organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2-Eth­­oxy-2-oxoacetamido)­benzoic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
*Correspondence e-mail: wuzy@ouc.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 1 April 2020; accepted 2 May 2020; online 6 May 2020)

The title compound, C11H11NO5, has a nearly planar geometry. In the crystal, the mol­ecules are assembled into chains parallel to the [[\overline{1}]11] direction by O—H⋯O and C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Oxamide derivatives are of considerable current inter­est because of their DNA-binding properties and cytotoxic activity (Martínez-Martínez et al., 1998[Martínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401-406.]; Li et al., 2012[Li, X.-W., Li, X., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2012). J. Organomet. Chem. 700, 48-57.]; Yue et al., 2012[Yue, X.-T., Li, X.-W. & Wu, Z.-Y. (2012). Acta Cryst. E68, o8.]; Zheng et al., 2012[Zheng, Y.-J., Zheng, K., Wu, Z.-Y. & Li, Y. (2012). Acta Cryst. E68, o895.]). As part of our studies in this area, we report the structure of the title compound herein.

The asymmetric unit contains one title compound adopting the expected transoid conformation (Fig. 1[link]). The mol­ecule has an almost planar geometry except for the terminal methyl group; atom C11 deviates by 0.388 (3) Å from the mean plane of other atoms. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds occur (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.96 (3) 1.67 (3) 2.6274 (16) 176 (2)
N1—H1A⋯O2 0.93 (2) 1.92 (2) 2.6574 (15) 135.1 (16)
C5—H5⋯O3 0.948 (19) 2.230 (18) 2.866 (2) 123.7 (14)
C5—H5⋯O3ii 0.948 (19) 2.36 (2) 3.1107 (19) 135.9 (14)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y, -z+1.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds (Table 1[link]) are indicated by dashed lines.

In crystal, pairs of mol­ecules are linked by O—H⋯O hydrogen bonds (Table 1[link]) into inversion dimers characterized by an R22(8) motif (Fig. 2[link]). The dimers are linked by further C—H⋯O hydrogen bonds with an R22(12) motif, giving rise to a chain extending along the [[\overline{1}]11] direction.

[Figure 2]
Figure 2
A one-dimensional hydrogen-bonded chain along [[\overline{1}]11]. Hydrogen bonds (Table 1[link]) are indicated by dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) −x, 1 − y, 2 − z; (ii) 1 − x, −y, 1 − z.

Synthesis and crystallization

The title compound was synthesized using a literature method (Matović, 2005[Matović, Z. D. V. D., Miletić, V. D., Samardžić, G., Pelosi, G., Ianelli, S. & Trifunović, S. (2005). Inorg. Chim. Acta, 358, 3135-3144.]). Ethyl chloro­oxo­acetate (10 mmol, 1.13 ml) in 10 ml of tetra­hydro­furan (THF) was added dropwise to a 10 ml THF solution containing 2-amino­benzoic acid (10 mmol, 1.37 g) at 273 K. The resulting solution was stirred for 2 h. The solution was concentrated under vacuum and the compound was precipitated as a yellowish powder then washed with ether and dried under vacuum. Well-shaped yellowish single crystals were obtained by slow evaporation of an ethanol solution of the recrystallized product. Yield: 55%. Analysis calculated for C11H11NO5: C, 55.70; H, 4.67; N, 5.90%. Found: C, 55.77; H, 4.64; N, 5.92%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H11NO5
Mr 237.21
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 4.8774 (13), 9.470 (3), 12.719 (3)
α, β, γ (°) 106.784 (7), 97.222 (7), 92.444 (8)
V3) 556.1 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.73 × 0.24 × 0.19
 
Data collection
Diffractometer Bruker APEX area detector
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 8969, 2557, 2016
Rint 0.028
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.06
No. of reflections 2557
No. of parameters 198
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.24, −0.27
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2-(2-Ethoxy-2-oxoacetamido)benzoic acid top
Crystal data top
C11H11NO5Z = 2
Mr = 237.21F(000) = 248
Triclinic, P1Dx = 1.417 Mg m3
a = 4.8774 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.470 (3) ÅCell parameters from 4983 reflections
c = 12.719 (3) Åθ = 2.4–27.7°
α = 106.784 (7)°µ = 0.11 mm1
β = 97.222 (7)°T = 296 K
γ = 92.444 (8)°Plate, light yellow
V = 556.1 (3) Å30.73 × 0.24 × 0.19 mm
Data collection top
Bruker APEX area detector
diffractometer
2016 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
ω scansθmax = 27.7°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 66
k = 1212
8969 measured reflectionsl = 1616
2557 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049All H-atom parameters refined
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.0917P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2557 reflectionsΔρmax = 0.24 e Å3
198 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were found in a difference Fourier map and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2576 (3)0.38020 (16)1.03091 (9)0.0681 (4)
O20.0551 (2)0.41447 (12)0.87522 (8)0.0535 (3)
O30.2481 (3)0.12887 (17)0.50560 (9)0.0830 (5)
O40.2254 (3)0.38059 (15)0.60001 (9)0.0660 (4)
O50.1328 (2)0.27460 (13)0.42790 (8)0.0557 (3)
N10.1791 (2)0.24475 (13)0.68396 (9)0.0422 (3)
C10.3864 (3)0.23438 (16)0.86482 (11)0.0420 (3)
C20.5692 (3)0.1711 (2)0.92768 (13)0.0551 (4)
C30.7340 (4)0.0645 (2)0.87854 (15)0.0602 (4)
C40.7185 (3)0.01962 (18)0.76469 (14)0.0533 (4)
C50.5376 (3)0.07796 (17)0.70010 (12)0.0463 (3)
C60.3673 (3)0.18576 (15)0.74833 (10)0.0385 (3)
C70.2187 (3)0.35013 (17)0.92252 (11)0.0456 (3)
C80.1306 (3)0.21176 (16)0.57239 (10)0.0451 (3)
C90.1000 (3)0.29967 (16)0.53589 (11)0.0446 (3)
C100.3469 (4)0.3514 (2)0.38191 (15)0.0622 (5)
C110.3098 (6)0.3297 (3)0.26382 (17)0.0828 (7)
H10.139 (5)0.455 (3)1.061 (2)0.099 (8)*
H1A0.065 (4)0.311 (2)0.7222 (17)0.070 (6)*
H20.581 (4)0.206 (2)1.0049 (19)0.078 (6)*
H30.856 (4)0.025 (2)0.9243 (18)0.081 (6)*
H40.836 (4)0.0499 (19)0.7304 (16)0.058 (5)*
H50.532 (4)0.046 (2)0.6220 (16)0.054 (4)*
H10A0.321 (4)0.452 (2)0.4258 (18)0.077 (6)*
H10B0.517 (4)0.307 (2)0.3905 (17)0.075 (6)*
H11A0.121 (6)0.375 (3)0.260 (2)0.114 (9)*
H11B0.326 (5)0.229 (3)0.224 (2)0.109 (9)*
H11C0.457 (5)0.377 (3)0.230 (2)0.096 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0815 (8)0.0954 (9)0.0244 (5)0.0438 (7)0.0077 (5)0.0081 (5)
O20.0659 (7)0.0677 (7)0.0261 (5)0.0287 (5)0.0102 (4)0.0077 (4)
O30.1083 (10)0.1073 (10)0.0320 (6)0.0657 (9)0.0163 (6)0.0079 (6)
O40.0726 (8)0.0869 (9)0.0377 (6)0.0387 (6)0.0092 (5)0.0122 (6)
O50.0683 (7)0.0699 (7)0.0289 (5)0.0181 (5)0.0034 (5)0.0144 (5)
N10.0479 (6)0.0527 (7)0.0251 (5)0.0165 (5)0.0087 (4)0.0070 (5)
C10.0421 (7)0.0520 (8)0.0306 (7)0.0093 (6)0.0066 (5)0.0089 (6)
C20.0592 (9)0.0720 (10)0.0338 (7)0.0177 (7)0.0036 (6)0.0150 (7)
C30.0601 (10)0.0710 (10)0.0518 (9)0.0246 (8)0.0020 (7)0.0218 (8)
C40.0539 (9)0.0549 (9)0.0525 (9)0.0201 (7)0.0124 (7)0.0136 (7)
C50.0509 (8)0.0510 (8)0.0364 (7)0.0127 (6)0.0110 (6)0.0089 (6)
C60.0401 (6)0.0452 (7)0.0299 (6)0.0072 (5)0.0073 (5)0.0093 (5)
