organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[3-(4-Chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-5-[(4-fluoro­phen­yl)diazen­yl]-4-methyl­thia­zole

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bApplied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, and cSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by M. Zeller, Purdue University, USA (Received 20 May 2020; accepted 22 May 2020; online 29 May 2020)

The mol­ecule of the title compound, C25H18ClF2N5S, comprises almost co-planar fluoro­phenyl, methyl­thia­zolyl, pyrazolyl and chloro­phenyl rings with the second fluoro­phenyl ring almost perpendicular to this plane. One fluoro­phenyl group is disordered over two components of occupancy ratio 0.767 (10):0.233 (10) related by a 24.2 (8)° twist. In the crystal, two mol­ecules related by inversion symmetry are linked by a pair of C—H⋯F contacts in an R(8)22 geometry.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Various pyrazolinyl thia­zoles have pharmacological and biological applications (Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441-2448.]; Abd-Rabou et al., 2018[Abd-Rabou, A. A., Abdel-Wahab, B. F. & Bekheit, M. S. (2018). Chem. Pap. 72, 2225-2237.]; Saeed et al., 2017[Saeed, A., Mahesar, P. A., Channar, P. A., Abbas, Q., Larik, F. A., Hassan, M., Raza, H. & Seo, S. Y. (2017). Bioorg. Chem. 74, 187-196.]). In addition, heterocycles containing both pyrazole and thia­zole moieties have been used as versatile inter­mediates in organic synthesis of biologically active compounds (Secrieru et al., 2019[Secrieru, A., O'Neill, P. M. & Cristiano, M. L. S. (2019). Molecules, 25, 42.]; Shaabani et al., 2019[Shaabani, A., Nazeri, M. T. & Afshari, R. (2019). Mol. Divers. 23, 751-807.]; Sharma et al., 2020[Sharma, P. C., Bansal, K. K., Sharma, A., Sharma, D. & Deep, A. (2020). Eur. J. Med. Chem. 188, 112016.]). Recently, we have published the X-ray crystal structures for related heterocycles (El-Hiti, Abdel-Wahab, Alqahtani et al., 2019[El-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218.]; El-Hiti, Abdel-Wahab, Yousif et al., 2019[El-Hiti, G. A., Abdel-Wahab, B. F., Yousif, E., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190211.]; El-Hiti et al., 2018[El-Hiti, G. A., Mohamed, H. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2018). IUCrData, 3, x180036.]).

The mol­ecule of the title compound (Fig. 1[link]) includes fluoro­phenyl (A, F1/C1–C6), methyl­thia­zolyl (B, S1/N3,C7–C18), pyrazolyl (C, N4/N5/C11–C13), chloro­phenyl (D, Cl1/C20–C25) and fluoro­phenyl (E, F2/C14–C19) rings. Fluoro­phenyl group E is disordered over two components with an occupancy ratio of 0.767 (10):0.233 (10) and related by a twist of 24.2 (8)°.

[Figure 1]
Figure 1
ORTEP representation of the title mol­ecule showing 50% probability ellipsoids.

Rings AD are close to coplanar with twist angles A/B, B/C and C/D of 4.76 (10)°, 6.51 (11)° and 10.46 (11)° respectively. Ring E is almost perpendicular to AD with a C/E twist angle of 72.66 (3)° for the major component of E.

In the crystal structure, two mol­ecules related by inversion symmetry are linked by a pair of C—H⋯F contacts (Table 1[link], Fig. 2[link]) with R(8)22 geometry to form a dimer. The pyrazolyl and fluoro­phenyl rings of neighbouring mol­ecules are almost parallel with a centroid-to-centroid distance of 3.6510 (13) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯S1i 0.93 3.00 3.699 (2) 133
C6—H6⋯F1ii 0.93 2.52 3.441 (3) 169
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+2.
[Figure 2]
Figure 2
A segment of the crystal structure showing inter­molecular contacts for the major component of the disordered structure.

Synthesis and crystallization

A mixture of 3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide (0.67 g, 2.0 mmol), N′-(4-fluoro­phen­yl)-2-oxo­propane­hydrazonoyl bromide (0.52 g, 2.0 mmol), and tri­ethyl­amine (0.20 g, 2.0 mmol) in anhydrous ethanol (20 ml) was stirred for 2 h under reflux. The solid obtained on cooling was collected by filtration, washed with ethanol, dried and recrystallized from di­methyl­formamide solution to give colourless crystals of the title compound in 86% yield (0.85 g; 1.7 mmol), m.p. 243°C, IR (KBr; cm−1): 1590 (N=N), 1625 (C=C), 1650 (C=N).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One fluoro­phenyl group is disordered. The two components were restrained to have similar geometries as the other ordered fluoro­phenyl group (SAME command of SHELXL, e.s.d. = 0.01 and 0.02 Å) and Uij components of disordered atoms' ADPs were restrained to be similar to each other if within 2.0 Å distance (SIMU restraint of SHELXL, e.s.d. = 0.01 Å2). Refinement gave an occupancy ratio of 0.767 (10):0.233 (10) for the two components related by a twist of 24.2 (8)°.

Table 2
Experimental details

Crystal data
Chemical formula C25H18ClF2N5S
Mr 493.95
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 16.9376 (6), 13.1440 (4), 10.6399 (4)
β (°) 92.891 (4)
V3) 2365.72 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.32 × 0.19 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.727, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21848, 5930, 3549
Rint 0.027
(sin θ/λ)max−1) 0.700
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.02
No. of reflections 5930
No. of parameters 364
No. of restraints 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.21
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: CHEMDRAW Ultra (Cambridge Soft, 2001), WinGX (Farrugia, 2012); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2001), WinGX (Farrugia, 2012).

2-[3-(4-Chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]-5-[(4-fluorophenyl)diazenyl]-4-methylthiazole top
Crystal data top
C25H18ClF2N5SF(000) = 1016
Mr = 493.95Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.9376 (6) ÅCell parameters from 6505 reflections
b = 13.1440 (4) Åθ = 3.5–26.8°
c = 10.6399 (4) ŵ = 0.29 mm1
β = 92.891 (4)°T = 293 K
V = 2365.72 (14) Å3Plate, colourless
Z = 40.32 × 0.19 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
3549 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
θmax = 29.9°, θmin = 3.1°
Tmin = 0.727, Tmax = 1.000h = 1723
21848 measured reflectionsk = 1817
5930 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.6409P]
where P = (Fo2 + 2Fc2)/3
5930 reflections(Δ/σ)max = 0.001
364 parametersΔρmax = 0.14 e Å3
255 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Non-hydrogen atoms were refined with anisotropic diaplacement parameters. All hydrogen atoms were placed in calculated positions and refined using a riding model. Difference Fourier maps showed that the methyl hydrogen atoms were disordered. The methyl group was therefore modelled as two components related by a 60° rotation about the C-C bond and the C-H bond distances were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C). The hydrogen atoms were allowed to rotate freely and the occupancy ratio for the two components refined to 57 (3):43 (3)%. C-H distances for sp2 hybridized groups were set to 0.93Å and their Uiso(H) set to 1.2 times the Ueq(C). Methine and methylene C-H bond distances were fixed at 0.98 Å and 0.97 Å with displacement parameters 1.2 times Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.91410 (14)0.11438 (18)0.8797 (2)0.0725 (6)
C20.87189 (13)0.18539 (17)0.8117 (2)0.0713 (6)
H20.8551690.2451410.8489250.086*
C30.85468 (13)0.16585 (16)0.6857 (2)0.0671 (6)
H30.8260520.2132820.6372290.081*
C40.87930 (12)0.07710 (16)0.6308 (2)0.0621 (5)
C50.92300 (13)0.00652 (17)0.7036 (2)0.0704 (6)
H50.9406220.0531540.6673590.085*
C60.93986 (14)0.02567 (18)0.8292 (2)0.0774 (6)
H60.9683530.0210920.8789280.093*
C70.85842 (12)0.03407 (15)0.3320 (2)0.0626 (5)
C80.87394 (12)0.11841 (15)0.2618 (2)0.0656 (6)
C90.80263 (12)0.03318 (14)0.1218 (2)0.0601 (5)
C100.92100 (14)0.20868 (18)0.3087 (3)0.0885 (8)
H10A0.9328630.2017340.3975110.133*0.57 (3)
H10B0.8908770.2696360.2930620.133*0.57 (3)
H10C0.9693690.2123990.2656590.133*0.57 (3)
H10D0.9292100.2541120.2399770.133*0.43 (3)
H10E0.9711960.1862100.3444260.133*0.43 (3)
H10F0.8927030.2434470.3718290.133*0.43 (3)
C110.74684 (12)0.08582 (15)0.09277 (19)0.0619 (5)
H110.7968800.1083790.1258550.074*
C120.70269 (14)0.01744 (15)0.1895 (2)0.0663 (6)
H12A0.6524230.0471610.2175430.080*
H12B0.7339810.0054130.2619160.080*
C130.69096 (12)0.07930 (14)0.11686 (19)0.0575 (5)
C140.69975 (11)0.17716 (14)0.05306 (19)0.0558 (5)0.767 (10)
C150.6495 (3)0.1762 (4)0.0439 (5)0.0655 (13)0.767 (10)
H150.6439820.1169650.0903670.079*0.767 (10)
C160.6071 (3)0.2618 (4)0.0739 (6)0.0750 (14)0.767 (10)
H160.5733730.2606710.1402800.090*0.767 (10)
C170.6154 (4)0.3473 (4)0.0048 (6)0.0683 (12)0.767 (10)
C180.6614 (2)0.3505 (3)0.0949 (5)0.0728 (11)0.767 (10)
H180.6645600.4095430.1425310.087*0.767 (10)
C190.7038 (2)0.2650 (3)0.1254 (5)0.0640 (10)0.767 (10)
H190.7351320.2661550.1946170.077*0.767 (10)
F20.5728 (5)0.4315 (5)0.0333 (6)0.1030 (16)0.767 (10)
C14B0.69975 (11)0.17716 (14)0.05306 (19)0.0558 (5)0.233 (10)
C15B0.6368 (10)0.1597 (14)0.0220 (18)0.062 (2)0.233 (10)
H15B0.6245550.0936440.0456230.074*0.233 (10)
C16B0.5927 (11)0.2392 (12)0.061 (2)0.066 (2)0.233 (10)
H16B0.5494290.2277610.1099980.079*0.233 (10)
C17B0.6127 (14)0.3346 (14)0.029 (3)0.072 (2)0.233 (10)
C18B0.6792 (8)0.3578 (9)0.0333 (16)0.070 (2)0.233 (10)
H18B0.6936050.4246630.0494140.084*0.233 (10)
C19B0.7238 (8)0.2759 (8)0.0711 (16)0.068 (2)0.233 (10)
H19B0.7710210.2879060.1095190.081*0.233 (10)
F2B0.5692 (13)0.4152 (14)0.0696 (19)0.089 (4)0.233 (10)
C200.64915 (12)0.16914 (15)0.16629 (18)0.0575 (5)
C210.60277 (15)0.16523 (18)0.2771 (2)0.0760 (6)
H210.5966070.1037760.3198340.091*
C220.56563 (16)0.2511 (2)0.3250 (2)0.0843 (7)
H220.5351160.2476360.4000410.101*
C230.57369 (13)0.34122 (17)0.2621 (2)0.0705 (6)
C240.61747 (14)0.34719 (17)0.1505 (2)0.0766 (6)
H240.6215600.4084300.1068550.092*
C250.65523 (13)0.26174 (16)0.1037 (2)0.0688 (6)
H250.6855260.2659810.0285410.083*
N10.85765 (10)0.06409 (13)0.50112 (17)0.0643 (4)
N20.88125 (10)0.01956 (14)0.45499 (17)0.0657 (5)
N30.84226 (10)0.11839 (12)0.14170 (18)0.0656 (5)
N40.76260 (10)0.01344 (12)0.01117 (17)0.0649 (5)
N50.72506 (10)0.07906 (12)0.00653 (16)0.0606 (4)
S10.80048 (3)0.05346 (4)0.24354 (5)0.06286 (17)
F10.93157 (10)0.13275 (12)1.00396 (13)0.1024 (5)
Cl10.52834 (4)0.44993 (5)0.32473 (8)0.1043 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0781 (15)0.0764 (15)0.0627 (14)0.0006 (12)0.0011 (11)0.0113 (12)
C20.0760 (14)0.0675 (14)0.0706 (14)0.0109 (11)0.0055 (11)0.0077 (11)
C30.0659 (13)0.0632 (13)0.0721 (14)0.0078 (10)0.0020 (11)0.0137 (11)
C40.0600 (12)0.0591 (12)0.0669 (13)0.0036 (10)0.0004 (10)0.0137 (10)
C50.0745 (14)0.0599 (13)0.0765 (15)0.0037 (11)0.0006 (12)0.0102 (11)
C60.0830 (16)0.0709 (15)0.0772 (16)0.0102 (12)0.0073 (12)0.0216 (12)
C70.0584 (12)0.0511 (11)0.0779 (14)0.0062 (9)0.0003 (10)0.0033 (10)
C80.0533 (12)0.0491 (11)0.0945 (17)0.0045 (9)0.0032 (11)0.0020 (11)
C90.0572 (12)0.0472 (11)0.0760 (14)0.0085 (9)0.0030 (10)0.0070 (10)
C100.0753 (15)0.0601 (13)0.129 (2)0.0057 (12)0.0048 (15)0.0040 (14)
C110.0638 (12)0.0512 (11)0.0717 (13)0.0044 (9)0.0127 (10)0.0152 (10)
C120.0831 (15)0.0529 (11)0.0639 (12)0.0094 (11)0.0130 (11)0.0085 (10)
C130.0618 (12)0.0502 (11)0.0614 (12)0.0103 (9)0.0120 (10)0.0059 (9)
C140.0557 (11)0.0470 (10)0.0648 (11)0.0003 (8)0.0053 (9)0.0079 (9)
C150.079 (2)0.056 (2)0.063 (2)0.0039 (17)0.013 (2)0.0137 (18)
C160.084 (3)0.074 (3)0.069 (2)0.010 (2)0.020 (2)0.003 (2)
C170.076 (2)0.0528 (19)0.075 (3)0.0150 (17)0.0015 (19)0.0016 (17)
C180.089 (2)0.0475 (15)0.083 (3)0.0061 (15)0.007 (2)0.0131 (17)
C190.069 (2)0.0531 (16)0.071 (2)0.0001 (14)0.0117 (18)0.0134 (16)
F20.130 (2)0.0725 (19)0.108 (4)0.0422 (17)0.018 (2)0.0035 (19)
C14B0.0557 (11)0.0470 (10)0.0648 (11)0.0003 (8)0.0053 (9)0.0079 (9)
C15B0.068 (4)0.051 (4)0.066 (4)0.003 (4)0.010 (4)0.002 (4)
C16B0.072 (4)0.058 (4)0.067 (4)0.006 (4)0.011 (4)0.001 (4)
C17B0.082 (4)0.059 (4)0.075 (5)0.012 (4)0.011 (4)0.005 (4)
C18B0.082 (4)0.050 (4)0.080 (5)0.005 (4)0.010 (4)0.006 (4)
C19B0.070 (4)0.055 (4)0.078 (4)0.000 (3)0.015 (4)0.007 (4)
F2B0.100 (6)0.078 (7)0.087 (8)0.024 (5)0.005 (6)0.016 (6)
C200.0609 (12)0.0531 (11)0.0594 (12)0.0084 (9)0.0115 (9)0.0009 (9)
C210.0975 (18)0.0627 (14)0.0674 (14)0.0056 (12)0.0016 (13)0.0049 (11)
C220.0931 (18)0.0861 (18)0.0726 (15)0.0002 (14)0.0064 (13)0.0081 (14)
C230.0642 (13)0.0632 (13)0.0855 (16)0.0021 (11)0.0166 (12)0.0146 (12)
C240.0768 (15)0.0545 (13)0.0985 (18)0.0049 (11)0.0053 (14)0.0052 (12)
C250.0711 (14)0.0565 (12)0.0780 (14)0.0037 (10)0.0028 (11)0.0074 (11)
N10.0658 (11)0.0576 (10)0.0690 (11)0.0032 (8)0.0017 (9)0.0066 (9)
N20.0623 (11)0.0583 (10)0.0761 (12)0.0066 (8)0.0001 (9)0.0066 (9)
N30.0594 (10)0.0475 (9)0.0895 (13)0.0030 (8)0.0009 (9)0.0075 (9)
N40.0748 (11)0.0442 (9)0.0750 (12)0.0024 (8)0.0038 (9)0.0108 (8)
N50.0678 (11)0.0465 (9)0.0675 (11)0.0032 (8)0.0030 (9)0.0073 (8)
S10.0725 (3)0.0461 (3)0.0696 (3)0.0013 (2)0.0004 (3)0.0034 (2)
F10.1286 (13)0.1099 (11)0.0673 (9)0.0177 (9)0.0094 (8)0.0066 (8)
Cl10.0951 (5)0.0835 (5)0.1349 (6)0.0123 (4)0.0109 (4)0.0357 (4)
Geometric parameters (Å, º) top
C1—C21.361 (3)C14—C151.370 (5)
C1—F11.362 (3)C14—C191.391 (4)
C1—C61.364 (3)C15—C161.381 (5)
C2—C31.381 (3)C15—H150.9300
C2—H20.9300C16—C171.354 (6)
C3—C41.379 (3)C16—H160.9300
C3—H30.9300C17—C181.348 (5)
C4—C51.397 (3)C17—F21.364 (5)
C4—N11.420 (3)C18—C191.380 (4)
C5—C61.375 (3)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—H60.9300C14B—C19B1.376 (10)
C7—N21.359 (3)C14B—C15B1.383 (13)
C7—C81.370 (3)C15B—C16B1.363 (13)
C7—S11.755 (2)C15B—H15B0.9300
C8—N31.361 (3)C16B—C17B1.348 (13)
C8—C101.501 (3)C16B—H16B0.9300
C9—N31.317 (2)C17B—C18B1.371 (14)
C9—N41.354 (3)C17B—F2B1.371 (13)
C9—S11.726 (2)C18B—C19B1.386 (11)
C10—H10A0.9600C18B—H18B0.9300
C10—H10B0.9600C19B—H19B0.9300
C10—H10C0.9600C20—C211.385 (3)
C10—H10D0.9600C20—C251.389 (3)
C10—H10E0.9600C21—C221.377 (3)
C10—H10F0.9600C21—H210.9300
C11—N41.473 (2)C22—C231.364 (3)
C11—C14B1.513 (3)C22—H220.9300
C11—C141.513 (3)C23—C241.370 (3)
C11—C121.532 (3)C23—Cl11.739 (2)
C11—H110.9800C24—C251.373 (3)
C12—C131.506 (3)C24—H240.9300
C12—H12A0.9700C25—H250.9300
C12—H12B0.9700N1—N21.276 (2)
C13—N51.282 (2)N4—N51.380 (2)
C13—C201.461 (3)
C2—C1—F1118.5 (2)C20—C13—C12124.86 (18)
C2—C1—C6123.2 (2)C15—C14—C19118.3 (3)
F1—C1—C6118.4 (2)C15—C14—C11124.0 (3)
C1—C2—C3117.9 (2)C19—C14—C11117.6 (2)
C1—C2—H2121.1C14—C15—C16121.2 (4)
C3—C2—H2121.1C14—C15—H15119.4
C4—C3—C2121.0 (2)C16—C15—H15119.4
C4—C3—H3119.5C17—C16—C15118.7 (5)
C2—C3—H3119.5C17—C16—H16120.7
C3—C4—C5119.3 (2)C15—C16—H16120.7
C3—C4—N1116.42 (18)C18—C17—C16122.2 (4)
C5—C4—N1124.2 (2)C18—C17—F2118.8 (4)
C6—C5—C4119.7 (2)C16—C17—F2118.8 (4)
C6—C5—H5120.1C17—C18—C19119.1 (3)
C4—C5—H5120.1C17—C18—H18120.4
C1—C6—C5118.9 (2)C19—C18—H18120.4
C1—C6—H6120.5C18—C19—C14120.3 (3)
C5—C6—H6120.5C18—C19—H19119.8
N2—C7—C8125.8 (2)C14—C19—H19119.8
N2—C7—S1123.29 (16)C19B—C14B—C15B118.6 (9)
C8—C7—S1110.82 (17)C19B—C14B—C11123.0 (5)
N3—C8—C7115.76 (19)C15B—C14B—C11117.5 (8)
N3—C8—C10119.3 (2)C16B—C15B—C14B120.1 (13)
C7—C8—C10124.9 (2)C16B—C15B—H15B120.0
N3—C9—N4122.10 (19)C14B—C15B—H15B120.0
N3—C9—S1118.06 (17)C17B—C16B—C15B119.1 (15)
N4—C9—S1119.83 (15)C17B—C16B—H16B120.4
C8—C10—H10A109.5C15B—C16B—H16B120.4
C8—C10—H10B109.5C16B—C17B—C18B123.6 (13)
H10A—C10—H10B109.5C16B—C17B—F2B119.5 (14)
C8—C10—H10C109.5C18B—C17B—F2B116.6 (15)
H10A—C10—H10C109.5C17B—C18B—C19B116.2 (11)
H10B—C10—H10C109.5C17B—C18B—H18B121.9
C8—C10—H10D109.5C19B—C18B—H18B121.9
H10A—C10—H10D141.1C14B—C19B—C18B121.5 (9)
H10B—C10—H10D56.3C14B—C19B—H19B119.2
H10C—C10—H10D56.3C18B—C19B—H19B119.2
C8—C10—H10E109.5C21—C20—C25117.8 (2)
H10A—C10—H10E56.3C21—C20—C13121.36 (18)
H10B—C10—H10E141.1C25—C20—C13120.86 (19)
H10C—C10—H10E56.3C22—C21—C20120.9 (2)
H10D—C10—H10E109.5C22—C21—H21119.6
C8—C10—H10F109.5C20—C21—H21119.6
H10A—C10—H10F56.3C23—C22—C21119.8 (2)
H10B—C10—H10F56.3C23—C22—H22120.1
H10C—C10—H10F141.1C21—C22—H22120.1
H10D—C10—H10F109.5C22—C23—C24120.8 (2)
H10E—C10—H10F109.5C22—C23—Cl1119.6 (2)
N4—C11—C14B112.39 (17)C24—C23—Cl1119.62 (19)
N4—C11—C14112.39 (17)C23—C24—C25119.3 (2)
N4—C11—C12100.91 (15)C23—C24—H24120.4
C14B—C11—C12113.99 (17)C25—C24—H24120.4
C14—C11—C12113.99 (17)C24—C25—C20121.4 (2)
N4—C11—H11109.7C24—C25—H25119.3
C14—C11—H11109.7C20—C25—H25119.3
C12—C11—H11109.7N2—N1—C4114.00 (17)
C13—C12—C11102.89 (16)N1—N2—C7114.31 (18)
C13—C12—H12A111.2C9—N3—C8108.94 (17)
C11—C12—H12A111.2C9—N4—N5119.63 (16)
C13—C12—H12B111.2C9—N4—C11126.37 (17)
C11—C12—H12B111.2N5—N4—C11113.68 (16)
H12A—C12—H12B109.1C13—N5—N4108.07 (16)
N5—C13—C20121.30 (18)C9—S1—C786.43 (10)
N5—C13—C12113.75 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···S1i0.933.003.699 (2)133
C6—H6···F1ii0.932.523.441 (3)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+2, y, z+2.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Acknowledgements

We thank Cardiff University for ongoing support.

Funding information

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through the Vice Deanship of Scientific Research Chairs.

References

First citationAbdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441–2448.  CAS Google Scholar
First citationAbd-Rabou, A. A., Abdel-Wahab, B. F. & Bekheit, M. S. (2018). Chem. Pap. 72, 2225–2237.  CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationEl-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190218.  Google Scholar
First citationEl-Hiti, G. A., Abdel-Wahab, B. F., Yousif, E., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2019). IUCrData, 4, x190211.  Google Scholar
First citationEl-Hiti, G. A., Mohamed, H. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2018). IUCrData, 3, x180036.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaeed, A., Mahesar, P. A., Channar, P. A., Abbas, Q., Larik, F. A., Hassan, M., Raza, H. & Seo, S. Y. (2017). Bioorg. Chem. 74, 187–196.  CrossRef CAS PubMed Google Scholar
First citationSecrieru, A., O'Neill, P. M. & Cristiano, M. L. S. (2019). Molecules, 25, 42.  CrossRef Google Scholar
First citationShaabani, A., Nazeri, M. T. & Afshari, R. (2019). Mol. Divers. 23, 751–807.  CrossRef CAS PubMed Google Scholar
First citationSharma, P. C., Bansal, K. K., Sharma, A., Sharma, D. & Deep, A. (2020). Eur. J. Med. Chem. 188, 112016.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds