17v | 8.7 (18) |
C6—C3—C4—C5 | −179.5 (6) | C13—C14—C15—N17v | −161 (2) |
C1—N1—C5—C4 | −2.3 (10) | C14—C15—C16—N17 | −1 (2) |
Cu1—N1—C5—C4 | 177.0 (5) | N17v—C15—C16—N17 | −4 (3) |
C3—C4—C5—N1 | 1.0 (11) | C14—C15—C16—N17v | 2.9 (18) |
C2—C3—C6—C6ii | −172.0 (8) | C15—C16—N17—C18v | 171 (2) |
C4—C3—C6—C6ii | 8.9 (12) | N17v—C16—N17—C18v | 167 (3) |
C12—N2—C8—C9 | −2.1 (11) | C18v—C16—N17—C14v | 6 (2) |
Cu1—N2—C8—C9 | 169.2 (6) | C15—C16—N17—C14v | 177 (2) |
N2—C8—C9—C10 | 0.4 (13) | N17v—C16—N17—C14v | 173 (5) |
C8—C9—C10—C11 | 0.9 (11) | C18v—C16—N17—C16v | −167 (3) |
C8—C9—C10—C7 | −179.2 (7) | C15—C16—N17—C16v | 4 (3) |
C7iii—C7—C10—C11 | 1.9 (12) | N17v—C16—N17—C16v | 0.001 (1) |
C7iii—C7—C10—C9 | −178.0 (8) | C18v—C16—N17—N17v | −167 (3) |
C9—C10—C11—C12 | −0.5 (9) | C15—C16—N17—N17v | 4 (3) |
C7—C10—C11—C12 | 179.6 (6) | C15—C14—C18—N17v | −10 (2) |
C8—N2—C12—C11 | 2.6 (10) | C13—C14—C18—N17v | 161 (2) |
Cu1—N2—C12—C11 | −169.2 (5) | N17v—C14—C18—C16v | −5 (2) |
C10—C11—C12—N2 | −1.3 (10) | C15—C14—C18—C16v | −15 (3) |
C13iv—C13—C14—N17v | −163 (4) | C13—C14—C18—C16v | 156 (2) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x, −y+2, −z+2; (iv) −x+2, −y+1, −z+2; (v) −x+1, −y+1, −z+2. |
Funding information
Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department at Austin College); Jerry Taylor and Nancy Bryant Foundation (gift to Austin College Science Division).
References
Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181–195. CSD CrossRef CAS Google Scholar
Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121–5132. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Neal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). IUCrData, 4, x190122. Google Scholar
Parmeggiani, F. & Sacchetti, A. (2012). J. Chem. Educ. 89, 946–949. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Z., Chen, Y., Ni, C.-Y., Ren, Z.-G., Wang, H.-F., Li, H.-X. & Lang, J.-P. (2011). Inorg. Chem. Commun. 14, 1537–1540. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.