C70.0493 (8)0.0588 (8)0.0261 (6)0.0117 (6)0.0062 (5)0.0072 (6)
C80.0543 (8)0.0521 (8)0.0269 (6)0.0143 (6)0.0090 (5)0.0060 (5)
C90.0510 (8)0.0505 (8)0.0294 (6)0.0078 (6)0.0043 (5)0.0076 (6)
C100.0689 (11)0.0728 (12)0.0470 (9)0.0097 (9)0.0051 (8)0.0260 (8)
C110.1075 (18)0.0977 (17)0.0459 (10)0.0012 (14)0.0099 (10)0.0354 (11)
Geometric parameters (Å, º) top
O1—C71.3116 (17)C2—H20.94 (2)
O1—H10.96 (3)C3—C41.377 (2)
O2—C71.2258 (17)C3—H30.94 (2)
O3—C81.2007 (18)C4—C51.371 (2)
O4—C91.1963 (18)C4—H40.939 (18)
O5—C91.3122 (16)C5—C61.3955 (19)
O5—C101.456 (2)C5—H50.948 (19)
N1—C81.3493 (17)C8—C91.532 (2)
N1—C61.3944 (18)C10—C111.491 (3)
N1—H1A0.93 (2)C10—H10A0.95 (2)
C1—C21.392 (2)C10—H10B0.95 (2)
C1—C61.4084 (18)C11—H11A1.01 (3)
C1—C71.474 (2)C11—H11B0.93 (3)
C2—C31.374 (2)C11—H11C0.98 (3)
C7—O1—H1108.9 (15)C5—C6—C1118.68 (13)
C9—O5—C10116.37 (13)O2—C7—O1121.64 (13)
C8—N1—C6128.24 (12)O2—C7—C1124.02 (12)
C8—N1—H1A115.5 (12)O1—C7—C1114.35 (12)
C6—N1—H1A116.1 (12)O3—C8—N1127.84 (14)
C2—C1—C6119.03 (13)O3—C8—C9121.08 (13)
C2—C1—C7118.80 (12)N1—C8—C9111.06 (11)
C6—C1—C7122.16 (12)O4—C9—O5126.54 (14)
C3—C2—C1121.37 (14)O4—C9—C8122.79 (12)
C3—C2—H2121.1 (13)O5—C9—C8110.66 (12)
C1—C2—H2117.5 (13)O5—C10—C11106.64 (18)
C2—C3—C4119.29 (15)O5—C10—H10A106.7 (13)
C2—C3—H3118.4 (13)C11—C10—H10A113.3 (13)
C4—C3—H3122.3 (13)O5—C10—H10B105.1 (12)
C5—C4—C3120.89 (14)C11—C10—H10B113.6 (13)
C5—C4—H4119.0 (11)H10A—C10—H10B110.7 (18)
C3—C4—H4120.1 (11)C10—C11—H11A109.9 (15)
C4—C5—C6120.72 (14)C10—C11—H11B111.3 (16)
C4—C5—H5119.4 (11)H11A—C11—H11B109 (2)
C6—C5—H5119.9 (11)C10—C11—H11C108.4 (15)
N1—C6—C5121.55 (12)H11A—C11—H11C110 (2)
N1—C6—C1119.77 (11)H11B—C11—H11C108 (2)
C6—C1—C2—C31.2 (2)C2—C1—C7—O2178.82 (14)
C7—C1—C2—C3178.93 (16)C6—C1—C7—O21.3 (2)
C1—C2—C3—C40.2 (3)C2—C1—C7—O11.2 (2)
C2—C3—C4—C51.2 (3)C6—C1—C7—O1178.69 (13)
C3—C4—C5—C60.8 (3)C6—N1—C8—O33.3 (3)
C8—N1—C6—C50.1 (2)C6—N1—C8—C9178.43 (13)
C8—N1—C6—C1179.63 (13)C10—O5—C9—O41.1 (2)
C4—C5—C6—N1178.99 (14)C10—O5—C9—C8179.88 (14)
C4—C5—C6—C10.5 (2)O3—C8—C9—O4178.26 (18)
C2—C1—C6—N1178.03 (13)N1—C8—C9—O43.3 (2)
C7—C1—C6—N11.9 (2)O3—C8—C9—O52.7 (2)
C2—C1—C6—C51.5 (2)N1—C8—C9—O5175.70 (12)
C7—C1—C6—C5178.62 (13)C9—O5—C10—C11169.35 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.96 (3)1.67 (3)2.6274 (16)176 (2)
N1—H1A···O20.93 (2)1.92 (2)2.6574 (15)135.1 (16)
C5—H5···O30.948 (19)2.230 (18)2.866 (2)123.7 (14)
C5—H5···O3ii0.948 (19)2.36 (2)3.1107 (19)135.9 (14)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y, z+1.
 

Funding information

This work was supported by Shandong Province Key Research and Development Project (2018GSF118174), Qingdao People's Livelihood Science and Technology Project (18–6-1–95-nsh), and the NSFC–Shandong Joint Fund for Marine Science Research Centers (grant No. U1606403).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X.-W., Li, X., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2012). J. Organomet. Chem. 700, 48–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401–406.  Google Scholar
First citationMatović, Z. D. V. D., Miletić, V. D., Samardžić, G., Pelosi, G., Ianelli, S. & Trifunović, S. (2005). Inorg. Chim. Acta, 358, 3135–3144.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYue, X.-T., Li, X.-W. & Wu, Z.-Y. (2012). Acta Cryst. E68, o8.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-J., Zheng, K., Wu, Z.-Y. & Li, Y. (2012). Acta Cryst. E68, o895.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds