metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[1,2-Bis(diiso­propyl­phosphan­yl)ethane-κ2P,P′](2-fluoro-N-{[(2-fluoro­phen­yl)aza­nid­yl]carbon­yl}anilinido-κ2N,N′)nickel(II)

CROSSMARK_Color_square_no_text.svg

aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad, Universitaria, Ciudad de México, 04510, Mexico
*Correspondence e-mail: juvent@unam.mx

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 May 2020; accepted 15 May 2020; online 19 May 2020)

The mol­ecular structure of the title complex, [Ni(C13H8F2N2O)(C14H32P2)] or Ni(oFPU)(dippe), where oFPU is the dianion of bis­(2-fluoro­phen­yl)urea and dippe is 1,2-bis­(di-iso­propyl­phosphino)ethane, comprises an NiII atom with a distorted square-planar coordination environment (geometry index τ4 = 0.195). One of the fluoro­phenyl rings of the oFPU ligand is disordered over two sets of sites in an 0.832 (7):0.168 (7) ratio. The crystal structure displays C—H⋯O and C—H⋯F hydrogen-bonding inter­actions, leading to chains with R22(12) motifs extending parallel to [100]. The title compound might be of inter­est with respect to the production of urea and carbamate derivatives of nickel(II).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Iso­cyanates are compounds that contain the functional group –N=C=O and can be prepared in different ways, from rearrangements on a laboratory scale to the phospho­genation of primary amines (Saunders & Slocombe, 1948[Saunders, J. H. & Slocombe, R. J. (1948). Chem. Rev. 43, 203-218.]) used in industry. The importance of iso­cyanates is demonstrated by the multitude of reactions in which they can be either used directly or serve as reaction inter­mediates. For example, iso­cyanates are employed in the production of urea and carbamate derivatives, which find agrochemical and/or pharmaceutical applications (Braunstein & Nobel, 1989[Braunstein, P. & Nobel, D. (1989). Chem. Rev. 89, 1927-1945.]). In this context, studies regarding the reactivity of aromatic iso­cyanates with different substituents on the aromatic rings in the dimeric complex [Ni(dippe)]2(μ-H)2 [dippe = 1,2-bis­(diiso­propyl­phosphino)ethane], which is an excellent precursor of nickel(II), were started.

The asymmetric unit of the title compound (Fig. 1[link]) consists of one [Ni(oFPU)(dippe)] mol­ecule with oFPU = bis­(2-fluoro­phen­yl)urea. Both bidentate oFPU and dippe ligands are coordinated to the NiII ion, through the N and P atoms, respectively. The resulting coordination environment is distorted square-planar (Table 1[link]), with the geometry index τ4 = 0.195 (τ4 = 0 for an ideal square-planar arrangement; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). In the oFPU moiety, the fluoro­phenyl ring (F2, C22–C27) attached to N2 is disordered over two sets of sites. The aromatic rings are inclined to the NCON plane of urea by 62.90 (2) (C22–C27) and 70.58 (2)° (C15–C2); the angle between the two aromatic rings is 57.47 (2)°. Based on the relative orientation of the ortho substituents (considering only the major disorder component) with respect to the carbonyl group, the mol­ecular conformation can be described as anti–anti, showing torsion angles (O)=C21—N1—C15—C16 and (O)=C21—N2—C22—C23 of 120.9 (6) and 117.0 (5)°, respectively. These values are consistent with those reported in the literature (Solomos et al., 2017[Solomos, M. M., Watts, T. A. & Swift, J. A. (2017). Cryst. Growth Des. 17, 5065-5072.]).

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 1.929 (4) Ni1—P2 2.1631 (14)
Ni1—N2 1.944 (5) Ni1—P1 2.1729 (14)
       
N1—Ni1—N2 68.13 (19) N1—Ni1—P1 101.11 (14)
N2—Ni1—P2 103.56 (13) P2—Ni1—P1 87.95 (5)
[Figure 1]
Figure 1
The mol­ecular structure of [Ni(oFPU)(dippe)], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal packing (Fig. 2[link]), there are inter­molecular hydrogen-bonding inter­actions between the C donor atoms of dppe to O and F acceptor atoms oFPU (Table 2[link]). The strongest inter­actions involving C1⋯O1i [3.210 (6) Å] and C8⋯F1i [3.398 (8) Å] lead to the formation of chains with an R22(12) motif extending along [100].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.99 2.32 3.210 (6) 149
C10—H10C⋯F1ii 0.98 2.57 3.416 (7) 145
C5—H5A⋯F1 0.98 2.53 3.435 (8) 154
C8—H8A⋯F1i 0.98 2.56 3.398 (8) 143
C4—H4B⋯F2Pii 0.98 2.5 3.25 (2) 133
C10—H10A⋯F2P 0.98 2.31 2.84 (2) 114
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
Crystal packing of [Ni(oFPU)(dippe)], showing the strongest C—H⋯O and C—H⋯F contacts as dashed lines. For clarity, only the major component of the disordered fluoro­phenyl ring (F2/C22–C27) is shown.

Synthesis and crystallization

A solution of 2-fluoro­phenyl­iso­cyanate (16 mg, 0.13 mmol) in THF (5 ml) was added dropwise to a stirring THF solution of [Ni(dippe)(μ-H)]2 (35.9 mg, 0.058 mmol). A slight bubbling was observed, accompanied by colour changes from purple to green and then brown. The reaction mixture was subsequently heated at 353 K for 2 h. At the end of heating, the sample was placed in a vial, and left in an inert atmosphere for crystallization by evaporation of the solvent. After a few days, crystals formed, which were analyzed by single-crystal X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One of the fluoro­phenyl rings (F2/C22–C27) was found to be disordered over two sets of sites in a refined 0.832 (7):0.168 (7) ratio. Restraints on bond lengths, angles and displacement ellipsoids were used to model the disorder.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C12H8F2N2O)(C15H32P2)]
Mr 567.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 130
a, b, c (Å) 9.0690 (3), 14.8325 (4), 20.1784 (7)
V3) 2714.32 (15)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.45
Crystal size (mm) 0.52 × 0.43 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Analytical (CrysAlis RED; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton England.])
Tmin, Tmax 0.395, 0.79
No. of measured, independent and observed [I > 2σ(I)] reflections 29885, 5357, 5015
Rint 0.069
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.03
No. of reflections 5357
No. of parameters 292
No. of restraints 84
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.57
Absolute structure Flack x determined using 2039 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.004 (14)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

[1,2-Bis(diisopropylphosphanyl)ethane-κ2P,P'](2-fluoro-N-{[(2-fluorophenyl)azanidyl]carbonyl}anilinido-κ2N,N')nickel(II) top
Crystal data top
[Ni(C12H8F2N2O)(C15H32P2)]F(000) = 1200
Mr = 567.26Dx = 1.388 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 12885 reflections
a = 9.0690 (3) Åθ = 4.3–72.6°
b = 14.8325 (4) ŵ = 2.45 mm1
c = 20.1784 (7) ÅT = 130 K
V = 2714.32 (15) Å3Plate, black
Z = 40.52 × 0.43 × 0.10 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
5357 independent reflections
Graphite monochromator5015 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.069
ω scansθmax = 73.6°, θmin = 3.7°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2013)
h = 1111
Tmin = 0.395, Tmax = 0.79k = 1818
29885 measured reflectionsl = 2420
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0619P)2 + 3.6612P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.70 e Å3
5357 reflectionsΔρmin = 0.57 e Å3
292 parametersAbsolute structure: Flack x determined using 2039 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
84 restraintsAbsolute structure parameter: 0.004 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. F2 C22 C23 C24 C25 C26 C27 and F2P C22P C23P C24P C25P C26P C27P are disordered over two sites with occupancies 0.83:0.17.

The anisotropic ellipsoids of the atoms disordered were elongated, EADP constraint commands in the SHELXL2018 software were used.

DELU C22 C23 C24 C25 C26 C27 SIMU 0.04 0.08 1.7 C22 C23 C24 C25 C26 C27 EADP C22 C23 > C27P SIMU 0.04 0.08 1.7 C22P C23P C24P C25P C26P C27P EADP C22P C23P C24P C25P C26P C27P

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.44042 (8)0.61941 (5)0.35974 (4)0.0252 (2)
P10.61916 (13)0.58432 (8)0.42665 (6)0.0283 (3)
P20.58710 (13)0.71631 (8)0.31423 (6)0.0274 (3)
F10.1259 (4)0.5617 (2)0.48298 (16)0.0425 (8)
O10.0663 (4)0.5316 (2)0.33306 (17)0.0326 (7)
N10.3051 (5)0.5214 (3)0.3753 (2)0.0333 (9)
N20.2565 (5)0.6354 (3)0.3116 (2)0.0379 (10)
C10.7924 (6)0.6365 (3)0.3979 (3)0.0340 (11)
H1A0.8561540.6497350.4364860.041*
H1B0.845550.5937460.3687450.041*
C20.7616 (5)0.7237 (3)0.3599 (3)0.0329 (10)
H2A0.8432070.7353350.3284370.039*
H2B0.7571340.7747620.3914310.039*
C30.6012 (6)0.6231 (4)0.5139 (2)0.0354 (11)
H30.6939360.6058930.5375710.042*
C40.5883 (7)0.7253 (4)0.5172 (3)0.0434 (13)
H4A0.6765690.7527270.497820.065*
H4B0.5789490.7441740.5635890.065*
H4C0.5010.7447410.4924380.065*
C50.4732 (8)0.5775 (5)0.5500 (3)0.0529 (16)
H5A0.380040.5942890.5286580.079*
H5B0.4717490.597150.5963820.079*
H5C0.4855690.5119630.5481090.079*
C60.6638 (6)0.4632 (3)0.4328 (3)0.0427 (13)
H60.5803530.4323560.4559120.051*
C70.6776 (7)0.4229 (4)0.3633 (4)0.0515 (15)
H7A0.5882620.4363560.3377860.077*
H7B0.6899460.3573780.3666140.077*
H7C0.7633770.4490.3408270.077*
C80.8040 (9)0.4454 (5)0.4720 (5)0.076 (3)
H8A0.885210.4805850.4530890.114*
H8B0.8281170.3811070.4699590.114*
H8C0.788930.4632030.5183130.114*
C90.5258 (6)0.8346 (3)0.3051 (2)0.0335 (11)
H90.4418810.8352560.2729970.04*
C100.4675 (8)0.8703 (4)0.3718 (3)0.0458 (14)
H10A0.3965690.8272730.3902810.069*
H10B0.4187840.9285790.3648850.069*
H10C0.5498940.877930.4027210.069*
C110.6448 (8)0.8970 (4)0.2781 (3)0.0471 (14)
H11A0.7301580.8962040.307910.071*
H11B0.6059880.9584690.2750350.071*
H11C0.674960.8763230.2340110.071*
C120.6424 (6)0.6818 (3)0.2294 (3)0.0341 (11)
H120.7129120.7281280.2122790.041*
C130.5102 (7)0.6796 (4)0.1827 (3)0.0405 (13)
H13A0.4405770.6332380.1974660.061*
H13B0.5436970.6656720.1376870.061*
H13C0.4612880.7385490.1829460.061*
C140.7222 (7)0.5912 (4)0.2296 (3)0.0482 (14)
H14A0.8114690.59560.2568040.072*
H14B0.7493280.5748970.1841520.072*
H14C0.6570410.5447780.2480230.072*
C150.2713 (6)0.4580 (3)0.4236 (3)0.0306 (10)
C160.3262 (6)0.3698 (4)0.4212 (3)0.0412 (12)
H160.3843440.3517670.3843490.049*
C170.2982 (8)0.3082 (4)0.4711 (4)0.0565 (17)
H170.3383530.2491450.4681750.068*
C180.2127 (7)0.3314 (5)0.5249 (4)0.0519 (16)
H180.1944840.2889840.5592170.062*
C190.1537 (6)0.4175 (4)0.5283 (3)0.0410 (12)
H190.0943320.4348910.5649560.049*
C200.1825 (6)0.4772 (4)0.4780 (3)0.0327 (11)
C210.1934 (6)0.5609 (3)0.3393 (2)0.0292 (10)
F20.1434 (6)0.5741 (3)0.1917 (2)0.0567 (13)0.832 (7)
C220.1725 (9)0.6924 (4)0.2689 (4)0.0422 (7)0.832 (7)
C230.1460 (8)0.7813 (5)0.2870 (3)0.0422 (7)0.832 (7)
H230.1844810.8040540.3274960.051*0.832 (7)
C240.0634 (7)0.8370 (3)0.2459 (3)0.0422 (7)0.832 (7)
H240.0453380.8978110.2583050.051*0.832 (7)
C250.0072 (6)0.8038 (3)0.1867 (2)0.0422 (7)0.832 (7)
H250.0493350.8418210.1585880.051*0.832 (7)
C260.0336 (6)0.7148 (3)0.1685 (2)0.0422 (7)0.832 (7)
H260.0048650.6920730.1280610.051*0.832 (7)
C270.1162 (8)0.6591 (3)0.2096 (4)0.0422 (7)0.832 (7)
F2P0.181 (2)0.8178 (13)0.3304 (10)0.0422 (7)0.168 (7)
C22P0.171 (5)0.687 (3)0.2661 (17)0.0422 (7)0.168 (7)
C23P0.129 (4)0.6397 (17)0.2097 (19)0.0422 (7)0.168 (7)
H23P0.1556590.5780910.2049820.051*0.168 (7)
C24P0.049 (3)0.6825 (18)0.1603 (13)0.0422 (7)0.168 (7)
H24P0.020070.6501240.1217320.051*0.168 (7)
C25P0.010 (3)0.7727 (18)0.1672 (12)0.0422 (7)0.168 (7)
H25P0.0450660.8019510.1333750.051*0.168 (7)
C26P0.052 (3)0.8201 (17)0.2235 (14)0.0422 (7)0.168 (7)
H26P0.0253850.8817470.2282690.051*0.168 (7)
C27P0.132 (4)0.777 (2)0.2730 (13)0.0422 (7)0.168 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0289 (4)0.0236 (4)0.0230 (4)0.0003 (3)0.0007 (3)0.0046 (3)
P10.0302 (6)0.0223 (5)0.0325 (6)0.0005 (4)0.0035 (5)0.0024 (5)
P20.0372 (6)0.0214 (5)0.0237 (6)0.0038 (5)0.0048 (5)0.0002 (4)
F10.0533 (19)0.0346 (16)0.0395 (17)0.0091 (14)0.0098 (14)0.0007 (13)
O10.0312 (17)0.0315 (16)0.0349 (18)0.0024 (15)0.0004 (15)0.0054 (14)
N10.035 (2)0.036 (2)0.029 (2)0.0063 (18)0.0019 (17)0.0022 (18)
N20.040 (2)0.037 (2)0.037 (2)0.0079 (19)0.001 (2)0.009 (2)
C10.031 (2)0.030 (3)0.040 (3)0.004 (2)0.001 (2)0.005 (2)
C20.035 (2)0.033 (2)0.031 (2)0.007 (2)0.001 (2)0.003 (2)
C30.044 (3)0.033 (2)0.029 (2)0.002 (2)0.006 (2)0.004 (2)
C40.062 (4)0.043 (3)0.025 (3)0.001 (3)0.002 (2)0.005 (2)
C50.064 (4)0.059 (4)0.035 (3)0.020 (3)0.002 (3)0.000 (3)
C60.037 (3)0.024 (2)0.067 (4)0.001 (2)0.008 (3)0.007 (3)
C70.049 (3)0.029 (3)0.077 (4)0.001 (2)0.012 (3)0.004 (3)
C80.061 (4)0.035 (3)0.131 (8)0.002 (3)0.043 (5)0.020 (4)
C90.049 (3)0.025 (2)0.026 (2)0.002 (2)0.001 (2)0.0000 (19)
C100.074 (4)0.030 (3)0.033 (3)0.014 (3)0.001 (3)0.002 (2)
C110.066 (4)0.029 (3)0.046 (3)0.007 (3)0.001 (3)0.010 (2)
C120.040 (3)0.033 (3)0.029 (2)0.010 (2)0.009 (2)0.007 (2)
C130.057 (3)0.036 (3)0.029 (3)0.009 (2)0.005 (2)0.005 (2)
C140.052 (3)0.047 (3)0.045 (3)0.001 (3)0.008 (3)0.021 (3)
C150.032 (2)0.032 (2)0.028 (2)0.005 (2)0.001 (2)0.003 (2)
C160.041 (3)0.036 (3)0.046 (3)0.003 (2)0.006 (2)0.007 (3)
C170.062 (4)0.033 (3)0.075 (5)0.011 (3)0.014 (4)0.014 (3)
C180.050 (3)0.050 (3)0.056 (4)0.005 (3)0.006 (3)0.024 (3)
C190.043 (3)0.046 (3)0.034 (3)0.004 (3)0.005 (2)0.006 (2)
C200.036 (3)0.033 (2)0.030 (3)0.001 (2)0.004 (2)0.002 (2)
C210.039 (3)0.022 (2)0.026 (2)0.0016 (19)0.007 (2)0.0047 (18)
F20.074 (3)0.048 (2)0.048 (2)0.001 (2)0.006 (2)0.0075 (19)
C220.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C230.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C240.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C250.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C260.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C270.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
F2P0.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C22P0.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C23P0.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C24P0.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C25P0.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C26P0.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
C27P0.0393 (13)0.0405 (17)0.0469 (17)0.0004 (12)0.0024 (12)0.0121 (15)
Geometric parameters (Å, º) top
Ni1—N11.929 (4)C10—H10C0.98
Ni1—N21.944 (5)C11—H11A0.98
Ni1—P22.1631 (14)C11—H11B0.98
Ni1—P12.1729 (14)C11—H11C0.98
Ni1—C212.438 (5)C12—C131.526 (8)
P1—C11.845 (5)C12—C141.527 (8)
P1—C61.846 (5)C12—H121
P1—C31.860 (5)C13—H13A0.98
P2—C21.835 (5)C13—H13B0.98
P2—C91.850 (5)C13—H13C0.98
P2—C121.855 (5)C14—H14A0.98
F1—C201.358 (6)C14—H14B0.98
O1—C211.238 (6)C14—H14C0.98
N1—C211.378 (7)C15—C201.391 (7)
N1—C151.387 (7)C15—C161.402 (7)
N2—C211.364 (6)C16—C171.382 (9)
N2—C22P1.426 (18)C16—H160.95
N2—C221.428 (6)C17—C181.379 (10)
C1—C21.529 (7)C17—H170.95
C1—H1A0.99C18—C191.386 (9)
C1—H1B0.99C18—H180.95
C2—H2A0.99C19—C201.373 (8)
C2—H2B0.99C19—H190.95
C3—C41.521 (8)F2—C271.334 (6)
C3—C51.528 (8)C22—C231.39
C3—H31C22—C271.39
C4—H4A0.98C23—C241.39
C4—H4B0.98C23—H230.95
C4—H4C0.98C24—C251.39
C5—H5A0.98C24—H240.95
C5—H5B0.98C25—C261.39
C5—H5C0.98C25—H250.95
C6—C81.520 (9)C26—C271.39
C6—C71.531 (9)C26—H260.95
C6—H61F2P—C27P1.38 (3)
C7—H7A0.98C22P—C23P1.39
C7—H7B0.98C22P—C27P1.39
C7—H7C0.98C23P—C24P1.39
C8—H8A0.98C23P—H23P0.95
C8—H8B0.98C24P—C25P1.39
C8—H8C0.98C24P—H24P0.95
C9—C111.522 (8)C25P—C26P1.39
C9—C101.540 (7)C25P—H25P0.95
C9—H91C26P—C27P1.39
C10—H10A0.98C26P—H26P0.95
C10—H10B0.98
N1—Ni1—N268.13 (19)C9—C10—H10C109.5
N1—Ni1—P2164.07 (14)H10A—C10—H10C109.5
N2—Ni1—P2103.56 (13)H10B—C10—H10C109.5
N1—Ni1—P1101.11 (14)C9—C11—H11A109.5
N2—Ni1—P1168.35 (14)C9—C11—H11B109.5
P2—Ni1—P187.95 (5)H11A—C11—H11B109.5
N1—Ni1—C2134.35 (17)C9—C11—H11C109.5
N2—Ni1—C2133.96 (17)H11A—C11—H11C109.5
P2—Ni1—C21136.87 (12)H11B—C11—H11C109.5
P1—Ni1—C21134.87 (12)C13—C12—C14110.8 (4)
C1—P1—C6104.0 (3)C13—C12—P2111.3 (4)
C1—P1—C3104.0 (2)C14—C12—P2111.6 (4)
C6—P1—C3104.9 (3)C13—C12—H12107.6
C1—P1—Ni1109.83 (18)C14—C12—H12107.6
C6—P1—Ni1116.0 (2)P2—C12—H12107.6
C3—P1—Ni1116.67 (18)C12—C13—H13A109.5
C2—P2—C9104.6 (2)C12—C13—H13B109.5
C2—P2—C12104.3 (3)H13A—C13—H13B109.5
C9—P2—C12104.6 (2)C12—C13—H13C109.5
C2—P2—Ni1110.91 (17)H13A—C13—H13C109.5
C9—P2—Ni1119.19 (18)H13B—C13—H13C109.5
C12—P2—Ni1112.01 (17)C12—C14—H14A109.5
C21—N1—C15119.7 (4)C12—C14—H14B109.5
C21—N1—Ni193.5 (3)H14A—C14—H14B109.5
C15—N1—Ni1140.0 (4)C12—C14—H14C109.5
C21—N2—C22P118.2 (19)H14A—C14—H14C109.5
C21—N2—C22120.2 (5)H14B—C14—H14C109.5
C21—N2—Ni193.3 (3)N1—C15—C20122.9 (5)
C22P—N2—Ni1148.6 (18)N1—C15—C16122.0 (5)
C22—N2—Ni1146.3 (5)C20—C15—C16115.1 (5)
C2—C1—P1110.9 (4)C17—C16—C15121.8 (5)
C2—C1—H1A109.5C17—C16—H16119.1
P1—C1—H1A109.5C15—C16—H16119.1
C2—C1—H1B109.5C18—C17—C16120.8 (6)
P1—C1—H1B109.5C18—C17—H17119.6
H1A—C1—H1B108C16—C17—H17119.6
C1—C2—P2111.0 (3)C17—C18—C19119.1 (6)
C1—C2—H2A109.4C17—C18—H18120.4
P2—C2—H2A109.4C19—C18—H18120.4
C1—C2—H2B109.4C20—C19—C18118.9 (5)
P2—C2—H2B109.4C20—C19—H19120.5
H2A—C2—H2B108C18—C19—H19120.5
C4—C3—C5111.2 (5)F1—C20—C19117.9 (5)
C4—C3—P1110.9 (3)F1—C20—C15117.8 (5)
C5—C3—P1112.4 (4)C19—C20—C15124.2 (5)
C4—C3—H3107.4O1—C21—N2129.3 (5)
C5—C3—H3107.4O1—C21—N1126.1 (4)
P1—C3—H3107.4N2—C21—N1104.6 (4)
C3—C4—H4A109.5O1—C21—Ni1176.0 (4)
C3—C4—H4B109.5N2—C21—Ni152.8 (3)
H4A—C4—H4B109.5N1—C21—Ni152.2 (2)
C3—C4—H4C109.5C23—C22—C27120
H4A—C4—H4C109.5C23—C22—N2119.7 (5)
H4B—C4—H4C109.5C27—C22—N2120.3 (5)
C3—C5—H5A109.5C24—C23—C22120
C3—C5—H5B109.5C24—C23—H23120
H5A—C5—H5B109.5C22—C23—H23120
C3—C5—H5C109.5C25—C24—C23120
H5A—C5—H5C109.5C25—C24—H24120
H5B—C5—H5C109.5C23—C24—H24120
C8—C6—C7110.0 (6)C24—C25—C26120
C8—C6—P1112.8 (4)C24—C25—H25120
C7—C6—P1109.7 (4)C26—C25—H25120
C8—C6—H6108.1C27—C26—C25120
C7—C6—H6108.1C27—C26—H26120
P1—C6—H6108.1C25—C26—H26120
C6—C7—H7A109.5F2—C27—C26119.9 (5)
C6—C7—H7B109.5F2—C27—C22120.1 (5)
H7A—C7—H7B109.5C26—C27—C22120
C6—C7—H7C109.5C23P—C22P—C27P120
H7A—C7—H7C109.5C23P—C22P—N2114 (3)
H7B—C7—H7C109.5C27P—C22P—N2126 (3)
C6—C8—H8A109.5C24P—C23P—C22P120
C6—C8—H8B109.5C24P—C23P—H23P120
H8A—C8—H8B109.5C22P—C23P—H23P120
C6—C8—H8C109.5C25P—C24P—C23P120
H8A—C8—H8C109.5C25P—C24P—H24P120
H8B—C8—H8C109.5C23P—C24P—H24P120
C11—C9—C10110.3 (5)C24P—C25P—C26P120
C11—C9—P2113.5 (4)C24P—C25P—H25P120
C10—C9—P2110.1 (3)C26P—C25P—H25P120
C11—C9—H9107.6C27P—C26P—C25P120
C10—C9—H9107.6C27P—C26P—H26P120
P2—C9—H9107.6C25P—C26P—H26P120
C9—C10—H10A109.5F2P—C27P—C26P125 (2)
C9—C10—H10B109.5F2P—C27P—C22P115 (2)
H10A—C10—H10B109.5C26P—C27P—C22P120
C6—P1—C1—C2153.4 (4)C16—C15—C20—C193.0 (8)
C3—P1—C1—C297.0 (4)C22P—N2—C21—O14 (2)
Ni1—P1—C1—C228.6 (4)C22—N2—C21—O10.3 (9)
P1—C1—C2—P233.2 (5)Ni1—N2—C21—O1175.6 (5)
C9—P2—C2—C1154.7 (4)C22P—N2—C21—N1175 (2)
C12—P2—C2—C195.8 (4)C22—N2—C21—N1178.4 (5)
Ni1—P2—C2—C124.9 (4)Ni1—N2—C21—N16.2 (4)
C1—P1—C3—C462.0 (5)C22P—N2—C21—Ni1179 (2)
C6—P1—C3—C4171.0 (4)C22—N2—C21—Ni1175.4 (6)
Ni1—P1—C3—C459.1 (4)C15—N1—C21—O118.8 (7)
C1—P1—C3—C5172.8 (4)Ni1—N1—C21—O1175.5 (4)
C6—P1—C3—C563.9 (5)C15—N1—C21—N2163.0 (4)
Ni1—P1—C3—C566.0 (5)Ni1—N1—C21—N26.3 (4)
C1—P1—C6—C850.5 (6)C15—N1—C21—Ni1156.7 (5)
C3—P1—C6—C858.5 (6)C21—N2—C22—C23117.0 (5)
Ni1—P1—C6—C8171.2 (5)Ni1—N2—C22—C2354.7 (10)
C1—P1—C6—C772.4 (4)C21—N2—C22—C2762.5 (7)
C3—P1—C6—C7178.6 (4)Ni1—N2—C22—C27125.8 (7)
Ni1—P1—C6—C748.3 (4)C27—C22—C23—C240
C2—P2—C9—C1150.1 (4)N2—C22—C23—C24179.5 (7)
C12—P2—C9—C1159.2 (4)C22—C23—C24—C250
Ni1—P2—C9—C11174.8 (3)C23—C24—C25—C260
C2—P2—C9—C1074.1 (4)C24—C25—C26—C270
C12—P2—C9—C10176.6 (4)C25—C26—C27—F2179.0 (6)
Ni1—P2—C9—C1050.6 (5)C25—C26—C27—C220
C2—P2—C12—C13175.5 (4)C23—C22—C27—F2179.0 (6)
C9—P2—C12—C1365.9 (4)N2—C22—C27—F21.5 (6)
Ni1—P2—C12—C1364.5 (4)C23—C22—C27—C260
C2—P2—C12—C1460.2 (4)N2—C22—C27—C26179.5 (7)
C9—P2—C12—C14169.7 (4)C21—N2—C22P—C23P62 (2)
Ni1—P2—C12—C1459.8 (4)Ni1—N2—C22P—C23P120 (3)
C21—N1—C15—C2060.0 (7)C21—N2—C22P—C27P120 (2)
Ni1—N1—C15—C2082.2 (7)Ni1—N2—C22P—C27P58 (5)
C21—N1—C15—C16120.9 (6)C27P—C22P—C23P—C24P0
Ni1—N1—C15—C1697.0 (7)N2—C22P—C23P—C24P178 (3)
N1—C15—C16—C17176.7 (6)C22P—C23P—C24P—C25P0
C20—C15—C16—C172.5 (9)C23P—C24P—C25P—C26P0
C15—C16—C17—C180.9 (11)C24P—C25P—C26P—C27P0
C16—C17—C18—C190.5 (11)C25P—C26P—C27P—F2P179 (3)
C17—C18—C19—C200.1 (10)C25P—C26P—C27P—C22P0
C18—C19—C20—F1178.8 (5)C23P—C22P—C27P—F2P179 (3)
C18—C19—C20—C151.8 (9)N2—C22P—C27P—F2P1 (3)
N1—C15—C20—F10.8 (8)C23P—C22P—C27P—C26P0
C16—C15—C20—F1180.0 (5)N2—C22P—C27P—C26P178 (4)
N1—C15—C20—C19176.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.323.210 (6)149
C10—H10C···F1ii0.982.573.416 (7)145
C5—H5A···F10.982.533.435 (8)154
C8—H8A···F1i0.982.563.398 (8)143
C4—H4B···F2Pii0.982.53.25 (2)133
C10—H10A···F2P0.982.312.84 (2)114
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1.
 

Funding information

We thank CONACYT (A1-S-7657) and DGAPA-UNAM (IN-200119) for financial support.

References

First citationAgilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton England.  Google Scholar
First citationBraunstein, P. & Nobel, D. (1989). Chem. Rev. 89, 1927–1945.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaunders, J. H. & Slocombe, R. J. (1948). Chem. Rev. 43, 203–218.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolomos, M. M., Watts, T. A. & Swift, J. A. (2017). Cryst. Growth Des. 17, 5065–5072.  CSD CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds